CN110806324A - 基于轨道位移的车轮多边形磨耗检测方法及数据采集设备 - Google Patents

基于轨道位移的车轮多边形磨耗检测方法及数据采集设备 Download PDF

Info

Publication number
CN110806324A
CN110806324A CN201911092593.8A CN201911092593A CN110806324A CN 110806324 A CN110806324 A CN 110806324A CN 201911092593 A CN201911092593 A CN 201911092593A CN 110806324 A CN110806324 A CN 110806324A
Authority
CN
China
Prior art keywords
wheel
displacement
rail
vertical vibration
polygonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911092593.8A
Other languages
English (en)
Inventor
朱彬
汪群生
曾京
邬平波
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Xijiao Zhi Zhong Technology Co Ltd
Original Assignee
Chengdu Xijiao Zhi Zhong Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Xijiao Zhi Zhong Technology Co Ltd filed Critical Chengdu Xijiao Zhi Zhong Technology Co Ltd
Priority to CN201911092593.8A priority Critical patent/CN110806324A/zh
Publication of CN110806324A publication Critical patent/CN110806324A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • G01M17/10Suspensions, axles or wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/12Measuring or surveying wheel-rims
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

本发明公开一种基于轨道位移的车轮多边形磨耗检测方法及数据采集设备,应用于轨道交通领域,为了解决现有的车轮多边形磨耗检测存在的检测效率低下的问题,本发明通过将激光位移传感器安装于相邻两个轨枕之间道床的中心位置,以采集钢轨垂向振动位移信号,并结合铁路运营部门的该条线路的车辆运营信息,将钢轨垂向振动位移信号与具体的车辆对应起来,实现了采集运营线路某一点的少量数据,就能分析该线路上行使的所有车辆车轮的多边形化磨耗状况信息的效果;本发明的非接触式的测量方法不仅满足铁路旅客运输的高安全性要求,并且提高了车轮多边形磨耗检测效率。

Description

基于轨道位移的车轮多边形磨耗检测方法及数据采集设备
技术领域
本发明属于轨道交通领域,特别涉及一种车轮损伤监测技术及设备。
背景技术
基于钢轮钢轨的轨道交通模式由于其高能量利用率的优势,在能源紧缺的现代得到了飞速的发展。钢轮钢轨在提供较小滚动摩擦阻力的同时也带来了局部应力集中,轮轨受力条件恶劣的问题,由此引发了诸如轮轨接触疲劳,踏面材料剥离,车轮多边形化等车轮损伤问题。其中车轮多边形问题在近年来尤为突出,因为车轮多边形异常磨耗引起的车辆轨道部件损坏情况时常发生。在车辆实际运营中,维护部门会根据车辆运行公里数对车轮进行璇修作业。这样的璇修通过车削能使车轮踏面重新恢复设计形状从而提高稳定性和消除踏面损伤,但是以运行公里数为标准的做法比较粗糙。例如有的车轮在运行到指定公里数时状态依然良好,此时璇轮无疑是巨大的浪费。而有的车轮在远未达到指定运营公里数时便已经发生了多边形磨耗,此时如果不对其采取修复措施,将会对车辆和轨道结果部件产生严重的危害。有研究表明幅值较小的车轮多边形磨耗如果未得到及时处理会在短时间内快速发展。因此如何准确而快速地对车轮多边形磨耗进行尽早的识别对车辆运营的经济性和公共安全的保障有着重要意义。由于车轮多边形磨耗肉眼难以发现,再加上在服役的车轮数量极其庞大,车轮多边形的自动探测问题面临着巨大的挑战。
发明内容
为解决上述技术问题,本发明提出一种基于轨道位移的车轮多边形磨耗检测方法及检测设备,通过测试少量的钢轨位移数据就能分析经过该条线路的所有车的车轮缺陷情况,极大的提高了检测效率。
本发明采用的方案之一为:一种基于轨道位移的车轮多边形磨耗检测方法,包括:
S1、分别建立多边形车轮和正常车轮引起的钢轨垂向振动位移信号建立数据库;所述钢轨垂向振动位移信号测量过程为:
A1、通过激光位移传感器测量钢轨垂向振动位移信号;
A2、将一维的钢轨垂向振动位移信号转化成二维的图像信号;
S2、分别采用步骤S1中的两个数据库对深度卷积神经网络进行训练,得到多边形车轮信号识别的模型与正常车轮信号识别的模型;
S3、向经步骤S2训练后的深度卷积神经网络输入当前采集的钢轨垂向振动位移信号,该深度卷积神经网络输出识别结果,所述识别结果为多边形车轮或正常车轮。
进一步地,步骤S3之后还包括:将识别结果与车辆对应,具体为:结合铁路运营部门的该条线路的车辆运营信息,将识别结果与具体的车辆对应起来。
进一步地,步骤A1所述激光位移传感器安装于相邻两个轨枕之间道床的中心位置。
进一步地,所述步骤A2之前还包括:对步骤A1的钢轨垂向振动位移信号提取冲击振动成分处理。
更进一步地,所述提取冲击成分的实现过程为:采用多层移动平均法求出步骤A1所采集钢轨垂向振动位移信号的车辆重力作用波形,然后由步骤A1所采集钢轨垂向振动位移信号减去对应的车辆重力作用波形得到冲击振动成分。
进一步地,步骤A2采用格兰姆角场矩阵将一维的钢轨垂向振动位移信号转化成二维的图像信号。
进一步地,步骤S2所述深度卷积神经网络为改进的AlexNet,具体为将AlexNet的最后一层的输出数量参数改为2。
本发明采用的另一技术方案为:一种基于轨道位移的车轮多边形磨耗数据采集设备,包括:激光位移传感器、数字信号采集器、电源模组、工程控制计算机、无线网络模块、远程控制终端;远程控制终端通过无线网络模块控制工程控制计算机,数字信号采集器在工程控制计算机的控制下采集激光位移传感器数据,所述激光位移传感器用于测量钢轨垂向振动位移信号。
进一步地,所述远程控制终端还包括映射模块,具体为结合铁路运营部门的该条线路的车辆运营信息,将采集的激光位移传感器数据与具体的车辆对应起来。
进一步地,所述激光位移传感器安装于相邻两个轨枕之间道床的中心位置。
本发明的有益效果:车轮缺陷对车辆轨道系统的破坏性根源在于在其激励下产生的车辆轨道系统部件的异常振动;通过直接测试轨道部件的振动就能够准确的检测需要进行璇修的缺陷车轮;本发明通过将激光位移传感器安装于相邻两个轨枕之间道床的中心位置,以采集钢轨垂向振动位移信号,通过结合铁路运营部门的该条线路的车辆运营信息,将钢轨垂向振动位移信号与具体的车辆对应起来,实现了采集运营线路某一点的少量数据,就能分析该线路上行使的所有车辆车轮的多边形化磨耗状况信息的效果;本发明的非接触式的测量方法不仅能满足铁路旅客运输的高安全性要求,并且极大的提高了检测效率,适用于长期,大范围的车轮状态监控;并且本发明采集数据所需的测试硬件少,对测试条件要求低,降低了现有的车轮多边形磨耗检测成本。
附图说明
图1是两个转向架四个车轮驶过钢轨相邻两轨枕中间位置测点时钢轨的垂向位移信号和钢轨垂向加速度信号;
其中,图1(a)为钢轨的垂向位移信号,图1(b)为钢轨垂向加速度信号;
图2是冲击振动信号分离示例;
其中,图2(a)为一个转向架驶过测点时,钢轨的垂向位移振动数据;图2(b)是测点由于轮轨不平顺冲击作用引起的垂向位移成分;
图3是测点垂向位移的动态成分的二维格兰姆行角场矩阵的图像表示;
其中,图3(a)是图2(b)中车轮I的格兰姆行角场矩阵图,图3(b)是图2(b)中车轮II的格兰姆行角场矩阵图;
图4是钢轨振动垂向位移的远程采集系统示意图;
图5是利用基于修改的AlexNet深度卷积神经网络模型进行迁移学习,从而实现多边形化车轮自动检测的原理流程示意图。
具体实施方式
为便于本领域技术人员理解本发明的技术内容,下面结合附图1-5对本发明内容进一步阐释。
如图1所示,本发明通过在相邻轨枕中间位置应用激光位移传感器,对钢轨底部进行地位移测量,这种非接触式的测量方法能满足铁路旅客运输的高安全性要求;如图1(a)所示,由于每一车轮引起的振动位移信号传递范围相对较小,所以通过位移信号能清楚地对每一个车轮进行识别。图1(a)中区域I为一个转向架两条轮对经过测点时引起的轨道垂向振动位移,区域II为一条轮对经过测点时引起的轨道垂向振动位移。图1(b)展示了与图1(a)同一测量位置,同一车辆经过时的钢轨加速度信号。从该钢轨加速度信号中难以分别出每个单独车轮的影响。从图1可以看出,钢轨的位移信号明显地显示第一个车轮经过测点时,钢轨发生了明显的周期性振动;而加速度信号中该信息被随机的高频成分所淹没,所以本发明采用钢轨位移信号而非加速度信号来作为多边形的甄别信号。本发明通过直接测试轨道部件的振动就能够准确的检测需要进行璇修的缺陷车轮;具体实现方式为:通过测量钢轨相邻轨枕中部的垂向振动位移来间接测量车轮多边形化磨耗。
通过测量特定时刻特定路段的钢轨垂向振动位移,再结合铁路运营部门的该条线路的车辆运营信息,就可以准确的将钢轨振动数据与具体的车辆对应起来。从而只需要测试运营线路某一点的少量数据,就能分析该线路上行使的所有车辆车轮的多边形化磨耗状况信息。极大的提高了效率,适用与长期,大范围的车轮状态监控。
如图4所示,本发明采用的数据采集设备包括:激光位移传感器、数字信号采集器、电源模组、工程控制计算机、无线网络模块、远程控制终端;远程控制终端通过无线网络组件控制工控机,再由工控机操作数字信号采集器来采集位移传感器数据。相邻轨枕中部位置的钢轨垂向位移数据通过激光位移传感器传递到数采,然后下载到工控机的本地磁盘中,再由无线网络设备发送到远程控制终端。如此以来,实验人员就可远程采集钢轨的振动位移数据。
车轮经过测点的过程中,由于车辆的重力作用,钢轨会产生平滑的垂向运动。同时由于车轮和轨道不平顺的冲击作用钢轨会产生垂向波动。真实的钢轨的位移是这两种运动的叠加,而研究多边形冲击引起的钢轨波动则需要先去除数据中的车辆重力(准静态轮轨力)作用成分。根据冲击引起的振动在‘平衡’位置附近往复运动的特点,本发明采用多层移动平均法求出数据的重力作用波形。再由真实测量信号减去该重力作用引起的波形得到冲击振动成分。如图2(a)实线所示展示了真实数据,图2(a)虚线所示为平滑后的近似重力作用波形;图2(b)展示了除去了车辆重力作用波形后,由于冲击引起的波形;可以看出有多边形磨耗的车轮I经过时钢轨有明显的周期性波动,而正常的车轮II经过时则没有这样的波动。
本发明采用深度卷积神经网络自动地学习提取原始数据的内在特征,鉴于深度卷积神经网络的输入为二维的图像矩阵(图像矩阵深度通常为3),但是钢轨的位移信号是一维的时间序列,本发明利用位移信号的格兰姆角场矩阵(Gramian Angular Fields)将一维的位移信号转化成二维的图像信号。信号的具体转换过程如下。有长度为n的时间序列:
X={x1,x2,…,xn},
将X正则化到[-1,1]范围内,公式为:
Figure BDA0002267225250000041
格兰姆行角场矩阵为:
Figure BDA0002267225250000051
其中,
Figure BDA0002267225250000052
如图3所示为有无车轮多边形时的时间序列信号以及其转化的格兰姆行角场矩阵的图像表现形式。
在将一维的钢轨振动位移时间序列可转成二维的格兰姆行角场矩阵后,对该二维数据,本发明基于AlexNet深度卷积神经网络模型的迁移学习以自动识别每个驶过该测点的车轮是否存在多边形磨耗,具体实现过程为:
AlexNet是开源的深度卷积神经网络模型,该网络模型经过预训练能识别1000种类型的图像。本发明改变AlexNet模型的最后一层输出层,将输出数量参数改为二,即多边形车轮信号和正常车轮信号。
然后用测量或者仿真的标记好的多边形车轮和正常车轮引起的轨道振动信号建立数据库。具体采用如图4所示的采集设备采集大量的钢轨测点垂向位移数据。在采集数据时,根据采样定理,采样频率f应大于多边形通过频率的两倍:
其中,V为车辆运行速度,Or为被关心的最高多边形频率,R为车轮半径;图4中①表示钢轨垂向位移信号传递路径,②表示控制信号传递路径,③表示设备电能供给路径。
如图5所示,结合铁路运营部门的车辆时刻信息查找与测试信号时间对应的列车。然后测量对应测试数据的具体车轮的多边形有无情况。然后建立多边形标签与轨道振动数据的格兰姆行角场矩阵图相互对应的数据库。
接着使用该数据库对修改后的AlexNet进行重新训练以获得适用于多边形车轮信号识别的模型。经过足够多的数据以及足够长的时间训练后,该模型就能被应用到多边形车轮的实时监测中。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

1.一种基于轨道位移的车轮多边形磨耗检测方法,其特征在于,包括:
S1、分别建立多边形车轮和正常车轮引起的钢轨垂向振动位移信号建立数据库;所述钢轨垂向振动位移信号测量过程为:
A1、通过激光位移传感器测量钢轨垂向振动位移信号;
A2、将一维的钢轨垂向振动位移信号转化成二维的图像信号;
S2、分别采用步骤S1中的两个数据库对深度卷积神经网络进行训练,得到多边形车轮信号识别的模型与正常车轮信号识别的模型;
S3、向经步骤S2训练后的深度卷积神经网络输入当前采集的钢轨垂向振动位移信号,该深度卷积神经网络输出识别结果,所述识别结果为多边形车轮或正常车轮。
2.根据权利要求1所述的一种基于轨道位移的车轮多边形磨耗检测方法,其特征在于,步骤S3之后还包括:将识别结果与车辆对应,具体为:结合铁路运营部门的该条线路的车辆运营信息,将识别结果与具体的车辆对应起来。
3.根据权利要求1所述的一种基于轨道位移的车轮多边形磨耗检测方法,其特征在于,步骤A1所述激光位移传感器安装于相邻两个轨枕之间道床的中心位置。
4.根据权利要求1所述的一种基于轨道位移的车轮多边形磨耗检测方法,其特征在于,所述步骤A2之前还包括:对步骤A1的钢轨垂向振动位移信号提取冲击振动成分处理。
5.根据权利要求4所述的一种基于轨道位移的车轮多边形磨耗检测方法,其特征在于,所述提取冲击成分的实现过程为:采用多层移动平均法求出步骤A1所采集钢轨垂向振动位移信号的车辆重力作用波形,然后由步骤A1所采集钢轨垂向振动位移信号减去对应的车辆重力作用波形得到冲击振动成分。
6.根据权利要求1所述的一种基于轨道位移的车轮多边形磨耗检测方法,其特征在于,步骤A2采用格兰姆角场矩阵将一维的钢轨垂向振动位移信号转化成二维的图像信号。
7.根据权利要求1所述的一种基于轨道位移的车轮多边形磨耗检测方法,其特征在于,步骤S2所述深度卷积神经网络为改进的AlexNet,具体为将AlexNet的最后一层的输出数量参数改为2。
8.一种基于轨道位移的车轮多边形磨耗数据采集设备,其特征在于,包括:激光位移传感器、数字信号采集器、电源模组、工程控制计算机、无线网络模块、远程控制终端;远程控制终端通过无线网络模块控制工程控制计算机,数字信号采集器在工程控制计算机的控制下采集激光位移传感器数据,所述激光位移传感器用于测量钢轨垂向振动位移信号。
9.根据权利要求8所述的一种基于轨道位移的车轮多边形磨耗数据采集设备,其特征在于,所述远程控制终端还包括映射模块,具体为结合铁路运营部门的该条线路的车辆运营信息,将采集的激光位移传感器数据与具体的车辆对应起来。
10.根据权利要求8所述的一种基于轨道位移的车轮多边形磨耗数据采集设备,其特征在于,所述激光位移传感器安装于相邻两个轨枕之间道床的中心位置。
CN201911092593.8A 2019-11-11 2019-11-11 基于轨道位移的车轮多边形磨耗检测方法及数据采集设备 Pending CN110806324A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911092593.8A CN110806324A (zh) 2019-11-11 2019-11-11 基于轨道位移的车轮多边形磨耗检测方法及数据采集设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911092593.8A CN110806324A (zh) 2019-11-11 2019-11-11 基于轨道位移的车轮多边形磨耗检测方法及数据采集设备

Publications (1)

Publication Number Publication Date
CN110806324A true CN110806324A (zh) 2020-02-18

Family

ID=69501772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911092593.8A Pending CN110806324A (zh) 2019-11-11 2019-11-11 基于轨道位移的车轮多边形磨耗检测方法及数据采集设备

Country Status (1)

Country Link
CN (1) CN110806324A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111623868A (zh) * 2020-05-12 2020-09-04 西南交通大学 用于钢轨波磨识别的卷积神经网络构建方法
CN111855055A (zh) * 2020-06-09 2020-10-30 华东交通大学 一种基于钢轨轨底位移检测轮轨力的方法
CN112069930A (zh) * 2020-08-20 2020-12-11 国网山西省电力公司电力科学研究院 提升gis设备故障诊断准确率的振动信号处理方法及装置
CN112766043A (zh) * 2020-12-25 2021-05-07 北京安铁软件技术有限公司 一种列车车轮多边形检测信号处理方法及其系统
CN113514003A (zh) * 2021-03-16 2021-10-19 西安理工大学 基于5g的激光扫描钢轨磨损检测系统及方法
CN116361620A (zh) * 2023-06-02 2023-06-30 西安麦仁网络科技有限公司 一种用于芯片数据智能处理方法
CN116952765A (zh) * 2023-09-19 2023-10-27 西南交通大学 一种货车车轮多边形磨损抑制与定量评价方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057979A (ja) * 2006-08-29 2008-03-13 Hitachi Plant Technologies Ltd 鉄道車両監視装置
CN106394606A (zh) * 2016-11-10 2017-02-15 北京康拓红外技术股份有限公司 一种铁路车辆车轮失圆检测方法及检测装置
CN107650945A (zh) * 2017-09-19 2018-02-02 华东交通大学 一种基于轮轨垂向力的车轮多边形识别方法及其装置
CN108734060A (zh) * 2017-04-18 2018-11-02 香港理工大学深圳研究院 一种高速动车组车轮多边形化的识别方法及装置
CN109323754A (zh) * 2018-08-31 2019-02-12 南京理工大学 一种列车车轮多边形故障诊断检测方法
CN110210132A (zh) * 2019-06-03 2019-09-06 石家庄铁道大学 基于压电加速度传感器的车轮多边形轨旁检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057979A (ja) * 2006-08-29 2008-03-13 Hitachi Plant Technologies Ltd 鉄道車両監視装置
CN106394606A (zh) * 2016-11-10 2017-02-15 北京康拓红外技术股份有限公司 一种铁路车辆车轮失圆检测方法及检测装置
CN108734060A (zh) * 2017-04-18 2018-11-02 香港理工大学深圳研究院 一种高速动车组车轮多边形化的识别方法及装置
CN107650945A (zh) * 2017-09-19 2018-02-02 华东交通大学 一种基于轮轨垂向力的车轮多边形识别方法及其装置
CN109323754A (zh) * 2018-08-31 2019-02-12 南京理工大学 一种列车车轮多边形故障诊断检测方法
CN110210132A (zh) * 2019-06-03 2019-09-06 石家庄铁道大学 基于压电加速度传感器的车轮多边形轨旁检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHEN QIN: "Imaging and fusing time series for wearable sensor-based human activity recognition", 《INFORMATION FUSION》 *
陈博: "基于MEEMD和GA-SVM的列车车轮多边形故障识别方法", 《噪声与振动控制》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111623868A (zh) * 2020-05-12 2020-09-04 西南交通大学 用于钢轨波磨识别的卷积神经网络构建方法
CN111623868B (zh) * 2020-05-12 2021-08-20 西南交通大学 用于钢轨波磨识别的卷积神经网络构建方法
CN111855055A (zh) * 2020-06-09 2020-10-30 华东交通大学 一种基于钢轨轨底位移检测轮轨力的方法
CN112069930A (zh) * 2020-08-20 2020-12-11 国网山西省电力公司电力科学研究院 提升gis设备故障诊断准确率的振动信号处理方法及装置
CN112766043A (zh) * 2020-12-25 2021-05-07 北京安铁软件技术有限公司 一种列车车轮多边形检测信号处理方法及其系统
CN112766043B (zh) * 2020-12-25 2023-10-17 北京安铁软件技术有限公司 一种列车车轮多边形检测信号处理方法及其系统
CN113514003A (zh) * 2021-03-16 2021-10-19 西安理工大学 基于5g的激光扫描钢轨磨损检测系统及方法
CN116361620A (zh) * 2023-06-02 2023-06-30 西安麦仁网络科技有限公司 一种用于芯片数据智能处理方法
CN116361620B (zh) * 2023-06-02 2023-08-29 西安麦仁网络科技有限公司 一种用于芯片数据智能处理方法
CN116952765A (zh) * 2023-09-19 2023-10-27 西南交通大学 一种货车车轮多边形磨损抑制与定量评价方法
CN116952765B (zh) * 2023-09-19 2023-12-12 西南交通大学 一种货车车轮多边形磨损抑制与定量评价方法

Similar Documents

Publication Publication Date Title
CN110806324A (zh) 基于轨道位移的车轮多边形磨耗检测方法及数据采集设备
CN108845028B (zh) 一种高速铁路钢轨波磨动态检测方法和装置
CN103335617B (zh) 一种基于振动信号的铁路钢轨几何形变检测方法
CN110789566B (zh) 基于轴箱加速信号的轨道缺陷监测方法及监测设备
CN105346561A (zh) 基于运营车辆的轨道道岔病害检测系统及方法
CN107527067A (zh) 一种基于探地雷达的铁路路基病害智能识别方法
CN105923014B (zh) 一种基于证据推理规则的轨道高低不平顺幅值估计方法
CN206583854U (zh) 一种钢轨扣件松紧状态的监测装置
CN109238756A (zh) 货车运行故障动态图像检测设备及检测方法
CN113988326A (zh) 一种地铁设备维修优化方法及系统
CN110239587B (zh) 一种确定损伤扣件位置的理论检测方法
CN109050575B (zh) 一种列车车轮在线运动中数据集成采集方法
CN109033683A (zh) 轨道车辆安全评价系统
CN202368605U (zh) 一种动态检测铁路轨道左右钢轨轨向的检测装置
CN116767307A (zh) 一种轨道交通的动态不平顺测量系统及轮轨关系评估方法
CN110171442B (zh) 车轮扁疤的检测系统、检测方法
CN206208223U (zh) 一种用于双轨平整度的检测装置
RU2578620C1 (ru) Автоматизированная диагностическая система контроля технического состояния элементов подвески объектов железнодорожного транспорта
CN205601866U (zh) 一种搭载式轨道检测装置
CN201863868U (zh) 一种新型轨道数据采集列车
CN109840907B (zh) 一种基于深度学习的钢轨磨损检测方法
CN112649513A (zh) 一种基于图像识别的铁路人工智能判伤方法
CN111824207A (zh) 一种基于轨底应变识别车轮失圆的方法
CN111651840A (zh) 一种基于深度学习技术的轨道板上拱状态检测方法
CN116691768B (zh) 一种道岔监控方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200218

RJ01 Rejection of invention patent application after publication