CN114800041A - 一种刀具状态监测方法及其监测装置 - Google Patents

一种刀具状态监测方法及其监测装置 Download PDF

Info

Publication number
CN114800041A
CN114800041A CN202210486283.XA CN202210486283A CN114800041A CN 114800041 A CN114800041 A CN 114800041A CN 202210486283 A CN202210486283 A CN 202210486283A CN 114800041 A CN114800041 A CN 114800041A
Authority
CN
China
Prior art keywords
samples
distance map
cutter
module
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210486283.XA
Other languages
English (en)
Other versions
CN114800041B (zh
Inventor
周余庆
王泓澈
孙维方
陈如清
任燕
向家伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Jiaxing Nanhu University
Original Assignee
Wenzhou University
Jiaxing Nanhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University, Jiaxing Nanhu University filed Critical Wenzhou University
Priority to CN202210486283.XA priority Critical patent/CN114800041B/zh
Publication of CN114800041A publication Critical patent/CN114800041A/zh
Application granted granted Critical
Publication of CN114800041B publication Critical patent/CN114800041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种刀具状态监测方法及检测装置,包括如下步骤:采集刀具加工过程中切削力、振动信号以及对应刀具的磨损状态,获得时间序列样本;对时间序列样本进行数据扩维,然后以最小化多尺度排列熵为目标函数,利用智能进化算法进行参数取值并寻优,得到最优重构矩阵;对最优重构矩阵进行编码生成灰度距离图;将同一样本中的灰度距离图进行对角切割并聚合成彩色距离图;将彩色距离图输入到对比学习网络中进行预训练模型的训练,得到特征权重;将预训练模型的特征权重调用到Resnet18分类模型中并训练,得到训练后的Resnet18分类模型;利用训练后的Resnet18分类模型对刀具状态进行监测识别。本发明可以实现刀具状态的高精度监测,大大降低了成本。

Description

一种刀具状态监测方法及其监测装置
技术领域
本发明涉及加工过程监测技术领域,特别是一种刀具状态监测方法及其监测装置。
背景技术
在材料切削过程中,刀具与工件直接接触,刀具的逐渐磨损已成为影响工件尺寸精度、表面粗糙度和加工成本的重要因素。刀具磨损是一个复杂的非线性过程,传统上主要借助于操作者的经验和主观判断或采用固定加工时间的方式来决定是否需要更换刀具,容易导致刀具过早被换掉,从而降低了加工效率并增加了刀具成本。如果能开发出一种可靠的刀具状态监测方法来及时反映刀具的磨损情况,可以大大增加加工效率并减少刀具成本。据研究,有效的刀具状态监测系统可以减少7%—20%的故障停机时间,提高20%—30%的生产效率。因此,如何掌握刀具实时磨损状态,开发出高精度的刀具状态监测方法,提高刀具的利用率,降低加工成本,是机加工过程智能化的发展中急需解决的问题之一。
目前,国内外学者对刀具状态监测开展了大量的研究,常用的方法是通过间接测量加工过程中与刀具状态相关的物理量(如切削力、振动加速度、声发射等),通过特征提取技术和状态识别模型等环节获得对刀具状态的识别。在特征提取技术上有快速傅里叶变换、小波分析等,在状态识别模型上有支持向量机、BP神经网络等。然而,这些方法都需要在一定的前提条件下才能达到理想的效果,如FFT要求信号是平稳的,而机加工过程信号是非平稳的;小波分析需要构造和选择与故障特征波形相匹配且具有优良性质的小波基函数。而对于先验知识甚少的机床刀具损伤过程,选择合适的小波基函数是非常困难的;BP神经网络算法需要大量有标签训练样本进行训练,这在实际的工业场景中是很困难的;支持向量机在小样本情形下表现出良好的分类性能,但由于切削过程的刀具状态演变过程是一个复杂的非线性过程,支持向量机的浅层特征学习能力难以获得高精度的识别结果。为克服上述问题,深度学习理论被引入刀具状态监测领域,如卷积神经网络、循环神经网络等。深度学习算法省去了特征提取环节,避免了传统特征提取技术的限制,但需要大量的有标签训练样本进行学习才能达到良好的识别精度。而在实际的工业场景中,往往只能获得少量的有标签样本数据,大量的样本数据是无标签的,而卷积神经网络、循环神经网络等方法属于有监督学习,只能训练有标签样本,对大量的无标签样本无能为力,严重影响了它们的识别性能。如何利用工业现实场景中的少量有标签样本和大量无标签样本来提升刀具状态监测的识别精度,是当前理论界和工业界关注的热点难题。
发明内容
本发明的目的在于,提供一种刀具状态监测方法及其监测装置。本发明可以利用少量有标签样本和大量无标签样本实现刀具状态的高精度监测,大大降低了成本,适用于工业现实场景中有标签样本占比低的情形。
本发明的技术方案:一种刀具状态监测方法,包括如下步骤:
步骤1、采集刀具加工过程中切削力、振动信号以及对应刀具的磨损状态,获得时间序列样本;所述时间序列样本包括有标签样本和无标签样本,所述有标签样本由刀具加工开始阶段以及结束阶段的切削力、振动信号和刀具磨损状态组成的;所述无标签样本由刀具加工中间阶段的切削力和振动信号组成;
步骤2、对时间序列样本进行数据扩维,然后以最小化多尺度排列熵为目标函数,利用智能进化算法进行参数取值并寻优,得到最优重构矩阵;
步骤3、对最优重构矩阵进行编码生成灰度距离图;
步骤4、将同一样本中的灰度距离图进行对角切割并聚合成彩色距离图;
步骤5、将彩色距离图输入到对比学习网络中进行预训练模型的训练,得到特征权重;
步骤6、将预训练模型的特征权重调用到Resnet18分类模型中并训练,得到训练后的Resnet18分类模型;
步骤7、利用训练后的Resnet18分类模型对刀具状态进行监测识别。
上述的刀具状态监测方法,步骤二中,所述数据扩维是先将时间序列样本进行平均化,得到粗粒度时间序列,平均化公式如下:
Figure BDA0003629278280000031
式中:yi为粗粒度时间序列,S代表尺度因子,
Figure BDA0003629278280000041
每个粗粒度时间序列的长度等于时间序列样本的长度N除以尺度因子S,Xj为时间序列样本。
前述的刀具状态监测方法,步骤二中,所述最优重构矩阵的获取是将粗粒度时间序列嵌入到嵌入维度为m、时间延迟为t的相空间中,得到相空间的时间状态,如下所示:
Y(1)={y1,y1+t…y1+(m-1)t}
Figure BDA0003629278280000042
Y(i)={yi,yi+t…yi+(m-1)t}
Figure BDA0003629278280000043
Y(T-(m-1)t)=Yk={yT-m-1)t,yT-(m-2)t…yT}。
对Y(i)的元素按照实际值升序排列,每个Y(i)映射到一个符号数组S(i)=[j1,j2,j3…jm],i=1,2,3…k,k≤m!;对于不同符号数组的概率分布为P1,P2,P3…Pk,其中
Figure BDA0003629278280000044
[Y(i),i=1,2,3…k]的概率为k香农熵:
Figure BDA0003629278280000045
对上式进行归一化处理,得到排列熵H=Hp(m)/ln(m!);
构建最小化多尺度排列熵偏度平方的优化模型:
Figure BDA0003629278280000051
其中,SKEW表示所有样本的多尺度排列熵的偏度平方,SKx表示X的排列熵偏度,Q为样本容量,Hx表示X的排列熵,Havg表示所有Q个排列熵的均值;
利用智能进化算法求解出使得SKEW最小的时间序列长度N、尺度因子S、嵌入维度m和时间延迟t,进而构造最优重构矩阵:
Figure BDA0003629278280000052
其中:
Figure BDA0003629278280000053
k=T-(m-1)t。
前述的刀具状态监测方法,所述灰度距离图的生成公式如下:
RPi,j=||Yi-Yj||;
式中:Yi和Yj表示最优重构矩阵的i,j个状态,i,j=1,2,…k,RPi,j表示灰度距离图中坐标的像素值。
前述的刀具状态监测方法,所述对比学习网络有数据增强模块、特征提取模块、多层感知机模块和对比损失函数模块组成;
所述数据增强模块采用几何变换类的数据增强方法,将彩色距离图生成正样本对和负样本对;
所述特征提取模块使用Resnet18模型,包括卷积层、四个残差块和平均池层,将输入图像转换为1×1×512的特征向量:
所述多层感知机模块在将高维向量映射到低维向量,将输入的1×1×512的特征向量转换成1×1×128的特征向量;
所述对比损失函数模块计算余弦相似度:
Figure BDA0003629278280000061
其中:Z=[Z1;Z2]∈R2N×128,表示矩阵通过列进行合并,Z1为正样本对经过特征提取模块和多层感知机模块获得的特征向量;Z2为负样本对经过特征提取模块和多层感知机模块获得的特征向量;i,j=1,2,…k;
再根据余弦相似度计算交叉熵损失:
Figure BDA0003629278280000062
其中,τ为温度系数τ,τ∈[0,1]分子为正样本对的余弦相似度,分母为所有彩色距离图的余弦相似度之和;
最后计算损失函数:
Figure BDA0003629278280000063
前述的刀具状态监测方法,步骤7中,刀具状态进行监测识别是定期周期性采集刀具加工过程中的切削力和振动信,得到待测样本;将待测样本进行扩维、编码和聚合形成待测彩色距离图;将待测彩色距离图输入到训练后的Resnet18分类模型中对刀具状态进行分类监测识别。
前述的刀具状态监测方法的监测装置,包括信号采集模块、图形化模块和状态识别模块;
所述信号采集模块采用多个传感器定期采集刀具加工过程的时间序列样本以及待测样本;
所述图形化模块将时间序列样本或待测样本进行扩维、编码和聚合形成待测彩色距离图;
所述状态识别模块用于将待测彩色距离图输入到训练后的Resnet18分类模型中对刀具状态进行分类监测识别。
与现有技术相比,本发明通过采集刀具切削过程中的切削力和振动信号以及对应刀具的磨损状态,获得时间序列样本,然后对时间序列样本进行扩维,有效的提供了更丰富的刀具状态相关信息,结合智能进化算法进行参数取值并寻优,进而对最优重构矩阵进行编码生成灰度距离图,再将同一样本中的灰度距离图进行对角切割并聚合成彩色距离图,输入到对比学习网络中进行预训练,得到特征权重,然后将预训练模型的特征权重调用到Resnet18分类模型中并训练,得到训练后的Resnet18分类模型;最后利用训练后的Resnet18分类模型对刀具状态进行监测识别。本发明可以利用少量有标签样本和大量无标签样本实现刀具状态的高精度监测,大大降低了实验成本,适用于工业现实场景中有标签样本占比低的情形。本发明提出了一种适用于有标签样本占比低的大数据情形的刀具磨损状态监测方法,解决了在有标签样本不足情形下的刀具状态高精度监测问题。本发明所提方法无需对原始传感信号进行特征提取,克服了目前大多数基于传感信号的方法需要依赖很多信号处理技术和主观先验知识的弊端,实现方法较为简单。
附图说明
图1为本发明的流程示意图;
图2为时间序列样本生成灰度距离图的示意图;
图3为彩色距离图的生成流程示意图;
图4为对比学习网络结构示意图;
图5为刀具状态监测装置;
图6为刀具磨损图像和其对应的彩色距离图。
具体实施方式
下面结合实施例对本发明作进一步说明,但并不作为对本发明限制的依据。
实施例1:一种刀具状态监测方法,如图1所示,包括如下步骤:
步骤1、采集刀具加工过程中切削力、振动信号以及对应刀具的磨损状态,获得时间序列样本;所述时间序列样本包括有标签样本和无标签样本,所述有标签样本由刀具加工开始阶段以及结束阶段的切削力、振动信号和刀具磨损状态组成的;所述无标签样本由刀具加工中间阶段的切削力和振动信号组成;
步骤2、对时间序列样本进行数据扩维,然后以最小化多尺度排列熵为目标函数,利用智能进化算法进行参数取值并寻优,得到最优重构矩阵;如图1所示,所述数据扩维是先将时间序列样本进行平均化,得到粗粒度时间序列,平均化公式如下:
Figure BDA0003629278280000091
式中:yi为粗粒度时间序列,S代表尺度因子,
Figure BDA0003629278280000092
每个粗粒度时间序列的长度等于时间序列样本的长度N除以尺度因子S,Xj为时间序列样本;
所述最优重构矩阵的获取是将粗粒度时间序列嵌入到嵌入维度为m、时间延迟为t的相空间中,得到相空间的时间状态,如下所示:
Y(1)={y1,y1+t…y1+(m-1)t}
Figure BDA0003629278280000093
Y(i)={yi,yi+t…yi+(m-1)t}
Figure BDA0003629278280000094
Y(T-(m-1)t)=Yk={yT-m-1)t,yT-(m-2)t…yT}。
对Y(i)的元素按照实际值升序排列,例如
Figure BDA0003629278280000096
如果出现
Figure BDA0003629278280000097
将对它们的j值进行排序,如果ji1<ji2,将默认
Figure BDA0003629278280000098
每个Y(i)映射到一个符号数组S(i)=[j1,j2,j3…jm],i=1,2,3…k,k≤m!;对于不同符号数组的概率分布为P1,P2,P3…Pk,其中
Figure BDA0003629278280000095
[Y(i),i=1,2,3…k]的概率为k香农熵:
Figure BDA0003629278280000101
对上式进行归一化处理,得到排列熵H=Hp(m)/ln(m!);
构建最小化多尺度排列熵偏度平方的优化模型:
Figure BDA0003629278280000102
其中,SKEW表示所有样本的多尺度排列熵的偏度平方,SKx表示X的排列熵偏度,Q为样本容量(包含有标签样本和无标签样本),Hx表示X的排列熵,Havg表示所有Q个排列熵的均值;
利用智能进化算法求解出使得SKEW最小的时间序列长度N、尺度因子S、嵌入维度m和时间延迟t,进而构造最优重构矩阵:
Figure BDA0003629278280000103
其中:
Figure BDA0003629278280000104
k=T-(m-1)t。
步骤3、对最优重构矩阵进行编码生成灰度距离图;所述灰度距离图的生成公式如下:
RPi,j=||Yi-Yj||;
式中:Yi和Yj表示最优重构矩阵的i,j个状态,i,j=1,2,…k,RPi,j表示灰度距离图中坐标的像素值。
步骤4、将同一样本中的灰度距离图进行对角切割并聚合成彩色距离图;由于灰度距离图是对称矩阵,为进一步丰富刀具状态特征信息,取每个灰度距离图的上三角或下三角作为该通道的全部信息,将一个样本中的所有灰度距离图进行错位叠加。以六通道为例,6个灰度距离图融合成彩色距离图如图3所示。
步骤5、将彩色距离图输入到对比学习网络中进行预训练模型的训练,得到特征权重;如图4所示,所述对比学习网络有数据增强模块、特征提取模块、多层感知机模块和对比损失函数模块组成;
所述数据增强模块采用几何变换类的数据增强方法,将彩色距离图生成正样本对和负样本对;本实施例中数据增强方法为T=Rand(Crop,Horizontal Flip,CropResize)。T是随机选择的多种增强方法,如图4所示,一张图片通过T生成的称为正样本对和,其他图像生成的样本为负样本。
所述特征提取模块使用Resnet18模型,包括卷积层、四个残差块和平均池层,将输入图像转换为1×1×512的特征向量:
所述多层感知机模块在将高维向量映射到低维向量,可以加快后续损失函数的计算,多层感知机使用了两个线性层,在每个线性层之后进行归一化,在第一个线性层中使用归一化后的ReLU激活函数,这样可以更好地挖掘相关特征并加快数据拟合,所述多层感知机模块将输入的1×1×512的特征向量转换成1×1×128的特征向量;
所述对比损失函数模块计算余弦相似度:
Figure BDA0003629278280000121
其中:Z=[Z1;Z2]∈R2N×128,表示矩阵通过列进行合并,Z1为正样本对经过特征提取模块和多层感知机模块获得的特征向量;Z2为负样本对经过特征提取模块和多层感知机模块获得的特征向量;i,j=1,2,…k;
再根据余弦相似度计算交叉熵损失:
Figure BDA0003629278280000122
其中,τ为温度系数τ,τ∈[0,1]分子为正样本对的余弦相似度,分母为所有彩色距离图的余弦相似度之和;
最后计算损失函数:
Figure BDA0003629278280000123
步骤6、将预训练模型的特征权重调用到Resnet18分类模型中并训练,得到训练后的Resnet18分类模型;
步骤7、利用训练后的Resnet18分类模型对刀具状态进行监测识别。所述刀具状态进行监测识别是定期周期性采集刀具加工过程中的切削力和振动信,得到待测样本;将待测样本进行扩维、编码和聚合形成待测彩色距离图;将待测彩色距离图输入到训练后的Resnet18分类模型中对刀具状态进行分类监测识别。
实施例2:一种刀具状态监测装置,如图5所示,包括信号采集模块、图形化模块和状态识别模块;
所述信号采集模块采用多个传感器定期采集刀具加工过程的时间序列样本以及待测样本;
所述图形化模块将时间序列样本或待测样本进行扩维、编码和聚合形成待测彩色距离图;
所述状态识别模块用于将待测彩色距离图输入到训练后的Resnet18分类模型中对刀具状态进行分类监测识别。
实施例3:本实施例在实施例1和实施例2的基础上,以三槽钨钢立铣刀为例进行铣削加工实验。
(1)使用Kistler三分量测力计和三向振动传感器分别采集七种切削工况下工件在三个方向(X,Y,Z)上的切削力、振动信号,采样频率为12kHz。将刀具状态分为初始磨损、轻微磨损、稳定磨损、剧烈磨损、失效共五类状态。
(2)每铣削完一次工件表面即停机测量刀具状态,由于刀具演变的非线性特点,仅在每次铣削的开始和结束阶段的样本可对应到相应的刀具状态,即铣削开始阶段的样本可对应到上一次的刀具状态,铣削结束阶段的样本可对应到本次停机后测得的刀具状态,而中间的大部分铣削过程的样本数据无法获得对应的刀具状态,造成了训练样本有标签样本占比低的大数据情形,即存在少量有标签样本(铣削的开始和结束阶段的样本)和大量无标签样本(铣削中间阶段的样本)。
(3)截取七种工况下所有样本六个传感通道的500000个数据点作为样本,组成训练样本进行模型训练。实验中,五种刀具状态均有7000个样本(包含有标签800个和无标签样本6200个),共组成35000个训练样本。
(4)对采集到的各通道信号进行扩维,计算出信号的最佳时间序列长度N=902,时间延迟t=4,嵌入维数m=5,尺度因子S=4。
(5)对每个扩维后的信号中相空间各种状态来求欧式距离,将其转换成灰度距离图。
(6)将各个通道的灰度距离图聚合为彩色距离图。图6显示了五种刀具磨损类别与其对应彩色距离图的关系。
(7)将五种刀具状态的35000个样本对应的彩色距离图输入到对比学习模型中进行特征提取。
(8)加载预训练模型到分类模型中,用少量的有标签样本(800个/类)对Resnet18模型进行训练,获得高精度的刀具状态识别模型。
(9)定期在线采集高速铣削加工过程中的切削力、振动信号作为待测样本,根据最佳时间序列长度N=902,时间延迟t=4,嵌入维数m=5,尺度因子S=4对信号进行扩维,进而转换为灰度距离图,然后对多个灰度距离图聚合成彩色距离图。
(10)最后,将聚合的彩色距离图输入到已训练的状态监测模型中,对刀具状态进行在线监测识别。
实验中,为检验所提发明的有效性,测试了200个刀具状态样本。同时,为了检验所提方法在不同训练集容量下的鲁棒性,对训练集容量为100、200、500和800情形下分别进行了检验,并与其余两种主流方法进行了比较,检验结果如表1所示。
标记 有标签样本容量 测试集容量 Resnet18 IM-Resnet18 本发明
TR-100 100 200 54.9% 63% 93.6%
TR-200 200 200 57.1% 67% 97.4%
TR-500 500 200 61.2% 71% 98.4%
TR-800 800 200 64.4% 74% 99.0%
表1
表1第1列标记中,TR-*表示训练集容量为*的情形。Resnet18所在列表示不用预训练模型,仅使用Resnet18模型进行分类的结果;IM-Resnet18所在列表示预训练模型使用ImageNet数据集进行预训练,分类模型使用Resnet18的结果。可以看出,本发明在几种少量有标签样本集下的分类精度远高于其他两种方法,在有标签样本集仅为100时(TR-100)的刀具状态识别精度可达到93.6%,比IM-Resnet18方法提升了30%以上,在其他有标签样本容量下的识别精度也有提升17%以上。此外,当有标签样本容量为200时,本发明的识别精度可超过97%;当有标签样本容量为800时,本发明的识别精度可达到99%。由此可见,本发明能够充分利用大量无标签样本来帮助提升监测模型的识别精度,而且在有标签样本容量很低的时候仍然可以获得很好的识别精度,表现了良好的鲁棒性。
综上所述,本发明可以利用少量有标签样本和大量无标签样本实现刀具状态的高精度监测,大大降低了实验成本,适用于工业现实场景中有标签样本占比低的情形。本发明提出了一种适用于有标签样本占比低的大数据情形的刀具磨损状态监测方法,解决了在有标签样本不足情形下的刀具状态高精度监测问题。本发明所提方法无需对原始传感信号进行特征提取,克服了目前大多数基于传感信号的方法需要依赖很多信号处理技术和主观先验知识的弊端,实现方法较为简单。

Claims (7)

1.一种刀具状态监测方法,其特征在于:包括如下步骤:
步骤1、采集刀具加工过程中切削力、振动信号以及对应刀具的磨损状态,获得时间序列样本;所述时间序列样本包括有标签样本和无标签样本,所述有标签样本由刀具加工开始阶段以及结束阶段的切削力、振动信号和刀具磨损状态组成的;所述无标签样本由刀具加工中间阶段的切削力和振动信号组成;
步骤2、对时间序列样本进行数据扩维,然后以最小化多尺度排列熵为目标函数,利用智能进化算法进行参数取值并寻优,得到最优重构矩阵;
步骤3、对最优重构矩阵进行编码生成灰度距离图;
步骤4、将同一样本中的灰度距离图进行对角切割并聚合成彩色距离图;
步骤5、将彩色距离图输入到对比学习网络中进行预训练模型的训练,得到特征权重;
步骤6、将预训练模型的特征权重调用到Resnet18分类模型中并训练,得到训练后的Resnet18分类模型;
步骤7、利用训练后的Resnet18分类模型对刀具状态进行监测识别。
2.根据权利要求1所述的刀具状态监测方法,其特征在于:步骤二中,所述数据扩维是先将时间序列样本进行平均化,得到粗粒度时间序列,平均化公式如下:
Figure FDA0003629278270000021
式中:yi为粗粒度时间序列,S代表尺度因子,
Figure FDA0003629278270000022
每个粗粒度时间序列的长度等于时间序列样本的长度N除以尺度因子S,xj为时间序列样本。
3.根据权利要求2所述的刀具状态监测方法,其特征在于:步骤二中,所述最优重构矩阵的获取是将粗粒度时间序列嵌入到嵌入维度为m、时间延迟为t的相空间中,得到相空间的时间状态,如下所示:
Figure FDA0003629278270000023
对Y(i)的元素按照实际值升序排列,每个Y(i)映射到一个符号数组S(i)=[j1,j2,j3…jm],i=1,2,3…k,k≤m!;对于不同符号数组的概率分布为P1,P2,P3…Pk,其中
Figure FDA0003629278270000024
[Y(i),i=1,2,3…k]的概率为k香农熵:
Figure FDA0003629278270000025
对上式进行归一化处理,得到排列熵H=Hp(m)/ln(m!);
构建最小化多尺度排列熵偏度平方的优化模型:
Figure FDA0003629278270000031
其中,SKEW表示所有样本的多尺度排列熵的偏度平方,SKx表示X的排列熵偏度,Q为样本容量,Hx表示X的排列熵,Havg表示所有Q个排列熵的均值;
利用智能进化算法求解出使得SKEW最小的时间序列长度N、尺度因子S、嵌入维度m和时间延迟t,进而构造最优重构矩阵:
Figure FDA0003629278270000032
其中:
Figure FDA0003629278270000033
k=T-(m-1)t。
4.根据权利要求3所述的刀具状态监测方法,其特征在于:所述灰度距离图的生成公式如下:
RPi,j=||Yi-Yj||;
式中:Yi和Yj表示最优重构矩阵的i,j个状态,i,j=1,2,…k,RPi,j表示灰度距离图中坐标的像素值。
5.根据权利要求1所述的刀具状态监测方法,其特征在于:所述对比学习网络有数据增强模块、特征提取模块、多层感知机模块和对比损失函数模块组成;
所述数据增强模块采用几何变换类的数据增强方法,将彩色距离图生成正样本对和负样本对;
所述特征提取模块使用Resnet18模型,包括卷积层、四个残差块和平均池层,将输入图像转换为1×1×512的特征向量:
所述多层感知机模块在将高维向量映射到低维向量,将输入的1×1×512的特征向量转换成1×1×128的特征向量;
所述对比损失函数模块计算余弦相似度:
Figure FDA0003629278270000041
其中:Z=[Z1;Z2]∈R2N×128,表示矩阵通过列进行合并,Z1为正样本对经过特征提取模块和多层感知机模块获得的特征向量;Z2为负样本对经过特征提取模块和多层感知机模块获得的特征向量;i,j=1,2,…k;
再根据余弦相似度计算交叉熵损失:
Figure FDA0003629278270000042
其中,τ为温度系数τ,τ∈[0,1]分子为正样本对的余弦相似度,分母为所有彩色距离图的余弦相似度之和;
最后计算损失函数:
Figure FDA0003629278270000051
6.根据权利要求1所述的刀具状态监测方法,其特征在于:步骤7中,刀具状态进行监测识别是定期周期性采集刀具加工过程中的切削力和振动信,得到待测样本;将待测样本进行扩维、编码和聚合形成待测彩色距离图;将待测彩色距离图输入到训练后的Resnet18分类模型中对刀具状态进行分类监测识别。
7.根据权利要求1-6任一项所述的刀具状态监测方法的监测装置,其特征在于:包括信号采集模块、图形化模块和状态识别模块;
所述信号采集模块采用多个传感器定期采集刀具加工过程的时间序列样本以及待测样本;
所述图形化模块将时间序列样本或待测样本进行扩维、编码和聚合形成待测彩色距离图;
所述状态识别模块用于将待测彩色距离图输入到训练后的Resnet18分类模型中对刀具状态进行分类监测识别。
CN202210486283.XA 2022-05-06 2022-05-06 一种刀具状态监测方法及其监测装置 Active CN114800041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210486283.XA CN114800041B (zh) 2022-05-06 2022-05-06 一种刀具状态监测方法及其监测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210486283.XA CN114800041B (zh) 2022-05-06 2022-05-06 一种刀具状态监测方法及其监测装置

Publications (2)

Publication Number Publication Date
CN114800041A true CN114800041A (zh) 2022-07-29
CN114800041B CN114800041B (zh) 2023-05-09

Family

ID=82511016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210486283.XA Active CN114800041B (zh) 2022-05-06 2022-05-06 一种刀具状态监测方法及其监测装置

Country Status (1)

Country Link
CN (1) CN114800041B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115122154A (zh) * 2022-08-30 2022-09-30 南通市海门区海纳机械有限公司 一种金属构件加工数控铣床运行检测及控制方法
CN116883410A (zh) * 2023-09-08 2023-10-13 四川爱麓智能科技有限公司 一种磨斑自动化检测与评价的方法、系统以及设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160349737A1 (en) * 2015-05-29 2016-12-01 Chun-Tai Yen Manufacturing efficiency optimization platform and tool condition monitoring and prediction method
CN110928237A (zh) * 2019-12-20 2020-03-27 华中科技大学 一种基于振动信号的数控加工中心颤振在线辨识方法
CN110991422A (zh) * 2019-12-25 2020-04-10 安徽工业大学 基于多元时移多尺度排列熵的滚动轴承故障诊断方法
CN111633467A (zh) * 2020-05-15 2020-09-08 大连理工大学 一种基于一维深度卷积自动编码器的刀具磨损状态监测方法
CN111716150A (zh) * 2020-06-30 2020-09-29 大连理工大学 一种刀具状态智能监测的进化学习方法
CN111761409A (zh) * 2020-07-09 2020-10-13 内蒙古工业大学 一种基于深度学习的多传感器数控机床刀具磨损监测方法
CN112396109A (zh) * 2020-11-19 2021-02-23 天津大学 基于递归图与多层卷积神经网络的电机轴承故障诊断方法
US20210197335A1 (en) * 2019-12-26 2021-07-01 Dalian University Of Technology Data Augmentation Method Based On Generative Adversarial Networks In Tool Condition Monitoring
CN113369993A (zh) * 2021-07-30 2021-09-10 温州大学 一种小样本下刀具磨损状态监测方法
CN113553941A (zh) * 2021-07-20 2021-10-26 陕西工业职业技术学院 一种提取故障特征的方法、装置、设备、可读存储介质
US20210364482A1 (en) * 2020-03-06 2021-11-25 Dalian University Of Technology Prediction method of part surface roughness and tool wear based on multi-task learning
CN113798920A (zh) * 2021-09-23 2021-12-17 大连理工大学 一种基于变分自动编码器与极限学习机的刀具磨损状态监测方法
EP3961313A1 (de) * 2020-08-28 2022-03-02 Siemens Aktiengesellschaft Verfahren zum trainieren eines neuronalen netzes zur erkennung eines werkzeugzustands anhand von bilddaten, verfahren zur bearbeitung und/oder fertigung sowie anlage

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160349737A1 (en) * 2015-05-29 2016-12-01 Chun-Tai Yen Manufacturing efficiency optimization platform and tool condition monitoring and prediction method
CN110928237A (zh) * 2019-12-20 2020-03-27 华中科技大学 一种基于振动信号的数控加工中心颤振在线辨识方法
CN110991422A (zh) * 2019-12-25 2020-04-10 安徽工业大学 基于多元时移多尺度排列熵的滚动轴承故障诊断方法
US20210197335A1 (en) * 2019-12-26 2021-07-01 Dalian University Of Technology Data Augmentation Method Based On Generative Adversarial Networks In Tool Condition Monitoring
US20210364482A1 (en) * 2020-03-06 2021-11-25 Dalian University Of Technology Prediction method of part surface roughness and tool wear based on multi-task learning
CN111633467A (zh) * 2020-05-15 2020-09-08 大连理工大学 一种基于一维深度卷积自动编码器的刀具磨损状态监测方法
CN111716150A (zh) * 2020-06-30 2020-09-29 大连理工大学 一种刀具状态智能监测的进化学习方法
CN111761409A (zh) * 2020-07-09 2020-10-13 内蒙古工业大学 一种基于深度学习的多传感器数控机床刀具磨损监测方法
EP3961313A1 (de) * 2020-08-28 2022-03-02 Siemens Aktiengesellschaft Verfahren zum trainieren eines neuronalen netzes zur erkennung eines werkzeugzustands anhand von bilddaten, verfahren zur bearbeitung und/oder fertigung sowie anlage
CN112396109A (zh) * 2020-11-19 2021-02-23 天津大学 基于递归图与多层卷积神经网络的电机轴承故障诊断方法
CN113553941A (zh) * 2021-07-20 2021-10-26 陕西工业职业技术学院 一种提取故障特征的方法、装置、设备、可读存储介质
CN113369993A (zh) * 2021-07-30 2021-09-10 温州大学 一种小样本下刀具磨损状态监测方法
CN113798920A (zh) * 2021-09-23 2021-12-17 大连理工大学 一种基于变分自动编码器与极限学习机的刀具磨损状态监测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AZIZ W , ARIF M: "Multiscale Permutation Entropy of Physiological Time Series", 《INTERNATIONAL MULTITOPIC CONFERENCE》 *
GE M , LV Y , ZHANG Y: "An Effective Bearing Fault Diagnosis Technique viaLocal Robust Principal Component Analysis and Multi-Scale Permutation Entropy", 《MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE》 *
YASSINE OUALI,CÉLINE HUDELOT,MYRIAM TAMI: "Spatial contrastive learning for few-shot classification", 《JOINT EUROPEAN CONFERENCE ON MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES》 *
任静波等: "基于多尺度排列熵的铣削颤振在线监测方法", 《机械工程学报》 *
周广林等: "改进变分模态分解的铣刀磨损状态监测方法", 《黑龙江科技大学学报》 *
张运东: "基于FVMD 多尺度排列熵和GK 模糊聚类的故障诊断方法", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115122154A (zh) * 2022-08-30 2022-09-30 南通市海门区海纳机械有限公司 一种金属构件加工数控铣床运行检测及控制方法
CN115122154B (zh) * 2022-08-30 2023-08-18 广东昭明电子集团股份有限公司 一种金属构件加工数控铣床运行检测及控制方法
CN116883410A (zh) * 2023-09-08 2023-10-13 四川爱麓智能科技有限公司 一种磨斑自动化检测与评价的方法、系统以及设备
CN116883410B (zh) * 2023-09-08 2023-11-17 四川爱麓智能科技有限公司 一种磨斑自动化检测与评价的方法、系统以及设备

Also Published As

Publication number Publication date
CN114800041B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
AU2020103923A4 (en) Fault diagnosis method and system for gear bearing based on multi-source information fusion
CN108709745B (zh) 一种基于增强型lpp算法和极限学习机快速轴承故障识别方法
CN114800041B (zh) 一种刀具状态监测方法及其监测装置
CN110309886B (zh) 基于深度学习的无线传感器高维数据实时异常检测方法
CN112964469B (zh) 一种迁移学习的变负载下滚动轴承在线故障诊断方法
CN107945161A (zh) 基于纹理特征提取的道路表面缺陷检测方法
CN113865868A (zh) 基于时频域表达的滚动轴承故障诊断方法
CN114714145A (zh) 一种刀具磨损状态的格拉姆角场增强对比学习监测方法
CN105607631B (zh) 间歇过程弱故障模型控制限建立方法及弱故障监测方法
CN113887342A (zh) 基于多源信号和深度学习的设备故障诊断方法
CN116593157A (zh) 少样本下基于匹配元学习的复杂工况齿轮故障诊断方法
CN114972216B (zh) 一种纹理表面缺陷检测模型的构建方法及其应用
CN117252878B (zh) 一种纳米压印模具的图像缺陷检测方法
CN113177577A (zh) 一种基于改进卷积神经网络的轴承故障诊断方法
Sun et al. Curvature enhanced bearing fault diagnosis method using 2D vibration signal
Kong et al. A high generalizable feature extraction method using ensemble learning and deep auto-encoders for operational reliability assessment of bearings
Sharma et al. A semi-supervised generalized vae framework for abnormality detection using one-class classification
Liu et al. Defect detection on EL images based on deep feature optimized by metric learning for imbalanced data
CN107609565B (zh) 一种基于图像全局特征主成分线性回归的室内视觉定位方法
CN113369993A (zh) 一种小样本下刀具磨损状态监测方法
CN117332340A (zh) 基于多传感器视觉特征融合pmsm故障诊断方法及系统
CN111382792B (zh) 一种基于双稀疏字典稀疏表示的滚动轴承故障诊断方法
Zhang et al. TSViT: A Time Series Vision Transformer for Fault Diagnosis
CN117516939A (zh) 基于改进EfficientNetV2的轴承跨工况故障检测方法及系统
CN117036266A (zh) 一种基于知识蒸馏的工业图像异常检测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant