CN110787805B - 一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法 - Google Patents

一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法 Download PDF

Info

Publication number
CN110787805B
CN110787805B CN201911030122.4A CN201911030122A CN110787805B CN 110787805 B CN110787805 B CN 110787805B CN 201911030122 A CN201911030122 A CN 201911030122A CN 110787805 B CN110787805 B CN 110787805B
Authority
CN
China
Prior art keywords
nanorod
fullerene
stirring
fnr
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911030122.4A
Other languages
English (en)
Other versions
CN110787805A (zh
Inventor
冯永强
王潇
董沛沛
冯伟航
黄剑锋
曹丽云
李翠艳
欧阳海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201911030122.4A priority Critical patent/CN110787805B/zh
Publication of CN110787805A publication Critical patent/CN110787805A/zh
Application granted granted Critical
Publication of CN110787805B publication Critical patent/CN110787805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法,所述制备方法具体步骤包括:1)、对富勒烯自组装纳米棒(FNR‑150)进行改性处理:2)、采用共沉淀法将过渡金属盐、富勒烯纳米棒、尿素进行加热回流,抽滤洗涤后得富勒烯纳米棒/层状双金属氢氧化物电催化剂;本发明制备方法简单易行,所采用的原料廉价易得,制备成本低,所得产物电催化活性高且稳定性高。

Description

一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备 方法
技术领域
本发明涉及电催化剂领域,具体涉及一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法。
背景技术
电催化裂解水是一种绿色高效的新能源技术,能将水分解为氢气和氧气,不易产生有毒有害中间产物,且与其他技术兼容、协调效果很好。
层状双氢氧化物(LDH)作为一种典型的二维材料,LDH的片层结构由共边的八面体连接而成,羟基位于八面体的顶点,金属原子位于八面体中心,构成带正电荷的层板,为了使化合物呈电中性,层间充满阴离子。金属原子和阴离子的种类和性质都会影响LDH材料的性质和应用。LDH材料的这种结构使其具有比较大的比表面积,使LDH具有优异的性能,成为一种较理想的催化剂。
富勒烯(Fullerene)是最重要的碳同素异形体之一,是一大类笼状分子,每个分子由十二个五边形和几个六边形组成。由于它们的共轭结构和令人着迷的化学物理性质,富勒烯已经在化学、物理学、生物医学和材料科学中被广泛研究。富勒烯纳米棒就是富勒烯的一种聚集形态。富勒烯自组装纳米棒(FNR)作为一种光电半导体材料,因具有良好的电荷传输性质、光化学稳定性使其在技术应用上非常具有吸引力。
由于传统的铂、钌催化剂高昂的价格以及差的稳定性严重阻碍了它们在电催化方面的大规模应用,电催化裂解水技术难以大规模应用,电催化裂解水目前面临的重要挑战即寻找廉价高效的催化剂。
发明内容
本发明的目的在于提供一种廉价高效、稳定性高的富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法。
本发明的目的通过以下技术方案实现:
一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,具体步骤包括:
步骤一:将质量比为5:1的聚乙烯吡咯烷酮和富勒烯自组装纳米棒溶于去离子水搅拌后倒入烧瓶,于60~120 ℃下反应3~8h,反应完成后得到富勒烯自组装纳米棒的改性样品;
步骤二:将30-80mg步骤一所得改性样品与0.5-2.5mmol过渡金属盐混合后溶于乙二醇和去离子水混合溶液中并搅拌,边搅拌边加入7.5-37.5mmol尿素,搅拌完成后于100~150 ℃的条件下进行回流,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂。
进一步,所述步骤一中的富勒烯自组装纳米棒制备方法为:将50~200 mg的C60溶于有机溶剂中并超声分散形成均匀的C60饱和溶液,向C60饱和溶液中加入100~300 mL醇溶液后静置,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下进行退火处理,得到富勒烯自组装纳米棒。
进一步,所述有机溶剂为甲苯、二甲苯、均三甲苯、异丙苯中的一种或几种。
进一步,所述静置的时间为6~48 h。
进一步,所述退火处理的时间为3 h。
进一步,所述步骤一中的搅拌时间为10 min,步骤二中搅拌的时间为15 min。
进一步,所述过渡金属盐中的金属为铁、钴、镍、锰、铜、锌中的几种,过渡金属盐为硝酸盐、硫酸盐、乙酸盐、氯化物中的一种或几种。
进一步,所述步骤二中回流的时间为3~15 h。
与现有技术相比,本发明具有以下有益效果:
本发明采用富勒烯自组装纳米棒、过渡金属盐、尿素作为原料进行制备,相比于传统的铂、钌催化剂,本发明的制备成本低;经过步骤1)改性后的富勒烯纳米棒亲水性增加,有利于层状双氢氧化物在其表面稳定生长,提高了产物的稳定性;本发明采用的制备方法使反应受热均匀,易控制,易得到目标产物,操作简单易行。
本发明制备的富勒烯纳米棒具有较大的比表面积,较好的电子传输性能,作为导电基底,在其表面生长层状双氢氧化物,增加了层状双氢氧化物的催化活性位点,同时增强了其电荷传输速率,从而增强催化性能,具有高效的电催化性能。
附图说明
图1为实施例1制备得到的FNR-150-PVP/CoNi-LDH复合物与CoNi-LDH的XRD图;
图2a为实施例1制备得到的FNR的SEM表征图;
图2b为实施例1制备得到的FNR-150的SEM表征图;
图2c为实施例1制备得到的FNR-150-PVP的SEM表征图;
图3为实施例1制备得到的FNR-150-PVP/CoNi-LDH样品在100 nm放大倍数下的TEM表征图;
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细的描述:
实施例1:
1)、采用液-液界面沉淀法合成富勒烯自组装纳米棒(FNR):将100 mg的C60溶于100mL的均三甲苯中,并超声分散形成均匀的C60饱和溶液,向上述C60饱和溶液中加入50mL醇溶液后静置12 h,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下在管式炉中进行3 h退火处理,得到富勒烯自组装纳米棒(标记为FNR-150);
2)、对所得富勒烯自组装纳米棒(FNR-150)进行改性处理:称取1 g聚乙烯吡咯烷酮(PVP)和200 mg的富勒烯自组装纳米棒(FNR-150),将两者溶于100mL去离子水中并搅拌10 min之后倒入圆底烧瓶,于60 ℃下反应6 h,反应完成后得到改性样品(标记为FNR-150-PVP);
3)、采用共沉淀法将两种过渡金属盐、富勒烯纳米棒、尿素进行加热回流:将40 mg的改性样品(FNR-150-PVP)与73 mg硝酸镍、146 mg硝酸钴混合后溶于乙二醇和去离子水中并搅拌,边搅拌边加入2250 mg尿素,搅拌15 min后于110 ℃的条件下进行回流3 h,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂(标记为FNR-150-PVP/LDH)。
图1为实施例1制备得到的FNR-150-PVP/CoNi-LDH复合物与CoNi-LDH的XRD图;。CoNi-LDH和CoNi-LDH/CQD样品在约11.59,23.14,34.59和60.85分别显示衍射峰,分别对应于CoNi-LDH的(003),(006),(012)和(110)面,表明CoNi-LDH的形成。复合之后峰产生了偏移,是由于FNR-150-PVP和CoNi-LDH之间产生了电荷转移而引起的。
图2a、2b、2c分别是FNR、FNR-150、FNR-150-PVP样品的SEM表征图,可以看出所合成的FNR成光滑的纳米棒状,退火之后FNR-150表面的有机溶剂分子脱出,表面出现空隙,变得粗糙。经过表面改性,纳米棒表面包裹上一层PVP分子,这改变了纳米棒的亲水性,有利于LDH在其表面生长。
图3是FNR-150-PVP/CoNi-LDH样品在100 nm放大倍数下的TEM表征图,由图可以看出,LDH纳米片成功生长在纳米棒表面。
实施例1制备得到的FNR-150-PVP/CoNi-LDH复合物与CoNi-LDH相比,相同电流密度下所需电压越小即表明催化效果越好,FNR-150-PVP/CoNi-LDH的性能最好,在达到10mA/cm2时,仅仅需要313 mV的过电位。因为富勒烯纳米棒具有较大的比表面积,较好的电子传输性能,作为导电基底,在其表面生长LDH,增加了LDH的催化活性位点,同时增强了其电荷传输速率,从而增强催化性能。
实施例2:
1)、采用液-液界面沉淀法合成富勒烯自组装纳米棒(FNR):将50 mg的C60溶于50mL的均三甲苯中,并超声分散形成均匀的C60饱和溶液,向上述C60饱和溶液中加入50mL甲醇溶液后静置12 h,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下在管式炉中进行3 h退火处理,得到富勒烯自组装纳米棒(标记为FNR-150);
2)、对所得富勒烯自组装纳米棒(FNR-150)进行改性处理:称取1 g聚乙烯吡咯烷酮(PVP)和200 mg的富勒烯自组装纳米棒(FNR-150),将两者溶于100mL去离子水中并搅拌10 min之后倒入圆底烧瓶,于60 ℃下反应6 h,反应完成后得到改性样品(标记为FNR-150-PVP);
3)、采用共沉淀法将两种过渡金属盐、富勒烯纳米棒、尿素进行加热回流:将60 mg的改性样品(FNR-150-PVP)与145 mg硝酸镍、291 mg硝酸钴混合后溶于乙二醇和去离子水中并搅拌,边搅拌边加入450 mg尿素,搅拌15 min后于130 ℃的条件下进行回流3 h,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂(标记为FNR-150-PVP/LDH)。
实施例3:
1)、采用液-液界面沉淀法合成富勒烯自组装纳米棒(FNR):将50 mg的C60溶于50mL的均三甲苯中,并超声分散形成均匀的C60饱和溶液,向上述C60饱和溶液中加入50mL乙醇溶液后静置20 h,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下在管式炉中进行3 h退火处理,得到富勒烯自组装纳米棒(标记为FNR-150);
2)、对所得富勒烯自组装纳米棒(FNR-150)进行改性处理:称取1 g聚乙烯吡咯烷酮(PVP)和200 mg的富勒烯自组装纳米棒(FNR-150),将两者溶于100mL去离子水中并搅拌10 min之后倒入圆底烧瓶,于60 ℃下反应6 h,反应完成后得到改性样品(标记为FNR-150-PVP);
3)、采用共沉淀法将两种过渡金属盐、富勒烯纳米棒、尿素进行加热回流:将80 mg的改性样品(FNR-150-PVP)、291 mg硝酸镍、582 mg硝酸钴混合后溶于乙二醇和去离子水中并搅拌,边搅拌边加入900 mg尿素,搅拌15 min后于100 ℃的条件下进行回流3 h,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂(标记为FNR-150-PVP/LDH)。
实施例4:
1)、采用液-液界面沉淀法合成富勒烯自组装纳米棒(FNR):将50 mg的C60溶于12.5mL的异丙苯中,并超声分散形成均匀的C60饱和溶液,向上述C60饱和溶液中加入50mL甲醇溶液后静置12 h,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下在管式炉中进行3 h退火处理,得到富勒烯自组装纳米棒(标记为FNR-150);
2)、对所得富勒烯自组装纳米棒(FNR-150)进行改性处理:称取1 g聚乙烯吡咯烷酮(PVP)和200 mg的富勒烯自组装纳米棒(FNR-150),将两者溶于100mL去离子水中并搅拌10 min之后倒入圆底烧瓶,于60 ℃下反应6 h,反应完成后得到改性样品(标记为FNR-150-PVP);
3)、采用共沉淀法将两种过渡金属盐、富勒烯纳米棒、尿素进行加热回流:将60 mg的改性样品(FNR-150-PVP)与54.81mg硝酸镍、58.2 mg硝酸钴混合后溶于乙二醇和去离子水中并搅拌,边搅拌边加入900 mg尿素,搅拌15 min后于130 ℃的条件下进行回流3 h,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂(标记为FNR-150-PVP/LDH)。
实施例5:
1)、采用液-液界面沉淀法合成富勒烯自组装纳米棒(FNR):将50 mg的C60溶于10mL的二甲苯中,并超声分散形成均匀的C60饱和溶液,向上述C60饱和溶液中加入100mL无水乙醇溶液后静置36 h,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下在管式炉中进行3 h退火处理,得到富勒烯自组装纳米棒(标记为FNR-150);
2)、对所得富勒烯自组装纳米棒(FNR-150)进行改性处理:称取1 g聚乙烯吡咯烷酮(PVP)和200 mg的富勒烯自组装纳米棒(FNR-150),将两者溶于100mL去离子水中并搅拌10 min之后倒入圆底烧瓶,于60 ℃下反应6 h,反应完成后得到改性样品(标记为FNR-150-PVP);
3)、采用共沉淀法将两种过渡金属盐、富勒烯纳米棒、尿素进行加热回流:将60 mg的改性样品(FNR-150-PVP)与274mg硝酸镍、291 mg硝酸钴混合后溶于乙二醇和去离子水中并搅拌,边搅拌边加入450 mg尿素,搅拌15 min后于130 ℃的条件下进行回流8 h,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂(标记为FNR-150-PVP/LDH)。
实施例6:
1)、采用液-液界面沉淀法合成富勒烯自组装纳米棒(FNR):将200 mg的C60溶于200mL的均三甲苯中,并超声分散形成均匀的C60饱和溶液,向上述C60饱和溶液中加入300mL无水乙醇溶液后静置48 h,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下在管式炉中进行3 h退火处理,得到富勒烯自组装纳米棒(标记为FNR-150);
2)、对所得富勒烯自组装纳米棒(FNR-150)进行改性处理:称取1 g聚乙烯吡咯烷酮(PVP)和200 mg的富勒烯自组装纳米棒(FNR-150),将两者溶于100mL去离子水中并搅拌10 min之后倒入圆底烧瓶,于120 ℃下反应3 h,反应完成后得到改性样品(标记为FNR-150-PVP);
3)、采用共沉淀法将两种过渡金属盐、富勒烯纳米棒、尿素进行加热回流:将60 mg的改性样品(FNR-150-PVP)与278mg硫酸亚铁、346 mg乙酸锰、混合后溶于乙二醇和去离子水中并搅拌,边搅拌边加入450 mg尿素,搅拌15 min后于150 ℃的条件下进行回流15 h,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂(标记为FNR-150-PVP/LDH)。
实施例7:
1)、采用液-液界面沉淀法合成富勒烯自组装纳米棒(FNR):将150 mg的C60溶于50mL的甲苯中,并超声分散形成均匀的C60饱和溶液,向上述C60饱和溶液中加入300mL无水乙醇溶液后静置6 h,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下在管式炉中进行3 h退火处理,得到富勒烯自组装纳米棒(标记为FNR-150);
2)、对所得富勒烯自组装纳米棒(FNR-150)进行改性处理:称取1 g聚乙烯吡咯烷酮(PVP)和200 mg的富勒烯自组装纳米棒(FNR-150),将两者溶于100mL去离子水中并搅拌10 min之后倒入圆底烧瓶,于100 ℃下反应8 h,反应完成后得到改性样品(标记为FNR-150-PVP);
3)、采用共沉淀法将两种过渡金属盐、富勒烯纳米棒、尿素进行加热回流:将30 mg的改性样品(FNR-150-PVP)与135 mg氯化铜、273 mg氯化锌混合后溶于乙二醇和去离子水中并搅拌,边搅拌边加入900 mg尿素,搅拌15 min后于150 ℃的条件下进行回流12 h,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂(标记为FNR-150-PVP/LDH)。

Claims (8)

1.一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,其特征在于,具体步骤包括:
步骤一:将质量比为5:1的聚乙烯吡咯烷酮和富勒烯自组装纳米棒溶于去离子水搅拌后倒入烧瓶,于60~120 ℃下反应3~8h,反应完成后得到富勒烯自组装纳米棒的改性样品;
步骤二:将30-80mg步骤一所得改性样品与0.5-2.5mmol过渡金属盐混合后溶于乙二醇和去离子水混合溶液中并搅拌,边搅拌边加入7.5-37.5mmol尿素,搅拌完成后于100~150℃的条件下进行回流,再将产物抽滤,用去离子水和无水乙醇洗涤后真空干燥,得到富勒烯纳米棒/层状双金属氢氧化物电催化剂;
所述过渡金属盐中的金属为铁、钴、镍、锰、铜和锌中的几种,过渡金属盐为硝酸盐、硫酸盐、乙酸盐和氯化物中的一种或几种。
2.如权利要求1所述的一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,其特征在于:所述步骤一中的富勒烯自组装纳米棒制备方法为:将50~200 mg的C60溶于有机溶剂中并超声分散形成均匀的C60饱和溶液,向C60饱和溶液中加入100~300 mL醇溶液后静置,静置后离心,将离心得到的沉淀洗涤、干燥,再于150 ℃条件下进行退火处理,得到富勒烯自组装纳米棒。
3.如权利要求2所述的一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,其特征在于:所述有机溶剂为甲苯、二甲苯、均三甲苯、异丙苯中的一种或几种。
4.如权利要求2所述的一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,其特征在于:所述静置的时间为6~48 h。
5.如权利要求2所述的一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,其特征在于:所述退火处理的时间为3 h。
6.如权利要求1所述的一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,其特征在于:所述步骤一中的搅拌时间为10 min,步骤二中搅拌的时间为15 min。
7.如权利要求1所述的一种富勒烯纳米棒/层状双金属氢氧化物电催化剂的制备方法,其特征在于:所述步骤二中回流的时间为3~15 h。
8.基于权利要求1~7任意一项所述制备方法得到的富勒烯纳米棒/层状双金属氢氧化物电催化剂。
CN201911030122.4A 2019-10-28 2019-10-28 一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法 Active CN110787805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911030122.4A CN110787805B (zh) 2019-10-28 2019-10-28 一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911030122.4A CN110787805B (zh) 2019-10-28 2019-10-28 一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110787805A CN110787805A (zh) 2020-02-14
CN110787805B true CN110787805B (zh) 2022-11-01

Family

ID=69441466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911030122.4A Active CN110787805B (zh) 2019-10-28 2019-10-28 一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110787805B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111468150A (zh) * 2020-05-26 2020-07-31 陕西科技大学 一种富勒烯纳米棒/过渡金属磷化物电催化剂及其制备方法
CN113943946A (zh) * 2021-12-07 2022-01-18 陕西科技大学 一种PHF-Ru@C-N电催化剂及其制备方法
CN114752963A (zh) * 2022-05-17 2022-07-15 陕西科技大学 一种二维层状六方纳米级富勒烯片/水滑石析氧电催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013415A (ja) * 2006-07-07 2008-01-24 National Institute For Materials Science ナノロッドの磁場配向方法と配向固定化方法
CN101638796A (zh) * 2009-06-29 2010-02-03 新奥科技发展有限公司 用于水电解反应的阳极催化剂的制备方法
CN102659081A (zh) * 2012-04-27 2012-09-12 淄博职业学院 负载高分散富勒烯的水滑石材料及其制备方法
CN107824188A (zh) * 2017-10-27 2018-03-23 广西师范大学 镍钴层状双金属氢氧化物/石墨烯电催化剂的制备方法
CN109225233A (zh) * 2018-10-26 2019-01-18 陕西科技大学 一种层状双金属氢氧化物/碳量子点电催化剂及其制备方法
CN109223827A (zh) * 2017-07-11 2019-01-18 北京福纳康生物技术有限公司 水溶性的富勒烯结构在制备治疗肺纤维化的药物中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154879A (ja) * 2017-03-17 2018-10-04 株式会社東芝 電気化学反応装置および電気化学反応装置用アノードの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013415A (ja) * 2006-07-07 2008-01-24 National Institute For Materials Science ナノロッドの磁場配向方法と配向固定化方法
CN101638796A (zh) * 2009-06-29 2010-02-03 新奥科技发展有限公司 用于水电解反应的阳极催化剂的制备方法
CN102659081A (zh) * 2012-04-27 2012-09-12 淄博职业学院 负载高分散富勒烯的水滑石材料及其制备方法
CN109223827A (zh) * 2017-07-11 2019-01-18 北京福纳康生物技术有限公司 水溶性的富勒烯结构在制备治疗肺纤维化的药物中的应用
CN107824188A (zh) * 2017-10-27 2018-03-23 广西师范大学 镍钴层状双金属氢氧化物/石墨烯电催化剂的制备方法
CN109225233A (zh) * 2018-10-26 2019-01-18 陕西科技大学 一种层状双金属氢氧化物/碳量子点电催化剂及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Fullerene as an efficient hybridization matrix for exploring high-performance layered-double-hydroxide-based electrodes;Yeon Hwa Kim et.al;《Journal of Materials Chemistry A》;20190402;第7卷;实验部分、结论部分、图1 *
M. Behera•S. Ram.Solubilization and stabilization of fullerene C60 in presence of poly(vinyl pyrrolidone) molecules in water.《Journal of Inclusion Phenomena and Macrocyclic Chemistry》.2011,第233-239页. *
Solvated structure of C60 nanowhiskers;Jun-ichi Minato et.al;《Carbon》;20050728;第43卷;实验部分 *
Synthesis of Thin, Rectangular C60 Nanorods Using m-Xylene as a Shape Controller;Lin Wang et.al;《Advanced Materials》;20061231;第1883-1888页 *
The critical effect of solvent geometry on the determination of fullerene(C60)self-assembly into dot, wire and disk structures;Chibeom Park et.al;《Chemical Communications》;20090702;第4803-4805页 *

Also Published As

Publication number Publication date
CN110787805A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
Chen et al. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range
Lu et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction
Huang et al. Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting
Zhao et al. Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis
Choi et al. Reduced graphene oxide‐based materials for electrochemical energy conversion reactions
Lu et al. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—A review
Selvam et al. MXene supported Co x A y (A= OH, P, Se) electrocatalysts for overall water splitting: unveiling the role of anions in intrinsic activity and stability
CN110787805B (zh) 一种富勒烯纳米棒/层状双金属氢氧化物电催化剂及其制备方法
Liu et al. Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting
Li et al. Macroporous inverse opal-like Mo x C with incorporated Mo vacancies for significantly enhanced hydrogen evolution
Zhou et al. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives
Kong et al. Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction
Guo et al. Few-layered trigonal WS2 nanosheet-coated graphite foam as an efficient free-standing electrode for a hydrogen evolution reaction
CN109225233B (zh) 一种层状双金属氢氧化物/碳量子点电催化剂及其制备方法
CN112053861B (zh) 一种三维导电MOF@MXene复合电极的原位制备方法
Kwon et al. MnO 2-based nanostructured materials for various energy applications
Ma et al. Facile fabrication of a binary NiCo phosphide with hierarchical architecture for efficient hydrogen evolution reactions
Ding et al. RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values
CN111468150A (zh) 一种富勒烯纳米棒/过渡金属磷化物电催化剂及其制备方法
CN109225232B (zh) 一种电催化剂及其制备方法
Guo et al. Fullerenes and derivatives as electrocatalysts: Promises and challenges
CN111185201B (zh) 铼掺杂硫化钼纳米片/碳布复合材料及其制备方法和在电催化水制氢中的应用
Qin et al. Dual core-shell structured g-C3N4@ Fe/Sr@ g-C3N4 porous nanosphere as high efficient oxygen reduction reaction electrocatalyst in both acidic and alkaline media for fuel cells
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Raj et al. In-situ evolution of bimetallic Fe/Ni/Co nanohybrids on MXene for improved electrocatalytic oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant