CN110798963B - 5g天线pcb幅度一致性的控制方法 - Google Patents
5g天线pcb幅度一致性的控制方法 Download PDFInfo
- Publication number
- CN110798963B CN110798963B CN201910904724.1A CN201910904724A CN110798963B CN 110798963 B CN110798963 B CN 110798963B CN 201910904724 A CN201910904724 A CN 201910904724A CN 110798963 B CN110798963 B CN 110798963B
- Authority
- CN
- China
- Prior art keywords
- consistency
- controlling
- impedance
- amplitude
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/025—Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0005—Apparatus or processes for manufacturing printed circuits for designing circuits by computer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Details Of Aerials (AREA)
Abstract
本发明提供一种5G天线PCB幅度一致性的控制方法,包括5G天线PCB的一致性加工方法和5G天线PCB一致性检测方法;所述5G天线PCB的一致性加工方法包括以下:A、铜厚及电镀均匀性控制;B、线宽精度控制;C、耦合线距极差控制;D、产品阻抗一致性控制;所述5G天线PCB一致性检测方法包括以下:E、工程特殊设计;F、找出阻抗偏差与幅度一致性的相互关系,确定最大极差控制范围;G、序列号匹配。本发明可以稳定高效地保证5G天线量产的一致性,且在PCB阶段可以准确检测,从而降低终端客户调试成本。
Description
技术领域
本发明属于5G通讯-印制电路板的制作技术领域,具体涉及到的是一种5G天线PCB幅度一致性的控制方法。
背景技术
5G网络即第五代移动通信技术;随着5G技术的诞生,目前许多国家和地区对5G商用高度重视,已竞相展开5G网络技术开发。工信部此前发布的《信息通信行业发展规划(2016-2020年)》明确提出, 2018年进行5G试验组网,2019年启动5G网络建设,2020年正式推出5G商用服务; 目前,为抢占市场,包括中兴、华为、高通、爱立信、诺基亚在内的全球通信企业,均已围绕5G展开积极布局, 因此,在5G网络快速发展的时刻,与之配套的5G天线产品将获得爆发式增长。
在5G网络中,优先布局的是5G基站,与PCB相关的核心产品是5G天线PCB,而MIMO天线是产品加工的关键技术。MIMO 天线相对于传统基站天线,其形态差异为阵列天线设计,数量非常多,且单元具备独立收发能力,相当于多天线单元同时收发数据,这就对产品的一致性提出更高要求,其核心指标为幅度极差≤1.0db。而要实现此指标要求, 5G天线A/B板的耦合极差需控制在0.015mm以内,目前按常规方法很难实现。
现有技术中,目前幅度指标主要由终端客户负责测试,需元器件贴片后才能进行,属事后检测,一旦出现幅度超差,需重新配对或调试,费时费力,严重偏差的需报废处理,成本高昂,因此需开发一种PCB事前的检测方法,以准确体现PCB产品的一致性,降低终端调试成本。
同时,由于影响幅度一致性的主要因素有:铜厚、线宽、介质厚度及介电常数等,其中介质厚度及介电常数主要由板材性能决定,而铜厚、及线宽精度则与PCB加工直接相关,为实现幅度极差≤1.0db的要求,5G天线A/B板的耦合极差需控制在0.015mm以内,目前常规工艺很难满足,尤其量产质量难以保证。因此,如何稳定高效地保证量产一致性,成为PCB业界有待解决的难题。
发明内容
有鉴于此,本发明提供一种5G天线PCB幅度一致性的控制方法,本发明可以稳定高效地保证5G天线量产的一致性,且在PCB阶段可以准确检测,从而降低终端客户调试成本。
本发明的技术方案为:
一种5G天线PCB幅度一致性的控制方法,其特征在于,包括5G天线PCB的一致性加工方法和5G天线PCB一致性检测方法;
所述5G天线PCB的一致性加工方法包括以下:
A、铜厚及电镀均匀性控制;
B、线宽精度控制;
C、耦合线距极差控制;
D、产品阻抗一致性控制。
进一步的,所述铜厚及电镀均匀性控制的方法包括:
A1、盲孔板预先减铜:1OZ减薄到0.33 OZ,控制铜厚公差±2.0um以内;
A2、VCP电镀控制铜厚及均匀性:±5um
A3、砂带研磨后全测面铜:按40um标准值控制,公差±3.0um。
进一步的,所述线宽精度控制的方法包括:
B1、优化蚀刻参数,找出最佳蚀刻因子;
B2、根据侧蚀量,修正工程线宽补偿值;
进一步的,所述耦合线距极差控制的方法包括:
C1、工程线距检测:偏差±0.01mil;
C2、图形转移精度控制:LDI激光成像,极差≤0.010mm;
C3、蚀刻一致性控制:线路同步蚀刻;
C4、首、尾件测量极差:极差≤0.015mm;
进一步的,所述产品阻抗一致性控制的方法为:四周阻抗条的阻抗公差按±2%控制,批次最大极差≤2欧姆。
本发明中,通过产品一致性加工技术中5G天线特殊设计,工程对所有阵列天线的耦合线距及线宽进行检测,控制偏差±0.01mil;同时参考耦合线,在工艺边四周增设阻抗条,为一致性控制提供测量依据;通过对铜厚、图形转移精度、线宽蚀刻精度及一致性控制,实现耦合线距蚀刻极差≤0.015mm的加工要求,并达到阻抗公差±2%的高精度加工,确保产品加工的一致性。
进一步的,所述5G天线PCB一致性检测方法包括以下:
E、工程特殊设计;
F、找出阻抗偏差与幅度一致性的相互关系,确定最大极差控制范围;
G、序列号匹配。
进一步的,所述工程特殊设计包括,参考耦合线,在工艺边四周均设计阻抗条。
进一步的,所述序列号匹配的方法为:ET测试后全测阻抗,根据阻抗极差匹配序列号,从而确保5G天线A/B板幅度的一致性。
本发明中提供的产品一致性检测方法,幅度及一致性通常需终端客户在元器件贴片后才能进行测试,属事后检测,一旦出现幅度超差,需重新配对或调试,费时费力,严重偏差的需报废处理,成本高昂;而采用本检测方法,可根据阻抗偏差与幅度一致性的相互关系,在PCB阶段进行事前检测,然后配对序列号,从而降低终端调试成本。
特别的,本申请中涉及软件、电路程序的技术特征,其功能的实现属于现有技术,本申请技术方案的实质是对硬件部分的组成以及连接关系进行的改进,并不涉及软件程序或电路结构本身的改进。
附图说明
图1为本发明一实施例的工艺流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
实施例1
一种5G天线PCB幅度一致性的控制方法,其特征在于,包括5G天线PCB的一致性加工方法和5G天线PCB一致性检测方法;
所述5G天线PCB的一致性加工方法包括以下:
A、铜厚及电镀均匀性控制;
B、线宽精度控制;
C、耦合线距极差控制;
D、产品阻抗一致性控制。
进一步的,所述铜厚及电镀均匀性控制的方法包括:
A1、盲孔板预先减铜:1OZ减薄到0.33 OZ,控制铜厚公差±2.0um以内;
A2、VCP电镀控制铜厚及均匀性:±5um
A3、砂带研磨后全测面铜:按40um标准值控制,公差±3.0um。
进一步的,所述线宽精度控制的方法包括:
B1、优化蚀刻参数,找出最佳蚀刻因子;
B2、根据侧蚀量,修正工程线宽补偿值;
进一步的,所述耦合线距极差控制的方法包括:
C1、工程线距检测:偏差±0.01mil;
C2、图形转移精度控制:LDI激光成像,极差≤0.010mm;
C3、蚀刻一致性控制:线路同步蚀刻;
C4、首、尾件测量极差:极差≤0.015mm;
进一步的,所述产品阻抗一致性控制的方法为:四周阻抗条的阻抗公差按±2%控制,批次最大极差≤2欧姆。
本发明中,通过产品一致性加工技术中5G天线特殊设计,工程对所有阵列天线的耦合线距及线宽进行检测,控制偏差±0.01mil;同时参考耦合线,在工艺边四周增设阻抗条,为一致性控制提供测量依据;通过对铜厚、图形转移精度、线宽蚀刻精度及一致性控制,实现耦合线距蚀刻极差≤0.015mm的加工要求,并达到阻抗公差±2%的高精度加工,确保产品加工的一致性。
进一步的,所述5G天线PCB一致性检测方法包括以下:
E、工程特殊设计;
F、找出阻抗偏差与幅度一致性的相互关系,确定最大极差控制范围;
G、序列号匹配。
进一步的,所述工程特殊设计包括,参考耦合线,在工艺边四周均设计阻抗条。
进一步的,所述序列号匹配的方法为:ET测试后全测阻抗,根据阻抗极差匹配序列号,从而确保5G天线A/B板幅度的一致性。
本发明中提供的产品一致性检测方法,幅度及一致性通常需终端客户在元器件贴片后才能进行测试,属事后检测,一旦出现幅度超差,需重新配对或调试,费时费力,严重偏差的需报废处理,成本高昂;而采用本检测方法,可根据阻抗偏差与幅度一致性的相互关系,在PCB阶段进行事前检测,然后配对序列号,从而降低终端调试成本。
实施例2
本实施例提供一种5G天线PCB幅度一致性的控制方法,优选的,本实施例是适用于3层5G天线PCB幅度一致性的控制;具体包括以下:
1、天线PCB工程特殊设计:工程线宽检测:对所有阵列天线的耦合线距及线宽进行检测,控制偏差±0.01mil;工程特殊设计: 参考耦合线,在工艺边四周均设计阻抗条,为一致性控制提供测量依据。
2、铜厚及均匀性控制:
2.1盲孔 L12铜层减薄均匀性控制
1.>减铜参数测试
2.> 按方案4减铜,采用正反两次减铜方式,上下两面铜厚可控制在11-14un,符合12±2um控制要求。
2.2盲孔电镀均匀性控制
1.>盲孔电镀参数
2.> 按方案2进行盲孔电镀,铜厚可控制在38-44un,符合40±5um控制要求。
2.3盲孔树脂塞孔+砂带研磨后铜厚控制
1.>砂带研磨参数
2.> 砂带研磨后全测面铜,按40±3um加严控制。
3、图形转移精度控制
1.> 图形转移能力测试
2.> 采用最优方案,可以满足5G天线产品图形转移极差≤10um的精度要求。
4、蚀刻质量及一致性控制
1>蚀刻因子测试
2.>蚀刻线宽一致性控制
①按方案3参数(压力2.8-2.9kg,速度1.7m/min,耦合线朝下喷)进行蚀刻;
②为进一步缩小蚀刻极差,A/B板安排同步蚀刻;
③蚀刻后测量首、尾件蚀刻精度,耦合间距极差≤15um控制。
④蚀刻测试数据(32组耦合天线)
5、产品阻抗测试
1.>产品按标准流程从内层压合做到外层阻焊固化+ET测试;然后全测阻抗。
2.>阻抗测试数据
6、阻抗极差与幅度一致性的相互关系
1.>根据阻抗测试数据,按阻抗极差梯度进行幅度值测试
5G天线 | A/B板阻抗值 | 阻抗极差 | 幅度一致性(极差) | 要求值 | 测试结果 |
001 | 79.0-81.0 | 2.0 | 1.3deb | ≤1.0db | NG |
002 | 79.1-80.8 | 1.7 | 1.1db | ≤1.0db | NG |
003 | 79.2-80.2 | 1.5 | 0.97db | ≤1.0db | OK |
004 | 79.2-80.4 | 1.2 | 0.83db | ≤1.0db | OK |
005 | 79.2-80.2 | 1.0 | 0.71db | ≤1.0db | OK |
2.>阻抗极差与幅度一致性有较强的相互关系,将阻抗极差控制在1.5欧姆以内,可以达到幅度≤1.0db的一致性要求。
7、产品一致性控制
1.> ET测试后全测阻抗,并在阻抗条上注明测试值;
2.> 根据阻抗值进行A/B板配对,要求极差≤1.5欧姆,然后打印序列号,即A001…A***和B001…B***,从而确保5G天线A/B板幅度的一致性。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。需注意的是,本发明中所未详细描述的技术特征,均可以通过本领域任一现有技术实现。
Claims (5)
1.一种5G天线PCB幅度一致性的控制方法,其特征在于,包括5G天线PCB的一致性加工方法和5G天线PCB一致性检测方法;
所述5G天线PCB的一致性加工方法包括以下:
A、铜厚及电镀均匀性控制;
B、线宽精度控制;
C、耦合线距极差控制;
D、产品阻抗一致性控制;
所述5G天线 PCB一致性检测方法包括以下:
E、工程特殊设计: 包括参考耦合线,在工艺边四周均设计阻抗条;
F、找出阻抗偏差与幅度一致性的相互关系,确定最大极差控制范围: 包括根据阻抗测试数据,按阻抗极差梯度进行幅度值测试;将阻抗极差控制在1 .5欧姆以内,可以达到幅度≤1 .0db的一致性要求;
G、序列号匹配: ET测试后全测阻抗,根据阻抗极差匹配序列号,从而确保5G天线A/B板幅度的一致性。
2.根据权利要求1所述的5G天线PCB幅度一致性的控制方法,其特征在于,所述铜厚及电镀均匀性控制的方法包括:
A1、盲孔板预先减铜:1OZ减薄到0.33OZ,控制铜厚公差±2.0um以内;
A2、VCP电镀控制铜厚及均匀性:±5um
A3、砂带研磨后全测面铜:按40um标准值控制,公差±3.0um。
3.根据权利要求1所述的5G天线PCB幅度一致性的控制方法,其特征在于,所述线宽精度控制的方法包括:
B1、优化蚀刻参数,找出最佳蚀刻因子;
B2、根据侧蚀量,修正工程线宽补偿值。
4.根据权利要求1所述的5G天线PCB幅度一致性的控制方法,其特征在于,所述耦合线距极差控制的方法包括:
C1、工程线距检测:偏差±0.01mil;
C2、图形转移精度控制:LDI激光成像,极差≤0.010mm;
C3、蚀刻一致性控制:线路同步蚀刻;
C4、首、尾件测量极差:极差≤0.015mm。
5.根据权利要求1所述的5G天线PCB幅度一致性的控制方法,其特征在于,所述产品阻抗一致性控制的方法为:四周阻抗条的阻抗公差按±2%控制,批次最大极差≤2欧姆。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910904724.1A CN110798963B (zh) | 2019-09-24 | 2019-09-24 | 5g天线pcb幅度一致性的控制方法 |
PCT/CN2019/121158 WO2021056802A1 (zh) | 2019-09-24 | 2019-11-27 | 5g天线pcb幅度一致性的控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910904724.1A CN110798963B (zh) | 2019-09-24 | 2019-09-24 | 5g天线pcb幅度一致性的控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110798963A CN110798963A (zh) | 2020-02-14 |
CN110798963B true CN110798963B (zh) | 2022-11-15 |
Family
ID=69438734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910904724.1A Active CN110798963B (zh) | 2019-09-24 | 2019-09-24 | 5g天线pcb幅度一致性的控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110798963B (zh) |
WO (1) | WO2021056802A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067894A (zh) * | 2020-07-14 | 2020-12-11 | 深圳捷豹电波科技有限公司 | 毫米波天线阻抗一致性检测方法、装置、设备及存储介质 |
CN112867263A (zh) * | 2021-01-31 | 2021-05-28 | 惠州中京电子科技有限公司 | 一种用于5g基站天线耦合器印制电路板制作方法 |
CN115786914A (zh) * | 2021-09-10 | 2023-03-14 | 大富科技(安徽)股份有限公司 | 一种铝质天线蚀刻方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19504877C2 (de) * | 1994-02-15 | 1997-06-05 | Hitachi Ltd | Signalübertragungsvorrichtung für schnelle Signalübertragung |
CN101031182A (zh) * | 2007-03-23 | 2007-09-05 | 华为技术有限公司 | 印制线路板及其设计方法 |
CN101351093B (zh) * | 2008-09-08 | 2010-12-08 | 施吉连 | 一种微波高频多层电路板的制作方法 |
US9136914B2 (en) * | 2009-01-22 | 2015-09-15 | Qualcomm Incorporated | Impedance change detection in wireless power transmission |
CN102688039B (zh) * | 2012-06-08 | 2014-03-05 | 思澜科技(成都)有限公司 | 一种电阻抗断层成像系统及其电极屏蔽方法 |
CN102723861B (zh) * | 2012-06-19 | 2015-05-27 | 华为技术有限公司 | 一种芯片供电电路 |
CN106102311B (zh) * | 2016-08-18 | 2018-10-19 | 浪潮电子信息产业股份有限公司 | 信号传输电路及提升接收端接收到信号的质量的方法 |
US10615500B2 (en) * | 2016-10-28 | 2020-04-07 | Covidien Lp | System and method for designing electromagnetic navigation antenna assemblies |
CN106855590A (zh) * | 2016-11-18 | 2017-06-16 | 深圳崇达多层线路板有限公司 | 一种pcb阻抗模块结构及其检测方法 |
CN107872921B (zh) * | 2017-08-30 | 2019-10-29 | 奥士康精密电路(惠州)有限公司 | 一种特性阻抗的设计方法 |
US10352983B1 (en) * | 2018-10-04 | 2019-07-16 | Genmark Diagnostics, Inc. | Systems and methods for assessing electrical connectivity between elements of assay devices |
CN109714907A (zh) * | 2018-12-18 | 2019-05-03 | 安徽四创电子股份有限公司 | 一种用于5g通信的多层pcb的制作方法 |
CN109714909A (zh) * | 2019-01-29 | 2019-05-03 | 广德宝达精密电路有限公司 | 一种pcb板生产方法 |
CN110225677A (zh) * | 2019-04-23 | 2019-09-10 | 江苏迪飞达电子有限公司 | 一种5G天线用pcb板生产工艺 |
CN110167274A (zh) * | 2019-04-29 | 2019-08-23 | 恩达电路(深圳)有限公司 | 毫米波雷达板的制作方法 |
-
2019
- 2019-09-24 CN CN201910904724.1A patent/CN110798963B/zh active Active
- 2019-11-27 WO PCT/CN2019/121158 patent/WO2021056802A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN110798963A (zh) | 2020-02-14 |
WO2021056802A1 (zh) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110798963B (zh) | 5g天线pcb幅度一致性的控制方法 | |
US8581606B2 (en) | Test point structure for RF calibration and test of printed circuit board and method thereof | |
CN109548284B (zh) | 一种光模块pcb成型方法 | |
US8560262B2 (en) | Methods for manufacturing devices with flex circuits and radio-frequency cables | |
CN111148351B (zh) | 一种带台阶槽的5g小型基站电源功放模块pcb的加工方法 | |
CN103199344A (zh) | 一种分形超宽带天线及其设计方法 | |
US9635492B2 (en) | Systems and methods for performing radio-frequency testing on near-field communications circuitry | |
CN103879164B (zh) | 印刷手机天线的工艺 | |
CN110418509B (zh) | 满足pcb特定蚀刻因子要求的线路补偿方法 | |
CN110557886B (zh) | Pcb板光标点的补偿方法及其应用和pcb板生产工艺 | |
CN112421208A (zh) | 一种电子设备及天线装置 | |
CN114204266B (zh) | 柔性双陷波超宽带天线、制造方法及柔性超宽带天线的质量检测方法 | |
CN108445299A (zh) | 一种插入损耗测试条 | |
CN112004331B (zh) | 线路板及其制备方法 | |
CN110470970B (zh) | 一种动态监测无源互调的方法 | |
CN112770502B (zh) | 一种电路板阻抗一致性控制技术制作方法 | |
CN211297130U (zh) | 辅助测试电路板 | |
CN107565197A (zh) | 一种宽带微波信号印制板短距垂直传输结构 | |
CN112730987A (zh) | 一种pcb板阻抗快速测量方法 | |
CN110536569A (zh) | 一种避免压合后层偏的pcb板加工方法 | |
CN106785399A (zh) | 一种薄型高增益uhf rfid抗金属标签天线 | |
CN113945758B (zh) | 一种印刷天线阻值测控方法及系统 | |
Su et al. | EMI Shielding Solutions for RF SiP Assembly | |
CN116660826B (zh) | 泄漏装置、定位方法及电子设备 | |
CN220510248U (zh) | 一种5g cpe组合式天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |