CN110820729A - Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery - Google Patents

Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery Download PDF

Info

Publication number
CN110820729A
CN110820729A CN201911078962.8A CN201911078962A CN110820729A CN 110820729 A CN110820729 A CN 110820729A CN 201911078962 A CN201911078962 A CN 201911078962A CN 110820729 A CN110820729 A CN 110820729A
Authority
CN
China
Prior art keywords
pile
slide
hole
drilling
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911078962.8A
Other languages
Chinese (zh)
Other versions
CN110820729B (en
Inventor
张延杰
刘涛
高买燕
丁红岗
高春雷
余琨琳
赵宏宇
陈一村
石虎
邓边员
李相龙
潘延连
高嘉丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Construction Investment Foundation Engineering Co Ltd
Original Assignee
Yunnan Construction Investment Foundation Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Construction Investment Foundation Engineering Co Ltd filed Critical Yunnan Construction Investment Foundation Engineering Co Ltd
Priority to CN201911078962.8A priority Critical patent/CN110820729B/en
Publication of CN110820729A publication Critical patent/CN110820729A/en
Application granted granted Critical
Publication of CN110820729B publication Critical patent/CN110820729B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/001Drilling a non circular hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Earth Drilling (AREA)

Abstract

The invention discloses a rapid hole forming method of an anti-slide pile rotary excavating machine, which integrates high efficiency and safety, and comprises the following steps: A. paying off and positioning the anti-slide pile hole or lofting a field; B. the rotary pile digging machine digs holes or mechanically forms holes by rotary digging piles according to the serial numbers and positions of pile cores; C. cleaning the excessive earthwork on the side wall and removing the sediment at the bottom of the pile; D. putting down a reinforcement cage; E. and pouring concrete to form the anti-slide pile. The invention solves the problems that the efficiency of crushing and rock entering of the manual hole digging pile is low, blasting excavation is not allowed under the complex environment, and the hole forming construction difficulty is very high, and on one hand, mechanical hole forming can be carried out under the condition of not using a pile casing and a retaining wall, so that the construction cost is greatly reduced; on the other hand, the construction of the slide-resistant pile is quickly finished in a limited time from the self-stability capability support of the hole wall after the mechanical hole forming until the concrete pouring forming, so that the construction safety and quality are ensured.

Description

Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery
Technical Field
The invention relates to a hole forming construction method for an anti-slide pile, in particular to a high-efficiency and safety integrated rapid hole forming method for an anti-slide pile rotary excavating machine, and belongs to the technical field of side slope support structure construction.
Background
The non-circular anti-slide pile is generally formed by manually digging holes. The construction operation process of the manual hole digging pile is simple, the construction is convenient, and the construction quality is easy to guarantee. But the underground operation condition of the hole digging pile is poor, the environment is severe, the labor intensity is high, the construction speed of a single pile is slow, and the potential safety hazard in construction is also very prominent; constructors need to adopt underground operation, the personal safety problem is very severe, many unsafe factors and hidden dangers exist, and the construction safety management difficulty is high; and the resistance of the landslide body is weakened in the pile well excavation process, and particularly when a hard and stable stratum below a sliding bed is excavated, blasting is usually needed, the stratum is disturbed greatly, the instability and the construction risk are aggravated, and the safety of constructors and surrounding building structures is difficult to guarantee.
The mechanical pore-forming cast-in-place pile has high construction efficiency, less operators, less danger and little influence by weather, and the mechanical pore-forming is increased compared with the concrete required by the manual hole-forming pile (because of the increase of hole collapse and filling coefficient).
Therefore, the key point for solving the technical problems is to develop a rapid hole forming method of the anti-slide pile rotary excavating machinery, which has the advantages of strong practicability and high working reliability, and integrates high efficiency and safety.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention provides the pile hole forming device which has the advantages of high hole forming speed, high positioning precision, convenience in operation, low safety risk and wide applicability, can greatly improve the construction efficiency, quickens the construction progress, is accurate in positioning, solves the problems of slow construction progress and high risk of the manual hole digging pile, and has better market application prospect.
The invention also aims to solve the problems that the efficiency of crushing and entering the rock of the manual hole digging pile is low, blasting excavation is not allowed under the complex environment, and the hole forming construction difficulty is very high. Aiming at part of stratums with relatively good and stable geological conditions, the mechanical rapid hole forming construction method disclosed by the invention can be used for mechanically forming holes without using a pile casing and a retaining wall, so that the construction cost is greatly reduced; on the other hand, by means of the rapid construction characteristic of the method, the construction of the slide-resistant pile can be rapidly completed within the limited time from the self-stability capability support of the hole wall after the mechanical hole forming until the concrete pouring forming, and the construction safety and quality are ensured.
The invention further aims to provide the rectangular sliding-resistant pile mechanical rapid hole forming construction method which is low in construction cost, good in hole forming quality and high in precision, solves the problems that manual hole digging piles are low in rock entering efficiency due to breakage, blasting excavation is not allowed under the complex environment, and hole forming construction difficulty is high, only needs conventional rotary excavating mechanical equipment, does not increase the construction cost excessively, and can reduce the labor intensity of operators to the maximum extent.
The invention also aims to ensure the parameters such as verticality, flatness and the like in the rectangular pile hole excavation process, ensure good hole forming quality and good construction safety, greatly improve the construction efficiency, provide a convenient and quick method for rock stratum construction, solve the problems of poor hole forming quality, low construction efficiency and difficult control of safety risk in the traditional manual hole digging pile process, and be suitable for popularization and application.
The invention also aims to strictly control unsafe factors caused by manual hole digging in the construction process, simultaneously promote the application range of mechanized construction, improve the working efficiency and reduce the construction cost; meanwhile, the working environment of operators is improved, the potential safety hazard of manual downhole operation is reduced, and the personal safety of the operators is ensured.
In order to solve the problems and achieve the purpose, the invention provides a rapid hole forming method of an anti-slide pile rotary excavating machine, which integrates high efficiency and safety, and is realized by adopting the following design structure and the following technical scheme:
a rapid hole forming method of an anti-slide pile rotary excavating machine integrating high efficiency and safety comprises the following steps:
A. paying off and positioning the anti-slide pile hole or lofting a field; wherein, the step when slide-resistant pile hole unwrapping wire location does:
a.1, positioning the contour line of the anti-slide pile hole, and determining a maximum rectangular line in the contour line, wherein the maximum rectangular line is determined by adopting a method of inscribing with the contour line of the anti-slide pile hole, and four end points of the rectangular line are positioned on the contour line of the anti-slide pile hole as much as possible;
a.2, determining the diameter D of the drill bit of the rotary excavating pile machine according to the determined length D of the short side of the rectangular line1
A.3, determining the position of a first-time drilled pile core according to the short edge of one side of the rectangular wire;
a.4, determining the position of the pile core drilled for the second time according to the short edge of the other side of the rectangular line;
a.5 according to length D and diameter D1Determining the residual drilling times and the drill diameter of the rotary pile-digging machine, and also determining the residual drilling times and the drill diameter of the rotary pile-digging machine according to the length of the long edge of the contour line of the slide-resistant pile hole;
a.6 paying off and positioning the positions of the residual pile cores drilled down according to the drilling times of the rotary pile drilling machine;
B. the rotary pile digging machine digs holes or mechanically forms holes by rotary digging piles according to the serial numbers and positions of pile cores;
C. cleaning the excessive earthwork on the side wall and removing the sediment at the bottom of the pile;
D. putting down a reinforcement cage;
E. and pouring concrete to form the anti-slide pile.
As another preferable technical solution of the present invention, in step a.2, the diameter d of the drill bit of the rotary pile driving machine1The length D of the short side of the rectangular line is not less than, and finally, the drill bit of the rotary excavating pile machine meeting the requirements is determined by combining with the specifications of drill bits commonly used in the market;
in step a.3 and step a.4, the position of the drilled pile core is determined along the long side direction of the rectangular line, and a method of two tangent points and one radius is adopted, and the method specifically comprises the following steps: two end points of one short side of the rectangular line are taken as two tangent points, a circle is made according to the radius of the drill bit of the rotary pile-driving machine, the circle center is located on the central line of the short side in the rectangular line, and the circle center is the position of a pile core to be drilled.
As the above preferred embodiment of the present invention, in step A.5, the length D and the diameter D are determined1The method for determining the drilling times of the residual rotary pile drilling machine comprises the following steps:
a.5.1 the length L of the long side of the rectangular wire is not more than
Figure BDA0002263348280000031
The drilling times of the pile digging machine are determined to be two times;
a.5.2 the length L of the long side of the rectangular wire is larger than
Figure BDA0002263348280000032
The third core drilling position of the pile digging machine is positioned on the center line of the short edge, particularly the short edge of the non-digging areaThe center point position of the center line;
a.5.3, stopping drilling if the distance between the pile cores drilled for the first time and the third time is not more than 0.8D; if the distance between the pile cores drilled in the first time and the third time is larger than 0.8D, determining the central position of the distance between the pile cores drilled in the first time and the third time as the position for drilling the pile core drilled in the fourth time until the distance between the pile cores drilled in the two adjacent times is not larger than 0.8D;
a.5.4 referring to the step A.5.3, if the distance between the pile cores drilled in the second time and the third time is not more than 0.8D, stopping drilling; and if the distance between the pile cores drilled in the second time and the third time is more than 0.8D, determining the core drilling position of the pile digging machine in the center position of the distance between the pile cores drilled in the second time and the third time until the distance between the pile cores drilled in two adjacent times is not more than 0.8D.
As the preferable technical scheme of the invention, in the step a.5.3 and the step a.5.4, the diameter of the drill bit of the rotary pile digging machine is determined by the shortest distance of the trenchless area along the long side direction of the rectangular line, and when the shortest distance exceeds the length D of the short side of the rectangular line, the diameter of the drill bit is required to be not less than the length of the short side of the rectangular line; when the shortest distance is less than or equal to the length D of the short side of the rectangular wire, the diameter of the drill bit is required to be equal to or slightly less than the length of the short side of the rectangular wire.
As a further preferable technical solution of the present invention, in the step B, a dry hole operation mechanical hole forming construction method is adopted for hole digging of the rotary excavating pile; in the step C, removing redundant earthwork on the side wall and pile bottom sediment by adopting soil removing equipment or rotary pile digging equipment; and D, hoisting the reinforcement cage into the pile hole by using a truck crane after one-step processing and forming.
As a further preferable technical solution of the present invention, the field lofting comprises the steps of:
a.1, determining the contour line of an anti-slide pile hole, and spraying an ash line;
a.2, determining the diameter of a drill bit of the rotary excavating pile machine according to the length of the short side of the contour line of the slide-resistant pile hole;
a.3, determining the position of a first-time drilled pile core according to the short edge of one side of the contour line of the slide-resistant pile hole;
a.4, determining the position of the pile core drilled for the second time according to the short edge of the other side of the contour line of the slide-resistant pile hole;
a.5, determining the residual drilling times and the drill bit diameter of the rotary drilling pile machine according to the length of the long edge of the contour line of the slide-resistant pile hole;
and A.6, positioning and paying off the positions of residual drilled pile cores according to the drilling times of the rotary drilling pile driver.
As a still further preferable technical solution of the present invention, the field lofting, which is performed for 4 times in the construction, includes: lofting before leveling the field; accurately positioning and lofting after leveling; rechecking by using the cross line pile protection at any time in the excavation process; after excavation, accurately positioning and rechecking before installing a reinforcement cage; in the step A.2, the diameter of the drill bit of the rotary pile digging machine is not less than the length of the short side of the contour line of the slide-resistant pile hole, and finally the drill bit of the rotary pile digging machine meeting the requirement is determined by combining the specification of the market drill bit;
as still another preferable technical solution of the present invention, the method for determining the position of the drilled pile core in step a.3 and step a.4 is a method of two tangent points and one radius, and the method specifically includes the steps of: and taking two end points of one short side of the contour line of the slide-resistant pile hole as two tangent points, and making a circle according to the radius of the drill bit of the rotary pile driver, so that the circle center falls on the center line of the short side perpendicular to the short side in the contour line of the slide-resistant pile hole, and the circle center is the position of a drilled pile core.
In the step A.5, the diameter of a drill bit of the rotary pile digging machine is determined by the shortest distance of an unearthed area along the long side direction of an anti-slide pile contour line, and when the shortest distance exceeds the length of the short side of the anti-slide pile hole contour line, the diameter of the drill bit is required to be not less than the length of the short side of the anti-slide pile hole contour line; and when the shortest distance is not more than the length of the short side of the contour line of the slide-resistant pile hole, the diameter of the drill bit is required to be equal to or slightly less than the length of the short side of the contour line of the slide-resistant pile hole.
As a still further preferable technical solution of the present invention, in step a.5, the method for determining the diameter of the drill bit of the rotary pile driver and the remaining drilling times comprises:
a.5.1, if the drilling contour of the twice drilling and the long side of the contour line of the slide-resistant pile hole can enclose a triangular area, and when the height of the triangular area is not more than one tenth of the length of the short side of the contour line of the slide-resistant pile hole, the drilling times of the pile digging machine are determined to be twice;
a.5.2 when the height of the triangular area is larger than one tenth of the length of the short side of the contour line of the slide-resistant pile hole, the core drilling position of the third pile digging machine is positioned on the central line of the short side, and specifically positioned at the central point of the central line of the short side of the non-excavated area;
a.5.3, if the drilling hole contour of the first and third drilling and the anti-slide pile hole contour line can enclose a triangular area, executing the steps A.5.1-A.5.2 until the height of the triangular area enclosed by the drilling hole contour of the adjacent two drilling and the anti-slide pile hole contour line is not more than one tenth of the length of the short side of the anti-slide pile hole contour line;
a.5.4, if the drilling hole contour of the second and third drilling and the anti-slide pile hole contour line can enclose a triangular area, executing the steps A.5.1-A.5.2 until the height of the triangular area enclosed by the drilling hole contour of the adjacent two drilling and the anti-slide pile hole contour line is not more than one tenth of the length of the short side of the anti-slide pile hole contour line;
and A.5.5, referring to the step A.5.1, if the drilling outline of the first and second drilling and the outline of the slide-resistant pile hole cannot enclose a triangular area, positioning the drill core of the third pile digging machine on the center line of the short side, particularly the center point of the center line of the short side of the non-digging area, and then executing the steps A.5.3-A.5.4.
As a still further preferable technical solution of the present invention, in step D and step E, an injection molding layer, an anti-rust layer and a warning layer are sequentially sprayed on the outer surfaces of the reinforcement cage and the formed anti-slide pile from inside to outside, and the warning layer is coated with fluorescent powder;
the steps of the mechanical hole forming of the rotary excavating pile are as follows:
b.1 moving the rotary excavating pile driver to a first-time pile core drilling position, and drilling to a designed pile bottom elevation;
b.2 moving the rotary excavating pile driver to a second-time pile core drilling position, and drilling to a designed pile bottom elevation;
and B.3, replacing the drill bit, moving the rotary excavating pile driver to the position of the residual pile core, and drilling to the designed pile bottom elevation.
Compared with the prior art, the invention has the following beneficial effects:
1. the method solves the problems that the efficiency of crushing and rock entering of the manual hole digging pile is low, blasting excavation is not allowed under the complex environment, and the hole forming construction difficulty is very high, adopts the conventional rotary digging mechanical equipment, does not increase the construction cost, and has the advantages of simple operation, safe construction, high speed and high efficiency, meanwhile, aiming at part of stratums with relatively good and stable geological conditions, the mechanical quick hole forming construction method disclosed by the invention is used, on one hand, mechanical hole forming can be carried out under the condition of not using a pile casing and a retaining wall, and the construction cost is greatly reduced; on the other hand, by means of the rapid construction characteristic of the method, the construction of the slide-resistant pile can be rapidly completed within the limited time from the self-stability capability support of the hole wall after the mechanical hole forming to the time before the concrete pouring and forming, so that the construction safety and quality are ensured;
2. the invention can reduce the reinforced concrete dado of the manual hole digging pile, the cost increase is less, basically in the state of keeping level; secondly, the mechanical hole forming of the slide-resistant pile can greatly reduce the construction risk compared with manual hole digging, such as sudden conditions of hole collapse, electric shock, gas explosion and the like in the manual hole digging process; in addition, the mechanical pore-forming of the anti-slide pile greatly improves the construction efficiency, accelerates the construction progress, and solves the problems of slow construction progress and high risk of the manual hole digging pile.
3. The construction method solves the problems that the efficiency of crushing and rock entering of the manual hole digging pile is low, blasting excavation is not allowed under the complex environment, and the hole forming construction difficulty is very high, only conventional rotary excavating mechanical equipment is needed, the construction cost is not excessively increased, and the construction method has the advantages of high hole forming speed, high positioning precision, convenience in operation, low safety risk, wide applicability and the like;
4. the method provided by the invention has the advantages that the construction cost is low, the hole forming quality is good, the precision is high, the problems that the efficiency of breaking and entering the rock of the manual hole digging pile is low, blasting excavation is not allowed under the complex environment, and the hole forming construction difficulty is very high are solved, and the labor intensity of operators can be reduced to the maximum extent while the construction cost is not excessively increased only by adopting conventional rotary excavating mechanical equipment;
5. the method can ensure the parameters such as verticality, flatness and the like in the rectangular pile hole excavation process, has good hole forming quality and good construction safety, also greatly improves the construction efficiency, provides a convenient and quick method for rock stratum construction, solves the problems of poor hole forming quality, low construction efficiency and difficult control of safety risk in the traditional manual hole digging pile process, and is suitable for popularization and use;
6. the invention strictly controls unsafe factors caused by manual hole digging in the construction process, simultaneously promotes the application range of mechanized construction, improves the working efficiency and reduces the construction cost; meanwhile, the working environment of operators is improved, the potential safety hazard of manual downhole operation is reduced, and the personal safety of the operators is ensured;
7. according to the invention, square hole forming can be realized through the rotary excavator, the problem that the cast-in-place square pile in the field of civil engineering can only be formed through manual hole forming is solved, the purposes of quickly forming holes and shortening the construction period are realized, quick construction can be realized under the working conditions of arranging anti-slide piles, building engineering pile foundation foundations, abutment pile foundations and the like on high-risk side slopes of the roadbed, the construction period is greatly shortened, the cost is reduced, the labor intensity of workers is reduced, the operation risk of manually digging the square hole is avoided, the success quality is improved, and the personal safety is also ensured;
8. the invention has the characteristics of simple structure, convenient operation, construction quality and safety guarantee, labor saving, cost saving, great improvement on construction efficiency and the like, and compared with the conventional manual excavation construction method, the construction method is more convenient, more economical, safer and more quality and quantity guarantee;
9. the self-luminous fluorescent material is coated on the exterior of the anti-slide pile formed by the reinforcement cage, so that the positions of all components can be clearly marked in night or in dark rooms and underground construction environments, and the safety prompt effect can be effectively realized, thereby ensuring the construction safety in the construction process to the maximum extent.
Drawings
Embodiments of the invention are described in further detail below with reference to the attached drawing figures, wherein:
FIG. 1 is one of the schematic views of the first core position of the drilled pile of the present invention;
FIG. 2 is one of the schematic views of the second core position of the drilled pile of the present invention;
FIG. 3 is one of schematic positions of an anti-slide pile hole and a rotary-digging pile core of the hole forming process of the present invention;
FIG. 4 is one of schematic diagrams of a first hole forming of a rotary excavating pile according to the hole forming process of the present invention;
FIG. 5 is one of schematic diagrams of a second hole forming of a rotary excavating pile according to the hole forming process of the present invention;
FIG. 6 is one of schematic diagrams of third hole forming of a rotary excavating pile according to the hole forming process of the present invention;
FIG. 7 is one of the pile forming diagrams of the downward reinforcement and the poured concrete of the hole forming process of the present invention;
FIG. 8 is a second schematic view of the first drilling position of the pile core according to the construction method of the present invention;
FIG. 9 is a second schematic view of the second drilling position of the pile core according to the construction method of the present invention;
FIG. 10 is a second schematic view of the third core-setting position of the construction method of the present invention;
FIG. 11 is a second schematic diagram of a first hole forming of the rotary excavating pile according to the construction method of the present invention;
FIG. 12 is a second schematic diagram of second hole forming of the rotary excavation pile according to the construction method of the present invention;
FIG. 13 is a second schematic diagram of third hole forming of the rotary excavating pile according to the construction method of the present invention;
FIG. 14 is a second schematic diagram of the pile formation of the downward reinforcement and the poured concrete according to the construction method of the present invention;
FIG. 15 is a schematic block diagram of the overall construction process of the present invention;
wherein, the reference numbers in the figures: in the figure: 1-a rectangular line; 2. 3-short edge end point; 4-short side center line; 5, setting the position of the pile core for the first time; 6-the position of the pile core is drilled in the second time; 7-the position of the pile core is drilled in the third time; 8-a reinforcement cage; 9-concrete, 10-excess earthwork of the side wall.
Detailed Description
In order to make the technical means, the inventive features, the achievement purposes and the effects of the present invention easy to understand, the technical solutions of the present invention are further described in detail with reference to the drawings and the detailed description below, and it is to be noted that the embodiments and the features in the embodiments in the present application can be combined with each other without conflict. The present invention will be described in detail below with reference to the embodiments with reference to the attached drawings.
Example 1
The landslide prevention and control project is taken as an example for explanation, a side slope supporting structure part of the landslide prevention and control project is supported by a pile-plate type retaining wall, and a rectangular anti-slide pile with the pile foundation size of 1.5m multiplied by 2.4m is adopted. The pore-forming process is shown in fig. 1-7 and generally comprises the following steps:
A. anti-slide pile hole paying-off positioning
A.1, determining a rectangular line 1 of the slide-resistant pile hole, wherein the contour line of the slide-resistant pile hole is in a rectangular shape, namely the contour line of the slide-resistant pile hole is the largest rectangular line;
a.2 according to the length of the short side of the rectangular line D which is 1.5m, the diameter of a hole formed by a medium-sized or large-sized rotary drilling rig in the market is 0.8-2.5 m, and the diameter of a drill bit of the rotary drilling pile machine is determined to be D1=1.8m;
A.3, determining the position of a first-time drilled pile core along the short edge of one side of the rectangular line, and drawing a circle by using the radius (0.9m) of a drill bit of the rotary pile driver by using two end points (2 and 3) of the short edge of the rectangular line as two tangent points and a radius by adopting a method of two tangent points and a radius as shown in figure 1, so that the center of the circle is located on the central line 4 of the short edge in the rectangular line, and the center of the circle is the position 5 of the first-time drilled pile core;
a.4, taking two end points of the other short side of the rectangular line as tangent points, and determining the position 6 of the second-time drilled pile core according to a method of one radius of the two tangent points as shown in FIG. 2;
a.5 the length L of the long side of the rectangular wire is 2400mm which is larger than
Figure BDA0002263348280000091
The calculated length of 2343mm, therefore, the core drilling position of the third pile digging machine is located on the center line 4 of the short side, as shown in fig. 3, and specifically located at the central point position 7 of the center line 4 of the short side of the trenchless area; the shortest distance of the trenchless area along the long side direction of the rectangular line is less than the length of the short side of the rectangular lineThe diameter of the third drill bit is 1500 mm; the distance between the pile cores drilled for the first time and the third time is calculated to be 702mm, the distance between the pile cores drilled for the second time and the third time is calculated to be 702mm, and the distance between the pile cores drilled for the second time and the third time is smaller than 0.8D which is 1200mm, so the drilling times can be determined to be three times.
B. The rotary drilling pile machine drills holes in a sub-time mode according to the serial numbers (first, second and third times) and the positions (5, 6 and 7) of pile cores, and the holes are shown in figures 4-6.
C. And adopting rotary excavating pile driver equipment to clean redundant earthwork on the side wall and remove sediment at the bottom of the pile.
D. The reinforcement cage 8 is formed by one-step processing and then is hoisted into the pile hole by a truck crane.
E. Concrete 9 is poured to form a non-circular anti-skid pile as shown in fig. 7.
Example 2
The invention is explained by taking landslide prevention and control engineering as an example, a side slope supporting structure part of the landslide prevention and control engineering is supported by a pile-plate type retaining wall, and a rectangular slide-resistant pile with the pile foundation size of 1.5m multiplied by 2.4m is adopted. The construction method is shown in figures 8-7 and generally comprises the following steps:
A. site lofting
A.1, determining the contour line 1(1.5m multiplied by 2.4m) of the hole of the slide-resistant pile by spraying a gray line;
a.2, according to the condition that the length of the short side of the contour line of the hole of the slide-resistant pile is 1.5m, the diameter of a drill hole of a medium-sized or large-sized rotary drilling rig in the market is 0.8-2.5 m, and the diameter of a drill bit of the rotary drilling pile machine is determined to be 1.8 m;
a.3, determining a first drilling pile core position 5 according to the short edge at one side of the anti-slide pile hole contour line, and as shown in FIG. 8, adopting a method of two tangent points and one radius, taking two short edge end points (2 and 3) at one side of the anti-slide pile hole contour line as two tangent points, and taking the radius (0.9m) of a drill bit of the rotary pile driver as a circle, so that the circle center is located on a short edge central line 4 perpendicular to the short edge in the anti-slide pile hole contour line, and the circle center is the first drilling pile core position 5;
a.4, determining the position 6 of the secondary drilled pile core according to the short side of the other side of the contour line of the slide-resistant pile hole, and determining the position 6 of the secondary drilled pile core according to a method of two tangent points and one radius by taking the end points of the two short sides of the other side of the contour line of the slide-resistant pile hole as the circle center as shown in FIG. 9;
a.5, determining the rotary excavating pile machine with the drill bit diameter of 1.5m along the length of the long edge of the contour line of the slide-resistant pile hole and the residual unearthed area, wherein the residual drilling times are one time;
and A.6, taking the center point of the contour line of the slide-resistant pile hole as the position 7 of the pile core drilled in the last time, and positioning and paying off as shown in figure 10.
B. Mechanical pore-forming by adopting rotary digging pile dry hole operation construction method
B.1, moving the rotary excavating pile driver with a drill bit of 1.8m to a first-time pile core drilling position 5, and drilling to the designed pile bottom elevation as shown in figure 11;
b.2, moving the rotary excavating pile driver with a drill bit of 1.8m to a second-time pile core drilling position 6, and drilling to the designed pile bottom elevation as shown in figure 12;
and B.3, replacing the drill bit with a 1.5m drill bit, moving the rotary pile drilling machine to the last lower drill pile core position 7, and drilling to the designed pile bottom elevation, as shown in fig. 13.
C. And (3) cleaning the redundant earthwork 10 on the side wall by using rotary excavating pile driver equipment with a drill bit of 1.5m or 1.2m, and removing the sediment at the bottom of the pile.
D. After the reinforcement cage 8 is formed by one-step processing, the reinforcement cage 8 is hoisted into the pile hole by a truck crane.
E. The concrete 9 is poured to form a non-circular anti-skid pile as shown in fig. 14.
In summary, in the working process of the above embodiments 1 and 2, in the steps D and E, the injection molding layer, the rust-proof layer, and the warning layer are sequentially sprayed on the outer surfaces of the reinforcement cage and the formed anti-slide pile from inside to outside, and the fluorescent powder is coated on the warning layer.
Specifically, a high-molecular wear-resistant material is injected on the injection molding layer; the anti-rust layer comprises epoxy zinc-rich primer, chlorinated rubber finish paint and epoxy mica iron intermediate paint positioned between the epoxy zinc-rich primer and the chlorinated rubber finish paint; the warning layer is a yellow or black reflective warning tape or a reflective color film or reflective paint.
The concrete is self-dense concrete or high-strength light polyphenyl granule concrete; the self-compacting concrete or the high-strength light polyphenyl particle concrete is internally provided with a cement-based heat-insulating and noise-eliminating layer, a metal plate layer, a rock wool plate layer, a damping layer, a waterproof layer and a stress dispersion layer, wherein the cement-based heat-insulating and noise-eliminating layer, the metal plate layer, the rock wool plate layer, the waterproof layer and the stress dispersion layer are sequentially stacked or mixed together.
Finally, it should be noted that the above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention in other forms, and any person skilled in the art may change or modify the technical content disclosed above into equivalent embodiments with equivalent changes. However, any simple modification, equivalent change and modification of the above embodiments according to the technical essence of the present invention are within the protection scope of the technical solution of the present invention.

Claims (10)

1. The utility model provides a collection high efficiency and safe in quick pore-forming method of friction pile rotary excavating machinery in an organic whole which characterized in that includes following step:
A. paying off and positioning the anti-slide pile hole or lofting a field; wherein, the step when slide-resistant pile hole unwrapping wire location does:
a.1, positioning the contour line of the anti-slide pile hole, and determining a maximum rectangular line in the contour line, wherein the maximum rectangular line is determined by adopting a method of inscribing with the contour line of the anti-slide pile hole, and four end points of the rectangular line are positioned on the contour line of the anti-slide pile hole as much as possible;
a.2, determining the diameter D of the drill bit of the rotary excavating pile machine according to the determined length D of the short side of the rectangular line1
A.3, determining the position of a first-time drilled pile core according to the short edge of one side of the rectangular wire;
a.4, determining the position of the pile core drilled for the second time according to the short edge of the other side of the rectangular line;
a.5, determining the residual drilling-down times and the diameter of a drill bit of the rotary pile driver according to the length D and the diameter D1, and also determining the residual drilling-down times and the diameter of the drill bit of the rotary pile driver according to the length of the long edge of the contour line of the slide-resistant pile hole;
a.6 paying off and positioning the positions of the residual pile cores drilled down according to the drilling times of the rotary pile drilling machine;
B. the rotary pile digging machine digs holes or mechanically forms holes by rotary digging piles according to the serial numbers and positions of pile cores;
C. cleaning the excessive earthwork on the side wall and removing the sediment at the bottom of the pile;
D. putting down a reinforcement cage;
E. and pouring concrete to form the anti-slide pile.
2. The efficient and safe rapid hole forming method for the anti-slide pile rotary excavating machinery as claimed in claim 1, wherein in step A.2, the diameter d of the drill bit of the rotary excavating pile machine1The length D of the short side of the rectangular line is not less than, and finally, the drill bit of the rotary excavating pile machine meeting the requirements is determined by combining with the specifications of drill bits commonly used in the market;
in step a.3 and step a.4, the position of the drilled pile core is determined along the long side direction of the rectangular line, and a method of two tangent points and one radius is adopted, and the method specifically comprises the following steps: two end points of one short side of the rectangular line are taken as two tangent points, a circle is made according to the radius of the drill bit of the rotary pile-driving machine, the circle center is located on the central line of the short side in the rectangular line, and the circle center is the position of a pile core to be drilled.
3. The efficient and safe anti-slide pile rotary excavating mechanical rapid hole forming method integrated according to claim 1, characterized in that in step A.5, according to length D and diameter D1The method for determining the drilling times of the residual rotary pile drilling machine comprises the following steps:
a.5.1 the length L of the long side of the rectangular wire is not more than
Figure FDA0002263348270000021
The drilling times of the pile digging machine are determined to be two times;
a.5.2 the length L of the long side of the rectangular wire is larger than
Figure FDA0002263348270000022
The core drilling position of the third pile digging machine is positioned on the center line of the short side, and is specifically positioned at the center point of the center line of the short side of the non-digging area;
a.5.3, stopping drilling if the distance between the pile cores drilled for the first time and the third time is not more than 0.8D; if the distance between the pile cores drilled in the first time and the third time is larger than 0.8D, determining the central position of the distance between the pile cores drilled in the first time and the third time as the position for drilling the pile core drilled in the fourth time until the distance between the pile cores drilled in the two adjacent times is not larger than 0.8D;
a.5.4 referring to the step A.5.3, if the distance between the pile cores drilled in the second time and the third time is not more than 0.8D, stopping drilling; and if the distance between the pile cores drilled in the second time and the third time is more than 0.8D, determining the core drilling position of the pile digging machine in the center position of the distance between the pile cores drilled in the second time and the third time until the distance between the pile cores drilled in two adjacent times is not more than 0.8D.
4. The anti-slide pile rotary excavating mechanical rapid hole forming method integrating high efficiency and safety into a whole according to claim 3, characterized in that in the step A.5.3 and the step A.5.4, the diameter of a drill bit of the rotary excavating pile machine is determined by the shortest distance of an unearthed area along the long side direction of a rectangular line, and when the shortest distance exceeds the length D of the short side of the rectangular line, the diameter of the drill bit is required to be not less than the length of the short side of the rectangular line; when the shortest distance is less than or equal to the length D of the short side of the rectangular wire, the diameter of the drill bit is required to be equal to or slightly less than the length of the short side of the rectangular wire.
5. The anti-slide pile rotary excavating mechanical rapid hole forming method integrating high efficiency and safety as claimed in claim 1, wherein in the step B, a dry hole operation mechanical hole forming construction method is adopted for rotary excavating pile holes; in the step C, removing redundant earthwork on the side wall and pile bottom sediment by adopting soil removing equipment or rotary pile digging equipment; and D, hoisting the reinforcement cage into the pile hole by using a truck crane after one-step processing and forming.
6. The efficient and safe rapid hole forming method for the anti-slide pile rotary excavating machinery, which is integrated according to claim 1, is characterized in that the steps during field lofting are as follows: a.1, determining the contour line of an anti-slide pile hole, and spraying an ash line;
a.2, determining the diameter of a drill bit of the rotary excavating pile machine according to the length of the short side of the contour line of the slide-resistant pile hole;
a.3, determining the position of a first-time drilled pile core according to the short edge of one side of the contour line of the slide-resistant pile hole;
a.4, determining the position of the pile core drilled for the second time according to the short edge of the other side of the contour line of the slide-resistant pile hole;
a.5, determining the residual drilling times and the drill bit diameter of the rotary drilling pile machine according to the length of the long edge of the contour line of the slide-resistant pile hole;
and A.6, positioning and paying off the positions of residual drilled pile cores according to the drilling times of the rotary drilling pile driver.
7. The efficient and safe anti-slide pile rotary excavating mechanical rapid hole forming method integrated according to claim 6, characterized in that the field lofting is carried out for 4 times in construction: lofting before leveling the field; accurately positioning and lofting after leveling; rechecking by using the cross line pile protection at any time in the excavation process; after excavation, the steel reinforcement cage is accurately positioned and rechecked before being installed.
8. The anti-slide pile rotary excavating machinery rapid hole forming method integrating high efficiency and safety into a whole according to claim 6, characterized in that the method for determining the position of the pile core drilled in the step A.3 and the step A.4 is a method with two tangent points and one radius, and the method comprises the following specific steps: and taking two end points of one short side of the contour line of the slide-resistant pile hole as two tangent points, and making a circle according to the radius of the drill bit of the rotary pile driver, so that the circle center falls on the center line of the short side perpendicular to the short side in the contour line of the slide-resistant pile hole, and the circle center is the position of a drilled pile core.
In the step A.5, the diameter of a drill bit of the rotary pile digging machine is determined by the shortest distance of an unearthed area along the long side direction of an anti-slide pile contour line, and when the shortest distance exceeds the length of the short side of the anti-slide pile hole contour line, the diameter of the drill bit is required to be not less than the length of the short side of the anti-slide pile hole contour line; and when the shortest distance is not more than the length of the short side of the contour line of the slide-resistant pile hole, the diameter of the drill bit is required to be equal to or slightly less than the length of the short side of the contour line of the slide-resistant pile hole.
9. The anti-slide pile rotary excavating mechanical rapid hole forming method integrating high efficiency and safety as claimed in claim 6, wherein in step A.5, the method for determining the diameter of the drill bit of the rotary excavating pile machine and the remaining drilling times is as follows:
a.5.1, if the drilling contour of the twice drilling and the long side of the contour line of the slide-resistant pile hole can enclose a triangular area, and when the height of the triangular area is not more than one tenth of the length of the short side of the contour line of the slide-resistant pile hole, the drilling times of the pile digging machine are determined to be twice;
a.5.2 when the height of the triangular area is larger than one tenth of the length of the short side of the contour line of the slide-resistant pile hole, the core drilling position of the third pile digging machine is positioned on the central line of the short side, and specifically positioned at the central point of the central line of the short side of the non-excavated area;
a.5.3, if the drilling hole contour of the first and third drilling and the anti-slide pile hole contour line can enclose a triangular area, executing the steps A.5.1-A.5.2 until the height of the triangular area enclosed by the drilling hole contour of the adjacent two drilling and the anti-slide pile hole contour line is not more than one tenth of the length of the short side of the anti-slide pile hole contour line;
a.5.4, if the drilling hole contour of the second and third drilling and the anti-slide pile hole contour line can enclose a triangular area, executing the steps A.5.1-A.5.2 until the height of the triangular area enclosed by the drilling hole contour of the adjacent two drilling and the anti-slide pile hole contour line is not more than one tenth of the length of the short side of the anti-slide pile hole contour line;
and A.5.5, referring to the step A.5.1, if the drilling outline of the first and second drilling and the outline of the slide-resistant pile hole cannot enclose a triangular area, positioning the drill core of the third pile digging machine on the center line of the short side, particularly the center point of the center line of the short side of the non-digging area, and then executing the steps A.5.3-A.5.4.
10. The anti-slide pile rotary excavating mechanical rapid hole forming method integrating high efficiency and safety into a whole according to claim 1, characterized in that in the step D and the step E, an injection molding layer, an anti-rust layer and a warning layer are sequentially sprayed on the outer surfaces of the steel reinforcement cage and the formed anti-slide pile from inside to outside, and fluorescent powder is coated on the warning layer;
the steps of the mechanical hole forming of the rotary excavating pile are as follows:
b.1 moving the rotary excavating pile driver to a first-time pile core drilling position, and drilling to a designed pile bottom elevation;
b.2 moving the rotary excavating pile driver to a second-time pile core drilling position, and drilling to a designed pile bottom elevation;
and B.3, replacing the drill bit, moving the rotary excavating pile driver to the position of the residual pile core, and drilling to the designed pile bottom elevation.
CN201911078962.8A 2019-11-07 2019-11-07 Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery Active CN110820729B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911078962.8A CN110820729B (en) 2019-11-07 2019-11-07 Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911078962.8A CN110820729B (en) 2019-11-07 2019-11-07 Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery

Publications (2)

Publication Number Publication Date
CN110820729A true CN110820729A (en) 2020-02-21
CN110820729B CN110820729B (en) 2021-04-16

Family

ID=69553047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911078962.8A Active CN110820729B (en) 2019-11-07 2019-11-07 Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery

Country Status (1)

Country Link
CN (1) CN110820729B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796307A (en) * 2021-01-04 2021-05-14 成都欣皓地基基础工程有限责任公司 Square pile construction method of rotary drilling rig
CN114555888A (en) * 2021-01-04 2022-05-27 成都欣皓地基基础工程有限责任公司 Square pile construction method and equipment for rotary drilling rig
US11891892B2 (en) 2020-11-04 2024-02-06 Chengdu Xinhao Foundation Engineering Co., Ltd. Square pile construction method and equipment of a rotary drilling rig

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587840A (en) * 2017-09-26 2018-01-16 中铁大桥局集团第五工程有限公司 A kind of rectangle pile foundation drilling construction method
CN107905236A (en) * 2017-11-10 2018-04-13 中铁隧道集团处有限公司 The construction method of friction pile churning driven fast pore-creating and concrete placings
CN108678661A (en) * 2018-03-22 2018-10-19 中交路桥北方工程有限公司 Rectangular friction pile forming hole method and the rectangular drill bit of pore-forming
CN109630015A (en) * 2018-11-26 2019-04-16 中铁二十局集团第二工程有限公司 A kind of friction pile mechanical hole building method
CN109681116A (en) * 2019-01-31 2019-04-26 四川省交通运输厅交通勘察设计研究院 A kind of square pile rotary drilling device and its rotary digging method for realizing rectangular pore-forming
CN110374091A (en) * 2019-07-09 2019-10-25 云南建投基础工程有限责任公司 A kind of rectangle friction pile mechanical hole building construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587840A (en) * 2017-09-26 2018-01-16 中铁大桥局集团第五工程有限公司 A kind of rectangle pile foundation drilling construction method
CN107905236A (en) * 2017-11-10 2018-04-13 中铁隧道集团处有限公司 The construction method of friction pile churning driven fast pore-creating and concrete placings
CN108678661A (en) * 2018-03-22 2018-10-19 中交路桥北方工程有限公司 Rectangular friction pile forming hole method and the rectangular drill bit of pore-forming
CN109630015A (en) * 2018-11-26 2019-04-16 中铁二十局集团第二工程有限公司 A kind of friction pile mechanical hole building method
CN109681116A (en) * 2019-01-31 2019-04-26 四川省交通运输厅交通勘察设计研究院 A kind of square pile rotary drilling device and its rotary digging method for realizing rectangular pore-forming
CN110374091A (en) * 2019-07-09 2019-10-25 云南建投基础工程有限责任公司 A kind of rectangle friction pile mechanical hole building construction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891892B2 (en) 2020-11-04 2024-02-06 Chengdu Xinhao Foundation Engineering Co., Ltd. Square pile construction method and equipment of a rotary drilling rig
CN112796307A (en) * 2021-01-04 2021-05-14 成都欣皓地基基础工程有限责任公司 Square pile construction method of rotary drilling rig
CN114555888A (en) * 2021-01-04 2022-05-27 成都欣皓地基基础工程有限责任公司 Square pile construction method and equipment for rotary drilling rig
CN114555888B (en) * 2021-01-04 2023-01-31 成都欣皓地基基础工程有限责任公司 Square pile construction method and equipment for rotary drilling rig

Also Published As

Publication number Publication date
CN110820729B (en) 2021-04-16

Similar Documents

Publication Publication Date Title
CN110820729B (en) Efficient and safe integrated rapid hole forming method for anti-slide pile rotary excavating machinery
CN110424381A (en) A kind of process for rotary digging drilling hole stake
CN112554177A (en) Construction method of ultra-long small-diameter cast-in-situ bored pile
CN110735600B (en) Mechanical pore-forming pile construction process for karst geology
CN106988302A (en) A kind of high inclination-angle competent bed rotary digging pile driving construction engineering method
CN105401946A (en) Reverse blasting excavation method of shaft and pilot shaft
CN103015429A (en) Long auger rotary-jet mixing steel reinforced cement-soil pile foundation pit water-resisting and supporting method
CN106677166A (en) Flow construction method for forming cast-in-place bored pile for gravel-decomposed rock stratum in double-machine combined mode
CN103510572A (en) Construction method of water getting vertical shaft under complex geological condition
CN104532853A (en) Deep foundation pit supporting method and system characterized by steel reinforced cement-soil piles, bolts easy to detach and automatic monitoring and early warning
CN104863183B (en) Damping pilework and construction method is isolated in large cross-section tunnel proximity architecture construction
CN112144514A (en) Simple method for forming hole and pile in sand and pebble stratum easy to collapse during rotary drilling machine
CN104947664A (en) Thick stone sea-filling layer prestressing force high-strength concrete square pile construction method
CN105672309A (en) Encasing method for hole forming of socketed piles at karst terrain through recoverable extra-long steel pile casings
CN112281880A (en) Construction method of complex stratum long spiral hole-leading inserting-driving locking opening steel pipe pile cofferdam
Mangushev et al. Modern technologies of foundation building in the conditions of weak soils of St. Petersburg
CN110512594A (en) The simple and easy method of churning driven opportunity cavity pore-forming
CN203247580U (en) Construction structure of cast-in-place concrete pile of deep soft soil foundation bridge girder
CN206989839U (en) Basement rock projection explosion pretreatment system in shield gauge
CN110820733B (en) Improved mechanical rapid hole forming construction method for simple rectangular slide-resistant pile
CN108005659A (en) A kind of diving for city vertical shaft construction excavates construction method
CN210857242U (en) Side slope anti-skidding supporting construction
CN103614999B (en) A kind of method of clump of piles deep hole construction under complex geological condition
CN102518130B (en) Manufacturing method of and construction process of reinforcement cage cement plaster pile casing
CN111441794A (en) Underground excavation construction method and structure for rebuilding existing tunnel into double-layer tunnel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant