CN110808007A - Pixel compensation circuit - Google Patents

Pixel compensation circuit Download PDF

Info

Publication number
CN110808007A
CN110808007A CN201911051065.8A CN201911051065A CN110808007A CN 110808007 A CN110808007 A CN 110808007A CN 201911051065 A CN201911051065 A CN 201911051065A CN 110808007 A CN110808007 A CN 110808007A
Authority
CN
China
Prior art keywords
thin film
electrode
drain electrode
compensation circuit
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911051065.8A
Other languages
Chinese (zh)
Inventor
贾浩
罗敬凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Huajiacai Co Ltd
Original Assignee
Fujian Huajiacai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Huajiacai Co Ltd filed Critical Fujian Huajiacai Co Ltd
Priority to CN201911051065.8A priority Critical patent/CN110808007A/en
Publication of CN110808007A publication Critical patent/CN110808007A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A pixel compensation circuit comprises thin film transistors T1, T2, T3, T4, T5, T6, capacitors C1 and C2; the drain electrode of the T1 is connected with the source electrode of the T4, the gate electrode of the T4 is connected with the drain electrode of the T2 and the drain electrode of the T6, the gate electrode of the T4 is also connected with the source electrode of the T3 through the C1, and the drain electrode is connected with the anode electrode of the organic light-emitting diode; the drain electrode of the T3 is connected with the cathode of the organic light-emitting diode, and the source electrode of the T3 is also connected with the drain electrode of the T4 and the drain electrode of the T5 through the C2; the T2, T6 and T3 are polysilicon thin film transistors and are arranged between the substrate and the dielectric layer, and the T1, T4 and T5 are oxide thin film transistors and are arranged above the dielectric layer. According to the technical scheme, the compensation effect is achieved by using a smaller pixel area, and the resolution of the panel can be finally improved.

Description

Pixel compensation circuit
Technical Field
The invention relates to a design of a pixel compensation circuit, in particular to a novel AMOLED pixel compensation circuit design with an upper layer and a lower layer.
Background
Nowadays, with the continuous improvement of the technology level, the demand for the display screen is also increasing, i.e. the demand for high resolution is increasing, for example, the resolution of VR, AR, MR and other displays is as high as 2000PPI or more. For the OLED panel, the luminance of the panel is not uniform due to the influence of Vth drift in the in-plane 2T1C Pixel circuit, and the compensation circuit is required to improve the display effect of the panel, and in order to achieve better compensation effect, the compensation circuit has a plurality of TFTs, which may have 4T, 5T, and 6T …, so that the area occupied by the pixels is increased due to too many TFTs, and the number of pixels contained in the panel is reduced, that is, the resolution is low, and the requirement of high resolution cannot be met.
Therefore, how to improve the resolution of the OLED panel, it is an important issue to manufacture an OLED panel having an ultra-high resolution with a good compensation effect.
Disclosure of Invention
Therefore, it is desirable to provide a new layered pixel compensation circuit, which achieves the technical effects of reducing the TFT layout area and improving the panel resolution.
To achieve the above object, the inventors provide a pixel compensation circuit including thin film transistors T1, T2, T3, T4, T5, T6, capacitors C1, C2; the drain electrode of the T1 is connected with the source electrode of the T4, the gate electrode of the T4 is connected with the drain electrode of the T2 and the drain electrode of the T6, the gate electrode of the T4 is also connected with the source electrode of the T3 through the C1, and the drain electrode is connected with the anode electrode of the organic light-emitting diode; the drain electrode of the T3 is connected with the cathode of the organic light-emitting diode, and the source electrode of the T3 is also connected with the drain electrode of the T4 and the drain electrode of the T5 through the C2;
the T2, T6 and T3 are polysilicon thin film transistors and are arranged between the substrate and the dielectric layer, and the T1, T4 and T5 are oxide thin film transistors and are arranged above the dielectric layer.
Specifically, the capacitors C1 and C2 are arranged below the dielectric layer.
Specifically, the organic light emitting diode comprises connecting wires arranged through the dielectric layer, and the grid electrode of the T4 is connected with the T2, the drain electrode of the T4 is connected with the C2, and the cathode electrode of the organic light emitting diode is connected with the drain electrode of the T3 through the connecting wires respectively.
Different from the prior art, the technical scheme achieves the compensation effect by using a smaller pixel area, and can finally improve the resolution of the panel.
Drawings
FIG. 1 is a different process AMOLED pixel compensation circuit according to an embodiment;
FIG. 2 illustrates an AMOLED pixel compensation circuit in the same process according to an embodiment;
FIG. 3 is a diagram of a pixel compensation circuit according to an embodiment;
FIG. 4 is a diagram illustrating the operation state of the Reset phase according to an embodiment;
FIG. 5 is a schematic diagram illustrating an operating state of the compensation phase according to an embodiment;
FIG. 6 is a diagram illustrating the operation status of the Data write phase according to the embodiment;
FIG. 7 is a diagram illustrating an operation state of a light-emitting stage according to an embodiment;
FIG. 8 is a diagram of a pixel compensation circuit according to an embodiment;
FIG. 9 is a diagram illustrating the operation state of the Reset phase according to an embodiment;
FIG. 10 is a schematic diagram illustrating the operation of the compensation phase according to an embodiment;
fig. 11 is a schematic diagram of the working state of the light-emitting stage according to the embodiment.
Detailed Description
To explain technical contents, structural features, and objects and effects of the technical solutions in detail, the following detailed description is given with reference to the accompanying drawings in conjunction with the embodiments.
Referring to fig. 1, a layered AMOLED pixel compensation circuit, as shown in fig. 1, includes a lower thin film transistor region and an upper thin film transistor region disposed on a substrate buffer, and an insulating layer (Insulator1) disposed between the upper thin film transistor region and the lower thin film transistor region, where the insulating layer may be a thin film made of silicon oxide. The electrodes of the upper thin film transistor region and the lower thin film transistor region are connected by a connection line 100 passing through the insulating layer, the upper thin film transistor region further patterns an organic light emitting diode (not shown), and the thin film transistor of the upper thin film transistor region and the thin film transistor of the lower thin film transistor region are connected to form a compensation circuit of the organic light emitting diode. The thin film transistors on the upper and lower layers are designed in the pixel compensation circuit, the thin film transistors on the lower layer can be selected in different patterning modes according to the actual connection relation of the pixel compensation circuit, the manufactured thin film transistors on the lower layer are fully covered by the insulating layer, the situations of electric leakage and the like are prevented, the thin film transistors on the upper layer and the related organic light emitting diodes, namely AMOLED pixels, are arranged above the insulating layer, and the thin film transistors on the upper layer and the lower layer are designed, so that the area required by tiling arrangement of the pixel compensation circuit relative to a single layer can be reduced, and the area required by the pixel compensation circuit is increased.
In the embodiment shown in fig. 2, an example is shown in which the upper layer and the lower layer are both fabricated by Oxide process, and since the upper layer is required to fabricate the AMOLED, the upper layer is required to fabricate the Oxide process, and the lower layer thin film transistor is also fabricated by the same process, the cost can be relatively saved.
In other aspects, the LTPS process requires laser irradiation of amorphous silicon (a-si), and the a-si absorbs laser energy and then transforms into a polysilicon structure (poly-si), which is completed at 600 ℃. The metal-oxide semiconductor has unstable characteristics and is easily damaged by high temperature, light, water and oxygen to cause the failure of the TFT. Therefore, in some further embodiments, referring to fig. 1, the lower thin film transistor is a polysilicon thin film transistor, the lower thin film transistor region includes a polysilicon active layer (p-si), the polysilicon active layer is connected to the metal electrode, the polysilicon active layer is covered with a barrier layer (Insulator 2) for gate insulation, the barrier layer is provided with a first gate layer, the polysilicon active layer, the metal electrode and the first gate layer are patterned into a plurality of polysilicon thin film transistors, in alternative embodiments, the barrier layer is used for isolating the gate metal and the metal electrode, and the material may be silicon oxide or aluminum oxide thin film.
The upper thin film transistor region comprises an oxide active layer, and the medium of the active layer can be an oxide semiconductor, such as IGZO. In this embodiment, a dielectric layer is further disposed on the first gate layer, the dielectric layer is disposed below the insulating layer, and the dielectric layer is used to isolate the upper and lower thin film transistors, and the material of the dielectric layer may be hydrogenated amorphous silicon nitride, such as a-SiNx: H. The dielectric layer covers the barrier layer and the first gate layer. Patterning oxide thin film transistors and AMOLED pixels above the insulating layer; the thin film transistor above the insulating layer is an Oxide transistor adopting Oxide process, and the thin film transistor further comprises a connecting wire, and the polycrystalline silicon thin film transistor is connected with the Oxide thin film transistor through the connecting wire to form a pixel compensation circuit.
By the scheme, the LTPS thin film transistor is arranged on the lower layer, so that the LTPS manufacturing process and the Oxide manufacturing process can be compatible, the advantages of high resolution, high reaction speed, high brightness, high aperture opening ratio and the like of the LTPS manufacturing process can be compatible in the AMOLED pixel compensation circuit, the electron mobility can be improved, and the area can be reduced.
In some further embodiments, shown in fig. 1, the insulating layer is further provided with a planarization layer (Insulator 3), which is disposed on the insulating layer to provide a flat upper surface for the upper thin-film transistor layer, and the planarization layer is an organic insulating material thin film.
The following provides some examples of manufacturing pixel compensation circuits based on the main concept of layered pixel circuits, as shown in fig. 3, which is an architecture schematic diagram of a 6T2C circuit, including thin film transistors T1, T2, T3, T4, T5, T6, capacitors C1, C2; the drain electrode of the T1 is connected with the source electrode of the T4, the gate electrode of the T4 is connected with the drain electrode of the T2 and the drain electrode of the T6, the gate electrode of the T4 is also connected with the source electrode of the T3 through the C1, and the drain electrode is connected with the anode electrode of the organic light-emitting diode; the drain electrode of the T3 is connected with the cathode of the organic light-emitting diode, and the source electrode of the T3 is also connected with the drain electrode of the T4 and the drain electrode of the T5 through the C2;
the T2, T6 and T3 are polysilicon thin film transistors and are arranged between the substrate and the dielectric layer, the T1, T4 and T5 are oxide thin film transistors and are arranged above the dielectric layer, and the capacitors C1 and C2 are arranged below the dielectric layer.
In conjunction with the concept of fig. 1 or fig. 2, a connection line is further disposed through the dielectric layer, and the gate of T4 is connected to T2, the drain of T4 is connected to C2, and the cathode of the organic light emitting diode is connected to the drain of T3 by the connection line.
The peripheral wiring and the working principle of the pixel compensation circuit are similar to those of the prior art, and the following are introduced:
as shown in fig. 4, in the Reset phase, Scan2 and Scan4 write high voltage, T2 and T3 turn on, the REF signal writes VREF voltage, VG ═ VREF; VA ═ VSS; scan5 writes a high voltage, Scan1 writes a low voltage, T5 turns on, T1 turns off, and VS is Vsus.
As shown in fig. 5, in the compensation phase, Scan1 writes high voltage, Scan5 writes low voltage, T1 turns on, T5 turns off, and when VDD writes to raise the S point voltage to VREF-VTH, T4 turns off, and VS becomes VREF-VTH, i.e., compensates to a VTH; VG and VA remain unchanged, i.e., VG ═ VREF and VA ═ VSS.
AS shown in fig. 6, in the Data writing phase, Scan1 writes a low voltage, T1 is turned off, Scan3 and Scan4 write a high voltage, T6 and T3 are turned on, VG is VDATA, VA is maintained at VSS voltage, that is, VA is VSS, and due to the capacitance between ASs, the S-point voltage is maintained constant, that is, VS is VREF-VTH.
AS shown in fig. 7, in the light emitting period, Scan1 writes a high voltage, T1 is turned on, Scan2 and Scan4 write a low voltage, T2 and T3 are turned off, the light emitting diode is turned on, VS is VOLED + VSs, VA is VSs + VOLED + VSs- (VREF-VTH) due to the capacitance between ases, VG is VDATA + VOLED + VSs- (VREF-VTH) is VDATA + VREF + VOLED + VTH due to the capacitance between AGs, VGs is VDATA + VREF + VTH is obtained, and then iosled is 1/2 μ nCOXW/vdl (VGs-VTH)2 is obtained by substituting the saturation region current formula IOLED 1/2 μ nCOXW/L (VGs-VTH)2 (note μ n is the field effect mobility, COX is the capacitance per unit area, and W/L is the TFT channel width ratio length).
In other embodiments, as shown in fig. 8, we introduce another example of the application of the 9T1C circuit, which includes thin film transistors T1, T2, T3, T4, T5, T6, T7, T8, T9, a capacitor C, the source of T1 is connected to the source of T3, the drain of T1 is connected to the gate of T5 and the gate of T6, the drain of T3 is connected to the source of T5, the drain of T5 is connected to the source of T6, the source of T1 is also connected to the gate of T2 and the drain of T4, the source of T4 is connected to the source of T2 and the drain of T7, the drain of T2 is connected to the source of T5 through a capacitor, the drain of T2 is also connected to the drain of T8 and the source of T9, and the drain of T9 is also connected to the positive electrode of the organic light emitting diode;
the thin film transistors T1, T3, T5 and T6 are polysilicon thin film transistors and are arranged between the substrate and the dielectric layer, and the thin film transistors T2, T4, T7, T8 and T9 are oxide thin film transistors and are arranged above the dielectric layer. The capacitors C1 and C2 are arranged below the dielectric layer and comprise connecting wires arranged by penetrating through the dielectric layer, and the grid of the T4 is connected with the T2, the drain of the T4 is connected with the C2, and the cathode of the organic light emitting diode is connected with the drain of the T3 by the connecting wires respectively. Through the scheme, the compensation effect of the 9T1C pixel compensation circuit can be realized through a smaller area, so that the AMOLED circuit has a better display effect and a higher resolution of a panel.
The external wiring and operating principle of the pixel compensation circuit is similar to the prior art,
the working principle is as follows:
FIG. 9: step1(Reset phase): scan1, Scan3, Scan4 high voltage, T1, T4, T8 are turned on, Scan2, T3, T7, T9 are turned off, a direct current signal Vsus voltage is written at a point S as a reset voltage of the point S, and a data voltage is written at a point G; meanwhile, the data is high level at this stage, T5 and T6 are started, and the voltage of the direct current signal Vref is written into the point A through the upper and lower layer connecting wires. Voltage corresponding to each point: VG ═ Vdata, VS ═ Vsus, and VA ═ Vref, and the circuit and waveform are shown in fig. 9.
FIG. 10: step2 (compensation phase): scan1, Scan3 high voltage, T1, T4 on, Scan2, Scan4 low voltage, T3, T7, T8, T9 off, when data voltage high level, T5, T6 on. data is continuously written to charge the S point to Vdata-Vth, T2 is closed, and Vth extraction is completed. The voltages at the points are: VG ═ Vdata, VS ═ Vdata-Vth, VA ═ Vref; the circuit and waveforms are shown in fig. 10.
FIG. 11: step3 (light-emitting stage): scan2 high voltage, T3, T7, T9 on, Scan1, Scan3, Scan4 low voltage, T1, T4, T7 off, data write low, T5, T6 off. The change of the point S affects the change of the point G through the coupling effect of the capacitor C. The voltages at the points are: VS-VOLED + OVSS, VG-Vref + [ VOLED + OVSS- (Vdata-Vth) ], VA-VG
The circuit and waveforms are shown in fig. 11. The current of the OLED is then as follows:
IOLED=1/2μnCoxW/L(VGS-Vth)2;
substituting the G and S voltages into the formula to obtain the following:
IOLED=1/2μnCoxW/L(Vref–Vdata)]2
(Note that μ n is field-effect mobility, Cox is insulating layer capacitance per unit area; W/L is TFT channel width and length)
The OLED luminous current formula can know that the OLED current is only related to Vdata and Vref, and other parameters are relatively fixed; and the compensation circuit has eliminated the Vth drift, OLED lifetime degradation and VDD difference problems, through the above design, the invention can use smaller pixel area to achieve the compensation effect, and can finally improve the resolution of the panel.
It should be noted that, although the above embodiments have been described herein, the invention is not limited thereto. Therefore, based on the innovative concepts of the present invention, the technical solutions of the present invention can be directly or indirectly applied to other related technical fields by making changes and modifications to the embodiments described herein, or by using equivalent structures or equivalent processes performed in the content of the present specification and the attached drawings, which are included in the scope of the present invention.

Claims (3)

1. A pixel compensation circuit is characterized by comprising thin film transistors T1, T2, T3, T4, T5, T6, capacitors C1 and C2; the drain electrode of the T1 is connected with the source electrode of the T4, the gate electrode of the T4 is connected with the drain electrode of the T2 and the drain electrode of the T6, the gate electrode of the T4 is also connected with the source electrode of the T3 through the C1, and the drain electrode is connected with the anode electrode of the organic light-emitting diode; the drain electrode of the T3 is connected with the cathode of the organic light-emitting diode, and the source electrode of the T3 is also connected with the drain electrode of the T4 and the drain electrode of the T5 through the C2;
the T2, T6 and T3 are polysilicon thin film transistors and are arranged between the substrate and the dielectric layer, and the T1, T4 and T5 are oxide thin film transistors and are arranged above the dielectric layer.
2. The pixel compensation circuit of claim 1, wherein the capacitors C1 and C2 are disposed below a dielectric layer.
3. The pixel compensation circuit of claim 1, comprising a connection line penetrating the dielectric layer, wherein the connection line is used to connect the gate of T4 with T2, the drain of T4 with C2, and the cathode of the OLED with the drain of T3.
CN201911051065.8A 2019-10-31 2019-10-31 Pixel compensation circuit Pending CN110808007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911051065.8A CN110808007A (en) 2019-10-31 2019-10-31 Pixel compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911051065.8A CN110808007A (en) 2019-10-31 2019-10-31 Pixel compensation circuit

Publications (1)

Publication Number Publication Date
CN110808007A true CN110808007A (en) 2020-02-18

Family

ID=69489786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911051065.8A Pending CN110808007A (en) 2019-10-31 2019-10-31 Pixel compensation circuit

Country Status (1)

Country Link
CN (1) CN110808007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382233A (en) * 2020-11-19 2021-02-19 福建华佳彩有限公司 Internal compensation circuit and control method thereof
CN114743500A (en) * 2022-04-25 2022-07-12 福建华佳彩有限公司 High-resolution 5T2C LTPO internal compensation circuit and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504701A (en) * 2016-10-17 2017-03-15 深圳市华星光电技术有限公司 AMOLED pixel-driving circuits and image element driving method
CN109256092A (en) * 2018-10-18 2019-01-22 天津大学 The pixel-driving circuit and driving method of realization threshold voltage compensation based on OTFT
CN110379369A (en) * 2019-05-27 2019-10-25 福建华佳彩有限公司 A kind of pixel compensation circuit and driving method
CN210777794U (en) * 2019-10-31 2020-06-16 福建华佳彩有限公司 Pixel compensation circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504701A (en) * 2016-10-17 2017-03-15 深圳市华星光电技术有限公司 AMOLED pixel-driving circuits and image element driving method
CN109256092A (en) * 2018-10-18 2019-01-22 天津大学 The pixel-driving circuit and driving method of realization threshold voltage compensation based on OTFT
CN110379369A (en) * 2019-05-27 2019-10-25 福建华佳彩有限公司 A kind of pixel compensation circuit and driving method
CN210777794U (en) * 2019-10-31 2020-06-16 福建华佳彩有限公司 Pixel compensation circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382233A (en) * 2020-11-19 2021-02-19 福建华佳彩有限公司 Internal compensation circuit and control method thereof
CN114743500A (en) * 2022-04-25 2022-07-12 福建华佳彩有限公司 High-resolution 5T2C LTPO internal compensation circuit and control method thereof

Similar Documents

Publication Publication Date Title
JP7171738B2 (en) Thin film transistor with metal oxide switch and small storage capacitor
WO2017156826A1 (en) Amoled pixel driving circuit and pixel driving method
WO2018068392A1 (en) Amoled pixel driver circuit, and drive method
US20230351958A1 (en) Array substrate, display panel comprising the array substrate, and display device
CN111369943A (en) Layered pixel compensation circuit
US11380258B2 (en) AMOLED pixel driving circuit, pixel driving method, and display panel
CN108604433A (en) A kind of pixel circuit and its driving method, display device
US10223972B1 (en) OLED pixel driving circuit and OLED display device
CN210777794U (en) Pixel compensation circuit
CN210805180U (en) Pixel compensation circuit
CN210805181U (en) Layered AMOLED pixel compensation circuit
CN112365849A (en) Pixel driving circuit and display panel
CN110808007A (en) Pixel compensation circuit
CN212990650U (en) Layered pixel compensation circuit
CN210926020U (en) Layered pixel compensation circuit
CN214123468U (en) Internal compensation circuit
WO2020177258A1 (en) Pixel drive circuit and display panel
CN111048561A (en) Layered pixel compensation circuit
US20230267888A1 (en) Array substrate, display panel comprising the array substrate, and display device
CN115244606A (en) Display panel and display device
WO2019064523A1 (en) Display device and pixel circuit
CN110827758A (en) Layered AMOLED pixel compensation circuit
CN212934115U (en) Multilayer pixel compensation circuit
CN213277407U (en) Double-layer pixel compensation circuit
US9991312B1 (en) Electroluminescence display apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination