CN110797214A - 一种共组装制备MnO2/石墨烯复合材料的方法及其应用 - Google Patents

一种共组装制备MnO2/石墨烯复合材料的方法及其应用 Download PDF

Info

Publication number
CN110797214A
CN110797214A CN201910870456.6A CN201910870456A CN110797214A CN 110797214 A CN110797214 A CN 110797214A CN 201910870456 A CN201910870456 A CN 201910870456A CN 110797214 A CN110797214 A CN 110797214A
Authority
CN
China
Prior art keywords
mno
graphene
composite material
graphene composite
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910870456.6A
Other languages
English (en)
Other versions
CN110797214B (zh
Inventor
曹鑫
田爱琴
张翰林
赵民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Qingdao Sifang Co Ltd
Original Assignee
CRRC Qingdao Sifang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Qingdao Sifang Co Ltd filed Critical CRRC Qingdao Sifang Co Ltd
Priority to CN201910870456.6A priority Critical patent/CN110797214B/zh
Publication of CN110797214A publication Critical patent/CN110797214A/zh
Application granted granted Critical
Publication of CN110797214B publication Critical patent/CN110797214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于电化学技术领域,具体涉及一种共组装制备MnO2/石墨烯复合材料的方法及其应用。所述共组装制备MnO2/石墨烯复合材料的方法,包括:以石墨片作为阳极,泡沫镍作为阴极,硫酸钠与高锰酸钾的混合溶液作为电解液,采用电化学一步法,共组装生成石墨烯/二氧化锰的复合材料。所述方法解决了该类复合电极的传统制备过程中存在的制备环节繁琐、成本高及环境污染的问题;同时还可以节省该类复合电极的制备时间及成本,实现环境友好。本发明所得3D MnO2/石墨烯复合材料可用于超电容电极,使其获得更佳优异的电容,在1A/g下为607F/g,高倍率性能和超循环稳定性,10000次充电‑放电循环后为94.1%。

Description

一种共组装制备MnO2/石墨烯复合材料的方法及其应用
技术领域
本发明属于电化学技术领域,具体涉及一种共组装制备MnO2/石墨烯复合材料的方法及其应用。
背景技术
现有制备石墨烯/MnO2复合电极材料的方法存在制备过程繁琐、耗时、成本高及产品无法实现超级电容器电极高比容量,超长循环周期的问题。
目前常用的解决方法是利用电化学的方法,以三维多孔泡沫镍为基体,在基体上直接生长石墨烯。但是这种方法存在如下缺点:1、制备石墨烯复合电极的步骤仍非一步法;2、复合电极呈现核-壳(core-shell)结构,无法实现石墨烯与二氧化锰(MnO2)的共生。
此外,还有一种方法是先采用化学法将石墨烯与泡沫镍复合,尔后利用水热法制备石墨烯基复合电极的前驱材料,最后利用还原性气体低温煅烧上述的前驱材料。但方法存在制备过程复杂,成本高,无法实现工业化生产,电极结构整体稳定性欠佳,经更高次充放电测试后电容量的保持不容乐观等缺点。
发明内容
为了解决电化学制备石墨烯/MnO2复合电极材料过程中存在的问题(非一步法以及无法共生),本发明提出一种共组装制备MnO2/石墨烯复合材料的方法,所述方法解决了该类复合电极的传统制备过程中存在的制备环节繁琐、成本高及环境污染的问题;同时还可以节省该类复合电极的制备时间及成本,实现环境友好。
所述共组装制备MnO2/石墨烯复合材料的方法,包括:以石墨片作为阳极,泡沫镍作为阴极,硫酸钠与高锰酸钾的混合溶液作为电解液,采用电化学一步法,共组装生成石墨烯/二氧化锰的复合材料。
本发明通过电化学一步法使石墨片发生剥离,形成电化学剥离石墨烯(EG)溶于电解液中;同时电解液中的MnO4 -失去电子被还原为二氧化锰纳米片(MnO4 -+2H2O+3e-MnO2+4OH-);尽管EG具有高质量,但是由电化学辅助剥离得到的所得石墨烯在其边缘处仍然具有负电荷,这将促使EG和二氧化锰纳米片通过静电作用同时沉积在阴极泡沫镍上,从而得到高质量的EG和超薄MnO2纳米片。
由于采用了电化学一步法共组装的技术手段,克服了传统石墨烯/二氧化锰(MnO2)复合电极材料中两相无法实现微观结构的多级共生问题,同时极大降低了制备新型石墨烯复合电极材料的时间成本,达到快速制备高性能超级电容器电极的目的。
所述电化学一步法的制备过程中,所用直流电电源的电压为5-15伏,优选10伏。试验表明,当直流电源电压在10伏时,通过电镜表征,形成的EG与二氧化锰的复合材料整体复合程度最优。
所述电解液中,所述硫酸钠的摩尔浓度为0.05-0.2M,优选0.1M;所述高锰酸钾的摩尔浓度为0.1-0.5M,优选0.3M。经试验验证,在此条件下所得复合材料的性能更好。
所述石墨片作为阳极的尺寸可根据实际制作需要而定,例如2.0*1.0平方厘米。
本发明还提供由上述方法制得MnO2/石墨烯复合材料。
其中,所述MnO2/石墨烯复合材料中,所述MnO2及石墨烯纳米片的厚度均≤10nm。本发明所述复合材料在超微尺度上出现两种纳米片层的融合共生,实现了二氧化锰的高电容与石墨烯的超导电特性的多级复合。
所述MnO2/石墨烯复合材料中,MnO2和石墨烯呈连续均匀分布,且为无定形结构。
正是基于MnO2和高质量石墨烯之间的均匀杂化和组装确保了其具有高导电性和良好的赝电容性质,从而有助于提高其电化学性能。此外,MnO2/石墨烯的3D多孔结构可有效促进电解质的电子扩散和传播,从而实现MnO2/石墨烯复合材料的高比电容。
本发明还提供一种电极,其采用上述MnO2/石墨烯复合材料制得。
本发明还提供上述复合材料或电极在电子器件、阳极电催化反应中的应用。所述电子器件如电池电极、超级电容器等。
本发明还提供一种超级电容器,其包括上述电极。
本发明所得三维MnO2/石墨烯复合材料可用于超电容电极,使其获得更佳优异的电容(在1A/g下为607F/g),高倍率性能和超循环稳定性(10000次充电-放电循环后为94.1%)。
附图说明
图1为实施例1所述复合材料的一步法自组装工艺示意图;具体为泡沫镍电极上超薄二氧化锰纳米片层与EG共组装复合结构的电化学一步法机理示意图。
图2为实施例1中剥离的石墨烯(EG)的SEM图片和TEM图片,其清楚地证明了高质量石墨烯的形成。
图3a为实施例1所得MnO2/石墨烯复合材料的拉曼光谱图;图3b、图3c、图3d为实施例1所得MnO2/石墨烯复合材料的XPS光谱图。
图4a、图4b、图4c为实施例1所得MnO2/石墨烯复合材料的SEM图像;图4d、图4e、图4f为C、O、Mn的EDS元素映射图像。
图5为实施例1所得MnO2/石墨烯复合材料的X射线衍射图。
图6为实施例1所得MnO2/石墨烯复合材料的电化学性能测试结果;其中(a)不同扫描速率下的CV曲线;(b)MnO2/石墨烯复合物的重量比电容与电流密度的函数,说明了在各种电流密度下的恒电流充电/放电曲线;(c)MnO2/石墨烯复合物的奈奎斯特图;(d)MnO2/石墨烯复合物在1A/g下的循环性能。
图7为不含石墨烯的MnO2在1A/g下的循环性能。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例提供一种电化学一步法自组装制备MnO2/石墨烯复合材料的方法,如图1,步骤如下:
采用双电极系统,使用石墨薄片作为阳极,Ni泡沫作为阴极(两者的工作面积约为2.0*1.0cm2),电解液是含有20mg KMnO4的混合水溶液和100毫升0.1M Na2SO4
当向双电极设置施加10V的直流电压时,在电极处产生剧烈气泡,并且阳极石墨开始离解成石墨烯片,石墨烯片分散在电解质中。同时,MnO4 -在阴极Ni泡沫的表面上还原成MnO2。反应在25℃下进行30分钟。然后,将MnO2/石墨烯复合物用H2O洗涤三次,并在60℃下干燥12小时。
图1为实施例1所述复合材料的一步法自组装工艺示意图;具体为泡沫镍电极上超薄二氧化锰纳米片层与EG共组装复合结构的电化学一步法机理示意图。
图2为实施例1中剥离的石墨烯(EG)的SEM图片和TEM图片,其清楚地证明了高质量石墨烯的形成。
性能测试
1、电化学测量。
使用PARSTAT 4000工作站(Princeton Applied Research,Ametek,USA)和标准三电极系统进行电化学性质。
使用实施例1制备的样品作为工作电极,使用Pt夹具,Pt纱布作为对电极,以及饱和甘汞参比电极。
在1M Na2SO4中进行具有0.0至0.8V的各种扫描速率的循环伏安法。恒电流充放电测量(GCD)和循环稳定性在LAND CT-2001A上进行。
2、表征。
通过SEM(JEOL JSM-7401F)观察MnO2/石墨烯复合物的形态,加速电压为1.0kV。
为了理解合成后样品的表面信息,进行XPS(AXIS ULTRA DLD,Kratos,Japan)以分析样品表面的组成。
使用入射波长为532nm的氩离子激光器,使用激光微拉曼光谱仪(RenishawinVia)获得拉曼光谱。
3、结果与讨论
(1)通过拉曼光谱表征MnO2/石墨烯复合材料的结构(图3a)。MnO2/石墨烯复合材料的拉曼光谱在1350cm-1,1583cm-1和2700cm-1处呈现出三个明显的特征振动带,分别对应于石墨烯的D,G和2D带。此外,位于640cm-1的拉曼峰可归因于Mn-O振动,揭示了MnO2的存在。
在图3b、图3c、图3d中,Mn 2p XPS光谱显示出以约654.2eV和642.6eV为中心的两个主峰,分别对应于Mn 2p1/2和Mn 2p3/2。具有11.6eV的自旋能分离的MnO2相的特征与先前的报道一致。
此外,C 1s的XPS光谱显示三个信号CC(284.6eV),CO(286.7eV)和OC=O(288.6eV),这些信号可能来自石墨烯上的共价氧基团(图3d)。
(2)通过扫描电子显微镜(SEM)进一步检查MnO2/石墨烯复合材料的形态。
图4a和图4b显示具有高度多孔纳米结构的MnO2/石墨烯复合材料的代表性SEM图像,其由致密的MnO2纳米片组成,厚度为~10nm。MnO2纳米片均匀且紧密地锚定在石墨烯表面上。Ni泡沫支柱没有塌陷或孔隙阻塞,表明MnO2/石墨烯的强机械强度和MnO2纳米片的均匀分散。
此外,从泡沫上的正方形区域研究了C,O和Mn的元素映射(图4c、图4d、图4e、图4f),表明在Ni泡沫表面上MnO2和石墨烯的连续均匀分布。
相应的EDS映射还显示MnO2/石墨烯复合物的C元素含量约为7.91%(原子比,表1)。此外,除了与Ni泡沫基材相关的峰外,在MnO2/石墨烯的X射线衍射图中不存在其他峰(图5),这进一步证实了其无定形结构。
表1 MnO2/石墨烯复合材料的成分
成分 质量百分比% Atom%
C 5.12 7.91
O 24.16 50.00
Mn 57.14 34.44
Ni 13.57 7.65
总计 100.00 100.00
(3)鉴于其独特的结构和形态,所制备的MnO2/石墨烯复合材料有望具有优异的超级电容器电化学性能。
在三电极测试电池中进一步评估MnO2/石墨烯复合材料的性能。
图6a显示了在0.0至0.8V的不同扫描速率下,MnO2/石墨烯复合物在1M Na2SO4电解质中的电流-电压(CV)曲线.CV扫描显示出矩形形状和对称性,表明它们理想的赝电容行为。在电流密度分别为1、2、4和8A/g时,比电容分别为607、482、214和171F/g,通过公式C=IΔt/(ΔVm)计算。这里,I、Δt、m和ΔV分别对应于放电电流、时间、活性材料的质量和放电期间的电位变化。
如图6(a)所示,比电容随电流密度的增加而逐渐减小。
值得注意的是,实施例1所得复合材料的比电容在1A/g时达到607F/g,超过了常见的MnO2/石墨烯基材料(表2)。
表2基于MnO2/石墨烯的超级电容器的比电容和电容保持力
Figure BDA0002202661380000061
Figure BDA0002202661380000071
MnO2和高质量石墨烯之间的均匀杂化和组装将确保其高导电性和良好的赝电容性质,从而有助于提高其电容保持力。
图6(b)为MnO2/石墨烯复合材料的超级电容与电流密度的函数,说明了在各种电流密度下的恒电流充电/放电曲线。
图6(c)为MnO2/石墨烯复合物的奈奎斯特图。
此外,MnO2/石墨烯的3D多孔结构可有效促进电解质的电子扩散和传播,从而实现MnO2/石墨烯复合材料的高比电容。
图6(d)显示3D MnO2/石墨烯复合超级电容器在1A/g的电流密度下表现出优异的循环稳定性。即使在10000次循环后,保持率也可达到初始电容的94%。相比之下,没有石墨烯的MnO2薄膜在2000次循环后仅保留了初始电容的24.4%(图7)。这些结果证明了MnO2/石墨烯之间的杂化界面在电子传输中的重要作用。
由上述可知,MnO2纳米片与高质量石墨烯的电化学辅助杂交以及3D骨架的独特结构为MnO2/石墨烯复合材料提供了高导电性、离子扩散性和在法拉第反应中适应体积变化的能力。因此,以所制备的3D MnO2/石墨烯复合材料用作电极材料的超级电容器具有高比电容(607F/g),显著的倍率性能和超长的循环寿命(在10,000次连续充放电循环后为94%)。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种共组装制备MnO2/石墨烯复合材料的方法,其特征在于,包括:以石墨片作为阳极,泡沫镍作为阴极,硫酸钠与高锰酸钾的混合溶液作为电解液,采用电化学一步法,共组装生成石墨烯/二氧化锰的复合材料。
2.根据权利要求1所述的方法,其特征在于,所述电化学一步法的制备过程中,所用直流电电源的电压为5-15伏,优选为10伏。
3.根据权利要求1或2所述的方法,其特征在于,所述电解液中,所述硫酸钠的摩尔浓度为0.05-0.2M,优选为0.1M。
4.根据权利要求1-3任一所述的方法,其特征在于,所述电解液中,所述高锰酸钾的摩尔浓度为0.1-0.5M,优选为0.3M。
5.权利要求1-4任一所述方法制得的MnO2/石墨烯复合材料。
6.根据权利要求5所述的MnO2/石墨烯复合材料,其特征在于,所述MnO2/石墨烯复合材料中,所述MnO2及石墨烯的厚度均≤10nm。
7.根据权利要求5或6所述的MnO2/石墨烯复合材料,其特征在于,所述MnO2/石墨烯复合材料中,MnO2和石墨烯呈连续均匀分布,且为无定形结构。
8.一种电极,其特征在于,采用权利要求5-7任一所述MnO2/石墨烯复合材料制得。
9.权利要求5-7任一所述MnO2/石墨烯复合材料或权利要求8所述电极在电子器件、阳极电催化中的应用。
10.一种超级电容器,其特征在于,包括权利要求8所述电极。
CN201910870456.6A 2019-09-16 2019-09-16 一种共组装制备MnO2/石墨烯复合材料的方法及其应用 Active CN110797214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910870456.6A CN110797214B (zh) 2019-09-16 2019-09-16 一种共组装制备MnO2/石墨烯复合材料的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910870456.6A CN110797214B (zh) 2019-09-16 2019-09-16 一种共组装制备MnO2/石墨烯复合材料的方法及其应用

Publications (2)

Publication Number Publication Date
CN110797214A true CN110797214A (zh) 2020-02-14
CN110797214B CN110797214B (zh) 2021-11-12

Family

ID=69427238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910870456.6A Active CN110797214B (zh) 2019-09-16 2019-09-16 一种共组装制备MnO2/石墨烯复合材料的方法及其应用

Country Status (1)

Country Link
CN (1) CN110797214B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905039A (zh) * 2021-02-07 2022-08-16 深圳市先进石墨烯科技有限公司 石墨烯/金属复合材料及其制备方法与应用
CN117026248A (zh) * 2023-05-19 2023-11-10 重庆大学 一种介孔结构MnO2/C复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215628A (zh) * 2013-04-17 2013-07-24 中国石油大学(华东) 一种电化学复合石墨烯与金属氧化物的方法
CN104409222A (zh) * 2014-11-21 2015-03-11 华东理工大学 一种石墨烯/二氧化锰纳米片/聚苯胺纳米棒三元复合材料的制备方法
CN105518183A (zh) * 2013-08-06 2016-04-20 曼彻斯特大学 石墨烯和石墨烷的生产
CN106098410A (zh) * 2016-06-25 2016-11-09 于有海 激光一步法制备超级电容器用石墨烯/氧化锰柔性电极
CN107275109A (zh) * 2017-06-21 2017-10-20 太原理工大学 用于超级电容器的二氧化锰复合材料电极的制备方法
US20170358400A1 (en) * 2016-06-09 2017-12-14 University Of Cincinnati Graphene paper and a process for making graphene paper and a graphene electrode
KR20180050776A (ko) * 2016-11-07 2018-05-16 한국전기연구원 전기화학 특성 개선을 위한 전극, 전극 제조방법 및 전극을 포함하는 에너지 저장 디바이스

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215628A (zh) * 2013-04-17 2013-07-24 中国石油大学(华东) 一种电化学复合石墨烯与金属氧化物的方法
CN105518183A (zh) * 2013-08-06 2016-04-20 曼彻斯特大学 石墨烯和石墨烷的生产
CN104409222A (zh) * 2014-11-21 2015-03-11 华东理工大学 一种石墨烯/二氧化锰纳米片/聚苯胺纳米棒三元复合材料的制备方法
US20170358400A1 (en) * 2016-06-09 2017-12-14 University Of Cincinnati Graphene paper and a process for making graphene paper and a graphene electrode
CN106098410A (zh) * 2016-06-25 2016-11-09 于有海 激光一步法制备超级电容器用石墨烯/氧化锰柔性电极
KR20180050776A (ko) * 2016-11-07 2018-05-16 한국전기연구원 전기화학 특성 개선을 위한 전극, 전극 제조방법 및 전극을 포함하는 에너지 저장 디바이스
CN107275109A (zh) * 2017-06-21 2017-10-20 太原理工大学 用于超级电容器的二氧化锰复合材料电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIAN ZHANGA: "《One-step hydrothermal synthesis of MnO2/graphene composite for》", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905039A (zh) * 2021-02-07 2022-08-16 深圳市先进石墨烯科技有限公司 石墨烯/金属复合材料及其制备方法与应用
CN114905039B (zh) * 2021-02-07 2024-01-19 深圳贝特瑞钠电新材料科技有限公司 石墨烯/金属复合材料及其制备方法与应用
CN117026248A (zh) * 2023-05-19 2023-11-10 重庆大学 一种介孔结构MnO2/C复合材料及其制备方法
CN117026248B (zh) * 2023-05-19 2024-05-24 重庆大学 一种介孔结构MnO2/C复合材料及其制备方法

Also Published As

Publication number Publication date
CN110797214B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
Kumar et al. Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: A review
Zhang et al. Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors
Wang et al. Facile solvothermal synthesis of novel MgCo2O4 twinned-hemispheres for high performance asymmetric supercapacitors
Jiang et al. Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications
Gao et al. NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor
Su et al. Scalable fabrication of MnO 2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor
Li et al. Layer-by-layer inkjet printing GO film anchored Ni (OH) 2 nanoflakes for high-performance supercapacitors
Dong et al. Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition
Parveen et al. Robust cyclic stability and high-rate asymmetric supercapacitor based on orange peel-derived nitrogen-doped porous carbon and intercrossed interlinked urchin-like NiCo2O4@ 3DNF framework
Luan et al. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode
Feng et al. Construction of 3D hierarchical porous NiCo2O4/graphene hydrogel/Ni foam electrode for high-performance supercapacitor
Su et al. Construction of NiCo2O4@ MnO2 nanosheet arrays for high-performance supercapacitor: highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution
Li et al. Predominance of two dimensional (2D) Mn2O3 nanowalls thin film for high performance electrochemical supercapacitors
Luo et al. In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage
Wei et al. Synthesis of hierarchical carbon sphere@ NiMoO4 composite materials for supercapacitor electrodes
Liu et al. In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior
Chen et al. Hierarchical Ni–Mn layered double hydroxide grown on nitrogen-doped carbon foams as high-performance supercapacitor electrode
Xu et al. N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors
Zhao et al. Tuning the morphology and size of NiMoO4 nanosheets anchored on NiCo2O4 nanowires: the optimized core-shell hybrid for high energy density asymmetric supercapacitors
Xu et al. Green synthesis of high-performance supercapacitor electrode materials from agricultural corncob waste by mild potassium hydroxide soaking and a one-step carbonization
Zhang et al. Reduced graphene oxide-modified Ni-Co phosphate nanosheet self-assembled microplates as high-performance electrode materials for supercapacitors
Qiu et al. Hierarchical 3D Co 3 O 4@ MnO 2 core/shell nanoconch arrays on Ni foam for enhanced electrochemical performance
Zhang et al. CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices
Deng et al. Three-dimensional nitrogen-doped graphene derived from poly-o-phenylenediamine for high-performance supercapacitors
Yang et al. In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant