CN110792479B - Hydrogen power generation system - Google Patents

Hydrogen power generation system Download PDF

Info

Publication number
CN110792479B
CN110792479B CN201911081418.9A CN201911081418A CN110792479B CN 110792479 B CN110792479 B CN 110792479B CN 201911081418 A CN201911081418 A CN 201911081418A CN 110792479 B CN110792479 B CN 110792479B
Authority
CN
China
Prior art keywords
hydrogen
fuel cell
piston
storage tank
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911081418.9A
Other languages
Chinese (zh)
Other versions
CN110792479A (en
Inventor
刘青
王广华
孟双红
祝妍
马凯成
张晓岭
刘骏坤
杨培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Bohua Hydrogen Energy Technology Co ltd
Original Assignee
Anhui Bohua Hydrogen Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Bohua Hydrogen Energy Technology Co ltd filed Critical Anhui Bohua Hydrogen Energy Technology Co ltd
Priority to CN201911081418.9A priority Critical patent/CN110792479B/en
Publication of CN110792479A publication Critical patent/CN110792479A/en
Application granted granted Critical
Publication of CN110792479B publication Critical patent/CN110792479B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/02Adaptations for driving vehicles, e.g. locomotives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Fuel Cell (AREA)

Abstract

The invention discloses a hydrogen power generation system, which comprises a hydrogen storage tank, a Venturi tube, a gas generator set, a fuel cell, an engine set and a storage battery, wherein the Venturi tube is arranged in the hydrogen storage tank; the hydrogen storage tank is connected with the venturi tube, the venturi tube is connected with the gas generator set, the gas generator set is respectively connected with the storage battery and the fuel cell, and the fuel cell is connected with the vehicle transmission system; the engine set comprises a power piston, a thermal piston and a transmission assembly, wherein the power piston is connected with the transmission assembly, the thermal piston is connected with the transmission assembly, and the transmission assembly is connected with a vehicle transmission system; the venturi tube is also connected with a power piston, and the power piston is connected with a fuel cell; the heating end of the thermal piston is connected with the storage battery and the fuel cell, and the cooling end of the thermal piston is connected with the hydrogen storage tank. The invention has the beneficial effects that: the energy of hydrogen is fully utilized, and the working efficiency is improved.

Description

Hydrogen power generation system
Technical Field
The invention relates to a power generation system, in particular to a system for generating power based on hydrogen energy transmission.
Background
Data statistics shows that 60% of urban atmospheric pollution is caused by tail gas emission of motor vehicles, so that the new energy automobile gradually replaces the traditional fuel oil automobile. In the technical routes of various new energy automobiles, electric automobiles represented by hybrid power, pure electric automobiles and fuel cell automobiles are generally considered as the main direction of the transformation development of the energy power system of the automobile in the future, and become the key points of the development of the automobile strong countries and the main automobile manufacturers in the world.
Compared with a lithium battery electric automobile, the most obvious advantage of adopting the fuel cell is that a long charging process is not needed, only a few minutes of hydrogen adding process is needed, and in addition, compared with water pollution possibly caused by various toxic pollutants generated after the lithium battery is scrapped, the fuel cell mainly generates water, and the problem in the aspect does not exist after the use. However, for hydrogen fuel cell vehicles, the high pressure hydrogen on board the vehicle contains huge kinetic energy and pressure energy of air, but is not well utilized.
For example, application No. 201410707638.9 discloses a hydrogen power generation system, which includes a fuel cell for generating electric energy by electrochemical reaction between hydrogen and oxygen, and a water circulation cooling system for cooling the fuel cell; the method is characterized in that: the water circulation cooling system comprises a heat dissipation device, at least two water pumps, a first water container, a water collector and a control device; the heat dissipation device is positioned in the fuel cell; the water in the first water container can enter the heat dissipation device from the water inlet of the fuel cell after being collected by the water collector under the driving action of the water pump, and then flows back to the first water container from the water outlet of the fuel cell; the control device is electrically connected with the at least two water pumps to control the operation of each water pump.
The hydrogen power generation system does not apply the air kinetic energy and the pressure energy of the hydrogen.
In view of the foregoing, there is a need for improvements and enhancements in the art.
The information disclosed in this background section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person skilled in the art.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: how to solve the problem that the air kinetic energy and the pressure energy in the high-pressure hydrogen are not utilized.
The invention solves the technical problems through the following technical means:
a hydrogen power generation system comprises a hydrogen storage tank, a Venturi tube, a gas generator set, a fuel cell, an engine set and a storage battery; the hydrogen storage tank is connected with the venturi tube, the venturi tube is connected with the gas generator set, the gas generator set is respectively connected with the storage battery and the fuel cell, and the fuel cell is connected with the vehicle transmission system;
the engine set comprises a power piston capable of converting hydrogen kinetic energy into first mechanical energy, a thermal piston capable of converting thermal energy into second mechanical energy and a transmission assembly, wherein the power piston is connected with the transmission assembly, the thermal piston is connected with the transmission assembly, and the transmission assembly is connected with a vehicle transmission system;
the venturi tube is also connected with a power piston, and the power piston is connected with a fuel cell; the heating end of the thermal piston is connected with the storage battery and the fuel cell, and the cooling end of the thermal piston is connected with the hydrogen storage tank.
After hydrogen flow with pressure in a hydrogen storage tank enters a Venturi tube, the hydrogen flow speed is increased, the pressure is reduced, high-speed hydrogen flow is divided into two parts, one part generates electricity through a gas generator set, the generated electric energy is stored in a storage battery, meanwhile, the high-speed hydrogen flow passes through the gas generator set and then is changed into low-pressure hydrogen flow to enter a fuel cell, and the fuel cell converts the chemical energy of the hydrogen into electric energy to be transmitted to a vehicle transmission system so as to drive a vehicle; the other part of high-speed hydrogen converts the kinetic energy of the hydrogen into first mechanical energy through a power piston and transmits the first mechanical energy to a vehicle transmission system through a transmission assembly, meanwhile, the heating end of the thermal piston is connected with heat generated by a gas generator set for storing electric energy in a storage battery and heat generated by hydrogen absorption of a fuel cell, a cold source at the cooling end of the thermal piston is from the expansion heat absorption of the hydrogen storage tank 1 in the hydrogen desorption process or cold generated in the hydrogen desorption process of metal hydride in the hydrogen storage tank, and the heat energy is converted into second mechanical energy and transmitted to the vehicle transmission system through the transmission assembly; the energy of hydrogen is fully utilized, the working efficiency is improved, and a new power device system is provided for the automobile taking hydrogen as energy.
Preferably, the hydrogen storage tank is a pure hydrogen storage tank with a certain pressure or an alloy hydrogen storage tank with a certain pressure.
Wherein, the hydrogen storage tank can be a pure hydrogen storage tank which stores high-pressure hydrogen of 35MPa-70MPa and can generate high-pressure hydrogen flow; the system can also be an alloy hydrogen storage tank with low pressure of 0-5MPa, and the alloy hydrogen storage tank absorbs heat in the hydrogen discharge process, so that the system provided by the invention can provide cold.
Preferably, the venturi tube comprises an inlet section, a contraction section, a throat and a flat section which are connected in sequence.
Preferably, the diameter of the inlet section is larger than that of the throat, the contraction section is a conical pipe, the cone angle is 21 degrees +/-2 degrees, the diameter of the throat is the same as that of the straight section, and the diameter and the length of the throat are the same.
The diffusion section of the traditional Venturi tube is changed into a straight section, so that high-speed hydrogen with high kinetic energy can be obtained.
Preferably, the gas generator set comprises wind blades and a wind generator. The high-speed hydrogen flow drives the wind power blade to rotate and drives the gas generator to generate electricity.
Preferably, the transmission assembly comprises a first linkage rod, a second linkage rod and a crankshaft flywheel set, the power piston is connected with the first linkage rod in a driving mode, the heating power piston is connected with the second linkage rod in a driving mode, the first linkage rod and the second linkage rod are both connected with the crankshaft flywheel set, and the crankshaft flywheel set is connected with the vehicle transmission system in a driving mode.
The power piston and the thermal piston act together to form a power and thermal double-cylinder hydrogen engine set together with the first linkage rod, the second linkage rod and the crankshaft flywheel set, and the torque output outwards stably drives a vehicle transmission system finally to ensure the stable operation of the vehicle.
Preferably, the system further comprises at least three heat exchangers, at least one of which is arranged between the hydrogen storage tank and the cooling end of the thermal piston, at least one of which is arranged between the fuel cell and the heating end of the thermal piston, and at least one of which is arranged between the storage battery and the heating end of the thermal piston.
Preferably, the fuel cell power generation device further comprises at least two gas pressure stabilizing valves, wherein at least one gas pressure stabilizing valve is arranged between the gas generator set and the fuel cell, and at least one gas pressure stabilizing valve is arranged between the power piston and the fuel cell.
Preferably, the hydrogen gas pressure entering the fuel cell is 1.5 atmospheres.
The two gas pressure stabilizing valves keep the gas entering the fuel cell at 1.5 atmospheric pressure, so that the fuel cell can adsorb hydrogen more efficiently, and the utilization efficiency of the hydrogen is increased.
The invention has the advantages that:
(1) after hydrogen flow with pressure in a hydrogen storage tank enters a Venturi tube, the hydrogen flow speed is increased, the pressure is reduced, high-speed hydrogen flow is divided into two parts, one part generates electricity through a gas generator set, the generated electric energy is stored in a storage battery, meanwhile, the high-speed hydrogen flow passes through the gas generator set and then is changed into low-pressure hydrogen flow to enter a fuel cell, and the fuel cell converts the chemical energy of the hydrogen into electric energy to be transmitted to a vehicle transmission system so as to drive a vehicle; the other part of high-speed hydrogen converts the kinetic energy of the hydrogen into first mechanical energy through a power piston and transmits the first mechanical energy to a vehicle transmission system through a transmission assembly, meanwhile, the heating end of the thermal piston is connected with heat generated by a gas generator set for storing electric energy in a storage battery and heat generated by hydrogen absorption of a fuel cell, a cold source at the cooling end of the thermal piston is from the expansion heat absorption of the hydrogen storage tank 1 in the hydrogen desorption process or cold generated in the hydrogen desorption process of metal hydride in the hydrogen storage tank, and the heat energy is converted into second mechanical energy and transmitted to the vehicle transmission system through the transmission assembly; the energy of hydrogen is fully utilized, the working efficiency is improved, and a new power device system is provided for the automobile taking hydrogen as energy;
(2) the diffusion section of the traditional Venturi tube is changed into a straight section, so that high-speed hydrogen with high kinetic energy can be obtained;
(3) the power piston and the thermal piston act together to form a power and thermal double-cylinder hydrogen engine unit together with the first linkage rod, the second linkage rod and the crankshaft flywheel set, and the torque output outwards stably drives a vehicle transmission system to ensure the stable operation of the vehicle;
(4) the gas pressure stabilizing valve keeps the gas entering the fuel cell at 1.5 atmospheric pressure, so that the fuel cell can adsorb hydrogen more efficiently, and the utilization efficiency of the hydrogen is increased.
Drawings
FIG. 1 is a schematic structural view of a hydrogen power generation system according to an embodiment of the present invention;
figure 2 is a schematic diagram of the venturi structure.
Reference numbers in the figures: the device comprises a hydrogen storage tank 1, a Venturi tube 2, an inlet section 21, a contraction section 22, a throat 23, a straight section 24, a gas generator set 3, a wind power blade 31, a wind driven generator 32, a fuel cell 4, an engine set 5, a power piston 51, a thermal piston 52, a first linkage rod 53, a second linkage rod 54, a crankshaft flywheel set 55, a storage battery 6, a pressure stabilizing valve 7, a heat exchanger 8 and a vehicle transmission system 9.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are some embodiments of the present invention, but not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
As shown in fig. 1, a hydrogen power generation system comprises a hydrogen storage tank 1, a venturi tube 2, a gas generator set 3, a fuel cell 4, an engine set 5, a storage battery 6, a pressure stabilizing valve 7, a heat exchanger 8 and a vehicle transmission system 9;
the hydrogen storage tank 1 is connected with the venturi tube 2, the venturi tube 2 is connected with the gas generator set 3, the gas generator set 3 is respectively connected with the storage battery 6 and the fuel cell 4, and the fuel cell 4 is connected with the vehicle transmission system 9;
the gas generator set 3 includes wind blades 31 and a wind generator 32. The high-speed hydrogen flow drives the wind blade 31 to rotate and causes the wind generator 32 to generate electricity.
The engine set 5 comprises a power piston 51 capable of converting hydrogen kinetic energy into first mechanical energy, a thermal piston 52 capable of converting thermal energy into second mechanical energy, and a transmission assembly, wherein the transmission assembly comprises a first linkage rod 53, a second linkage rod 54 and a crankshaft flywheel set 55, the power piston 51 is in driving connection with the first linkage rod 53, the thermal piston 52 is in driving connection with the second linkage rod 54, the first linkage rod 53 and the second linkage rod 54 are both connected with the crankshaft flywheel set 55, the crankshaft flywheel set 55 is in driving connection with the vehicle transmission system 9, the power piston 51 and the thermal piston 52 act together to form a power and thermal double-cylinder hydrogen engine set together with the first linkage rod 53, the second linkage rod 54 and the crankshaft flywheel set 55, and torque which can be stably output outwards finally drives the vehicle transmission system to ensure the stable running of the vehicle.
The venturi tube 2 is also connected with a power piston 51, and the power piston 51 is connected with the fuel cell 4; the heating end of the thermal piston 52 is connected with the storage battery 6 and the fuel cell 4, and the cooling end of the thermal piston 52 is connected with the hydrogen storage tank 1.
In this embodiment, the hydrogen storage tank 1 is a pure hydrogen storage tank with a certain pressure or an alloy hydrogen storage tank with a certain pressure. The hydrogen storage tank can be a pure hydrogen storage tank which stores high-pressure hydrogen with the pressure of 35MPa-70MPa and can generate high-pressure hydrogen flow; the system can also be an alloy hydrogen storage tank with low pressure of 0-5MPa, and the alloy hydrogen storage tank absorbs heat in the hydrogen discharge process, so that the system provided by the invention can provide cold.
In this embodiment, at least three heat exchangers 8 are included, at least one of which is installed between the hydrogen storage tank 1 and the cooling end of the thermal piston 52, at least one of which is installed between the fuel cell 4 and the heating end of the thermal piston 52, and at least one of which is installed between the battery 6 and the heating end of the thermal piston 52.
After hydrogen flow with pressure in a hydrogen storage tank 1 enters a Venturi tube 2, the hydrogen flow speed is increased, the pressure is reduced, high-speed hydrogen flow is divided into two parts, one part generates electricity through a gas generator set 3, the generated electric energy is stored in a storage battery 6, meanwhile, the high-speed hydrogen flow passes through the gas generator set 3 and then is changed into low-pressure hydrogen flow to enter a fuel cell 4, and the fuel cell 4 converts chemical energy of the hydrogen into electric energy to be transmitted to a vehicle transmission system 9 so as to drive a vehicle; the other part of high-speed hydrogen converts the kinetic energy of the hydrogen into first mechanical energy through the power piston 51, transmits the first mechanical energy to the crankshaft flywheel set 55 through the first linkage rod 53, and transmits the first mechanical energy to the vehicle transmission system 9, meanwhile, the heating end of the thermal piston 52 is connected with the heat generated by the electric energy stored in the storage battery 6 by the gas generator set 3 and the heat generated by the hydrogen absorption of the fuel cell 4, the cold source of the cooling end of the thermal piston 52 is from the expansion heat absorption of the hydrogen storage tank 1 in the hydrogen desorption process or the cold generated in the hydrogen desorption process of the metal hydride in the hydrogen storage tank 1, converts the heat energy into second mechanical energy, transmits the second mechanical energy to the crankshaft flywheel set 55 through the second linkage rod 54, and transmits the; the energy of hydrogen is fully utilized, the working efficiency is improved, and a new power device system is provided for the automobile taking hydrogen as energy.
The working principle of the thermodynamic piston is that power is output by adopting a circulation mode of constant volume, heat absorption expansion and cooling contraction.
Example two:
as shown in fig. 2, the specific structure of the venturi tube 2 in the present embodiment is: the venturi tube 2 comprises an inlet section 21, a convergent section 22, a throat 23 and a flat section 24 connected in sequence.
The diameter of the straight section 24 is the same as that of the throat 23, specifically, the inlet section 21 is a short cylindrical section with a diameter D; the shape of the contraction section 22 is a conical pipe, and the cone angle is about 21 degrees +/-2 degrees; the throat 23 is a short straight pipe section, the diameter of the throat is about 1/3-1/4D, and the length of the throat is equal to the pipe diameter; the diameter of the straight section 24 is equal to the diameter of the circular tube of the throat 23.
The conventional diffusion section of the venturi tube 2 is changed into the straight section 24, and high-speed hydrogen with high kinetic energy can be obtained.
Example three:
as shown in fig. 1, on the basis of the second embodiment, the present embodiment further includes two gas pressure maintaining valves 7, one gas pressure maintaining valve 7 is installed between the wind driven generator 32 and the fuel cell 4, and one gas pressure maintaining valve 7 is installed between the power piston 51 and the fuel cell 4.
Two gas pressure maintenance valves 7 maintain the gas entering the fuel cell 4 at 1.5 atmospheres. So as to more efficiently enable the fuel cell to adsorb hydrogen and increase the utilization efficiency of the hydrogen.
The specific working process of the invention is as follows:
s1, after hydrogen flow with pressure in the hydrogen storage tank 1 enters the improved Venturi tube 2, the hydrogen flow speed is increased and the pressure is reduced;
s2, dividing the hydrogen flow into two parts, wherein one part generates electricity through the wind generating set 3, the generated electric energy is stored in the storage battery 6, meanwhile, the part of the hydrogen flow is changed into low-pressure hydrogen after passing through the gas generating set 3 and flows into the fuel cell 4, and the fuel cell 4 converts the chemical energy of the hydrogen into electric energy to be transmitted to the vehicle transmission system 9 so as to drive the vehicle; the other part converts the kinetic energy of the hydrogen into mechanical energy through the engine unit 5 and transmits the mechanical energy to the vehicle transmission system 9.
In step S2, the engine unit 5 converts the kinetic energy of hydrogen into mechanical energy, and transmits the mechanical energy to the vehicle transmission system 9, which specifically includes:
s21, the heating end of the thermal piston 52 is connected with the heat generated by the gas generator set 3 for storing the electric energy in the storage battery 6 and the heat generated by the hydrogen absorption of the fuel cell 4; a cold source at the cooling end of the thermal piston is from the cold quantity generated after the hydrogen storage tank 1 expands to absorb heat in the hydrogen discharging process or the hydrogen storage alloy discharges and absorbs heat;
s22, connecting the inlet end of the power piston 51 with the improved flow channel branch of the Venturi tube 2, and flowing high-speed hydrogen to push the power piston 51 to move; the air outlet end of the power piston 51 is communicated with the fuel cell 4, and the hydrogen flowing out of the air outlet end enters the fuel cell 4 through the pressure stabilizing valve 7 under the pressure of 1.5 atmospheres.
Wherein, in step S2, power is generated by the gas generator set 3, and the generated electric energy is stored in the storage battery 6, which specifically comprises:
s23: the high-speed hydrogen flow drives the wind blade 31 to rotate and drives the wind driven generator 32 to generate electricity, and the generated electric energy is stored in the storage battery 6, wherein the low-pressure hydrogen flow passing through the wind blade 31 and the wind driven generator 32 passes through the gas pressure stabilizing valve and then is kept at 1.5 atmospheric pressures.
The invention fully utilizes the energy of hydrogen, improves the working efficiency and provides a new power device system for the automobile taking hydrogen as energy.
The above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (9)

1. A hydrogen power generation system is characterized by comprising a hydrogen storage tank, a Venturi tube, a gas generator set, a fuel cell, an engine set and a storage battery; the hydrogen storage tank is connected with the venturi tube, the venturi tube is connected with the gas generator set, the gas generator set is respectively connected with the storage battery and the fuel cell, and the fuel cell is connected with the vehicle transmission system;
the engine set comprises a power piston capable of converting hydrogen kinetic energy into first mechanical energy, a thermal piston capable of converting thermal energy into second mechanical energy and a transmission assembly, wherein the power piston is connected with the transmission assembly, the thermal piston is connected with the transmission assembly, and the transmission assembly is connected with a vehicle transmission system;
the venturi tube is also connected with a power piston, and the power piston is connected with a fuel cell; the heating end of the thermal piston is connected with the storage battery and the fuel cell, and the cooling end of the thermal piston is connected with the hydrogen storage tank.
2. A hydrogen power generation system according to claim 1, characterised in that said hydrogen storage tank is a pure hydrogen storage tank with a certain pressure.
3. A hydrogen power generation system according to claim 1, wherein the venturi comprises an inlet section, a convergent section, a throat and a flat section connected in series.
4. A hydrogen power generation system according to claim 3, wherein the diameter of the inlet section is greater than the diameter of the throat, the convergent section is a tapered tube with a taper angle of 21 ° ± 2 °, the throat has the same diameter as the straight section, and the throat has the same diameter and length.
5. A hydrogen gas power generation system according to claim 1, characterised in that the gas generator set comprises wind blades and wind generators.
6. The hydrogen power generation system of claim 1, wherein the transmission assembly comprises a first linkage rod, a second linkage rod and a crankshaft flywheel set, the power piston is connected with the first linkage rod in a driving manner, the thermal piston is connected with the second linkage rod in a driving manner, the first linkage rod and the second linkage rod are both connected with the crankshaft flywheel set, and the crankshaft flywheel set is connected with the vehicle transmission system in a driving manner.
7. A hydrogen power generation system according to claim 1, further comprising at least three heat exchangers, at least one mounted between the hydrogen storage tank and the cooling end of the thermal piston, at least one mounted between the fuel cell and the heating end of the thermal piston, and at least one mounted between the battery and the heating end of the thermal piston.
8. A hydrogen gas power generation system according to claim 1, further comprising at least two gas pressure maintaining valves, at least one gas pressure maintaining valve being mounted between the gas generator set and the fuel cell, at least one gas pressure maintaining valve being mounted between the power piston and the fuel cell.
9. A hydrogen power generation system according to claim 1, wherein the hydrogen gas pressure entering the fuel cell is 1.5 atmospheres.
CN201911081418.9A 2019-11-07 2019-11-07 Hydrogen power generation system Active CN110792479B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911081418.9A CN110792479B (en) 2019-11-07 2019-11-07 Hydrogen power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911081418.9A CN110792479B (en) 2019-11-07 2019-11-07 Hydrogen power generation system

Publications (2)

Publication Number Publication Date
CN110792479A CN110792479A (en) 2020-02-14
CN110792479B true CN110792479B (en) 2020-07-28

Family

ID=69443023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911081418.9A Active CN110792479B (en) 2019-11-07 2019-11-07 Hydrogen power generation system

Country Status (1)

Country Link
CN (1) CN110792479B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020214153A1 (en) * 2020-11-11 2022-05-12 Robert Bosch Gesellschaft mit beschränkter Haftung Arrangement for supplying pressurized fuel gas to generate additional energy
CN113315243B (en) * 2021-06-04 2023-03-21 重庆邮电大学 Flywheel energy storage and hydrogen storage charging and discharging control method for new energy micro-grid

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167464A (en) * 1995-09-18 1997-12-10 精工爱普生株式会社 Safety mechanism for electric vehicles
US5875863A (en) * 1996-03-22 1999-03-02 Hyrum T. Jarvis Power system for extending the effective range of hybrid electric vehicles
DE10212752A1 (en) * 2002-03-20 2003-10-23 Guenter Krause Energy generator consists primarily of rotary piston compressor, rotary piston engine, heat exchanger and various accessories, can work continuously after single energy input (battery charge)
CN1643247A (en) * 2002-03-20 2005-07-20 水疗文氏管有限公司 Extracting power from a fluid flow
CN1770526A (en) * 2004-11-02 2006-05-10 上海神力科技有限公司 Fuel cell generating system capable of realizing self-starting without external power help
CN101117915A (en) * 2007-08-28 2008-02-06 余正 Subsequent technology of combined dynamoelectric engine
CN101447574A (en) * 2007-11-27 2009-06-03 上海航天动力科技工程有限公司 Automatic-force hydrogen pressurized circulation system of automotive fuel cell
CN101638792A (en) * 2008-07-29 2010-02-03 通用汽车环球科技运作公司 Recovering the compression energy in gaseous hydrogen and oxygen generated from high-pressure water electrolysis
GB2488133A (en) * 2011-02-17 2012-08-22 Inova Power Ltd Hydrogen generator and method of generating hydrogen
CN202900555U (en) * 2012-11-12 2013-04-24 白世修 Solar airflow power generation assembly
CN103441538A (en) * 2013-07-15 2013-12-11 常州大学 New-energy automobile lithium battery management system
CN103515638A (en) * 2012-06-28 2014-01-15 上海绿丽工贸有限公司 Integrated hydrogen production-hydrogen storage power generation system
CN203883079U (en) * 2014-06-17 2014-10-15 马鞍山当涂发电有限公司 Hydrogen recycling and power generation system of hydrogen cooling unit
CN203934244U (en) * 2014-05-27 2014-11-05 联想(北京)有限公司 Electronic equipment
CN104295448A (en) * 2014-09-23 2015-01-21 熊凌云 All-weather clean energy comprehensive electricity generating and energy saving method and facility manufacturing method thereof
CN104333069A (en) * 2014-11-06 2015-02-04 上海昭赫信息技术有限公司 Self-heating charging system of mobile terminal
CN204267172U (en) * 2014-11-27 2015-04-15 吉林大学 Based on the engine exhaust energy conversion device of Stirling cycle
CN105207337A (en) * 2015-09-02 2015-12-30 昆山龙腾光电有限公司 Electronic device
CN106004504A (en) * 2016-07-06 2016-10-12 中国人民解放军理工大学 Hydrogen energy recycling type automobile clean hybrid power system
CN106740041A (en) * 2016-11-24 2017-05-31 广州荣拓科技发展有限责任公司 A kind of new-energy automobile
CN107191289A (en) * 2016-03-15 2017-09-22 邹立松 Pure oxygen oxygen-enriched combusting mover device and the vehicles and system using the device
CN107689743A (en) * 2017-09-07 2018-02-13 深圳天珑无线科技有限公司 A kind of mobile terminal and its charging method
CN107901772A (en) * 2017-10-27 2018-04-13 江苏理工学院 A kind of fuel cell temperature difference electricity generation device applied to automobile combines energy supplying system
CN108011118A (en) * 2017-11-14 2018-05-08 上海柯来浦能源科技有限公司 A kind of energy resource system of aquation magnesium hydride
CN108087033A (en) * 2016-11-21 2018-05-29 张琳 A kind of energy system of compressed air powered car
CN109986965A (en) * 2019-02-18 2019-07-09 德州新动能铁塔发电有限公司 Pass through the caravan of water hydrogen power generation energy supply
CN110182104A (en) * 2019-05-05 2019-08-30 北京航空航天大学 A kind of fuel cell car auxiliary energy supplying system
CN110417300A (en) * 2019-08-28 2019-11-05 四川荣创新能动力系统有限公司 Tramcar afterheat generating system, fuel cell tramcar and working method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672415B1 (en) * 1999-05-26 2004-01-06 Toyota Jidosha Kabushiki Kaisha Moving object with fuel cells incorporated therein and method of controlling the same
US6834737B2 (en) * 2000-10-02 2004-12-28 Steven R. Bloxham Hybrid vehicle and energy storage system and method
US8153309B2 (en) * 2009-05-27 2012-04-10 GM Global Technology Operations LLC Apparatus and method using hydrogen pressure in fuel cell electric vehicle
US8790839B2 (en) * 2011-08-02 2014-07-29 Ardica Technologies, Inc. High temperature fuel cell system
US8720390B2 (en) * 2011-09-19 2014-05-13 Northern Technologies International Corporation Fuel performance booster

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167464A (en) * 1995-09-18 1997-12-10 精工爱普生株式会社 Safety mechanism for electric vehicles
US5875863A (en) * 1996-03-22 1999-03-02 Hyrum T. Jarvis Power system for extending the effective range of hybrid electric vehicles
DE10212752A1 (en) * 2002-03-20 2003-10-23 Guenter Krause Energy generator consists primarily of rotary piston compressor, rotary piston engine, heat exchanger and various accessories, can work continuously after single energy input (battery charge)
CN1643247A (en) * 2002-03-20 2005-07-20 水疗文氏管有限公司 Extracting power from a fluid flow
CN1770526A (en) * 2004-11-02 2006-05-10 上海神力科技有限公司 Fuel cell generating system capable of realizing self-starting without external power help
CN101117915A (en) * 2007-08-28 2008-02-06 余正 Subsequent technology of combined dynamoelectric engine
CN101447574A (en) * 2007-11-27 2009-06-03 上海航天动力科技工程有限公司 Automatic-force hydrogen pressurized circulation system of automotive fuel cell
CN101638792A (en) * 2008-07-29 2010-02-03 通用汽车环球科技运作公司 Recovering the compression energy in gaseous hydrogen and oxygen generated from high-pressure water electrolysis
GB2488133A (en) * 2011-02-17 2012-08-22 Inova Power Ltd Hydrogen generator and method of generating hydrogen
CN103515638A (en) * 2012-06-28 2014-01-15 上海绿丽工贸有限公司 Integrated hydrogen production-hydrogen storage power generation system
CN202900555U (en) * 2012-11-12 2013-04-24 白世修 Solar airflow power generation assembly
CN103441538A (en) * 2013-07-15 2013-12-11 常州大学 New-energy automobile lithium battery management system
CN203934244U (en) * 2014-05-27 2014-11-05 联想(北京)有限公司 Electronic equipment
CN203883079U (en) * 2014-06-17 2014-10-15 马鞍山当涂发电有限公司 Hydrogen recycling and power generation system of hydrogen cooling unit
CN104295448A (en) * 2014-09-23 2015-01-21 熊凌云 All-weather clean energy comprehensive electricity generating and energy saving method and facility manufacturing method thereof
CN104333069A (en) * 2014-11-06 2015-02-04 上海昭赫信息技术有限公司 Self-heating charging system of mobile terminal
CN204267172U (en) * 2014-11-27 2015-04-15 吉林大学 Based on the engine exhaust energy conversion device of Stirling cycle
CN105207337A (en) * 2015-09-02 2015-12-30 昆山龙腾光电有限公司 Electronic device
CN107191289A (en) * 2016-03-15 2017-09-22 邹立松 Pure oxygen oxygen-enriched combusting mover device and the vehicles and system using the device
CN106004504A (en) * 2016-07-06 2016-10-12 中国人民解放军理工大学 Hydrogen energy recycling type automobile clean hybrid power system
CN108087033A (en) * 2016-11-21 2018-05-29 张琳 A kind of energy system of compressed air powered car
CN106740041A (en) * 2016-11-24 2017-05-31 广州荣拓科技发展有限责任公司 A kind of new-energy automobile
CN107689743A (en) * 2017-09-07 2018-02-13 深圳天珑无线科技有限公司 A kind of mobile terminal and its charging method
CN107901772A (en) * 2017-10-27 2018-04-13 江苏理工学院 A kind of fuel cell temperature difference electricity generation device applied to automobile combines energy supplying system
CN108011118A (en) * 2017-11-14 2018-05-08 上海柯来浦能源科技有限公司 A kind of energy resource system of aquation magnesium hydride
CN109986965A (en) * 2019-02-18 2019-07-09 德州新动能铁塔发电有限公司 Pass through the caravan of water hydrogen power generation energy supply
CN110182104A (en) * 2019-05-05 2019-08-30 北京航空航天大学 A kind of fuel cell car auxiliary energy supplying system
CN110417300A (en) * 2019-08-28 2019-11-05 四川荣创新能动力系统有限公司 Tramcar afterheat generating system, fuel cell tramcar and working method

Also Published As

Publication number Publication date
CN110792479A (en) 2020-02-14

Similar Documents

Publication Publication Date Title
AU2018369153B2 (en) Hydrated magnesium hydride energy system
CN106541816B (en) A kind of hydrogen powered vehicle
CN203906054U (en) Device using waste heat and pressure to generate electricity in tail gas of vehicle engine
CN110792479B (en) Hydrogen power generation system
CN114243056B (en) Fuel cell system with energy recovery module
CN101158294B (en) Air (nitrogen) engines system
CN103711535B (en) Environment thermal energy conversion method and device used for providing power through environment thermal energy
CN105089849A (en) Exhaust afterheat temperature difference thermoelectric system
CN104992730A (en) Molten-salt nuclear reactor and airborne power system based on same
CN201395045Y (en) Hybrid car
CN110725778A (en) Solar energy and wind energy combined energy storage power generation system and method
CN102230412B (en) Composite power system and method for recycling flue gas afterheat of vehicles
CN201991579U (en) Air energy power generating device
CN102094689A (en) Low-temperature heat energy power generation device
CN104295328B (en) A kind of medium energy engine device and mode of work-doing thereof
CN212148408U (en) Storage tank heat exchange device for solid hydrogen storage material
CN109774411B (en) Electric automobile air conditioner refrigeration system and method based on high-pressure hydrogen pressure relief
CN106677988A (en) Wind-solar energy storage system
CN201265460Y (en) System for power generation by high-temperature gas discharged by internal combustion engine
CN216741823U (en) Distributed wind turbine group direct compressed air continuous power generation device
CN207542327U (en) Hydrogen cell automobile high-pressure hydrogen storing pressure tank energy retracting device
CN202797151U (en) Fuel battery system of electromobile
CN101639329A (en) Vehicle liquid oxygen/CO2 heat exchanger
CN115450721A (en) Compressor combined operation system and method suitable for variable working condition operation of compressed air energy storage system
CN201391373Y (en) Reclamation device for heat energy dissipated by internal-combustion engine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant