CN110783951A - 一种具有低频纹波抑制功能的反激式并网逆变器 - Google Patents

一种具有低频纹波抑制功能的反激式并网逆变器 Download PDF

Info

Publication number
CN110783951A
CN110783951A CN201911041242.4A CN201911041242A CN110783951A CN 110783951 A CN110783951 A CN 110783951A CN 201911041242 A CN201911041242 A CN 201911041242A CN 110783951 A CN110783951 A CN 110783951A
Authority
CN
China
Prior art keywords
decoupling
diode
secondary side
input
switch tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911041242.4A
Other languages
English (en)
Inventor
陈仲
章修齐
许亚明
王傲雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201911041242.4A priority Critical patent/CN110783951A/zh
Publication of CN110783951A publication Critical patent/CN110783951A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种具有低频纹波抑制功能的反激式并网逆变器。该逆变器主电路拓扑包括输入直流电源、输入电容、输入二极管、主动解耦电路、隔离变压器、原边开关管、副边二极管、副边开关管、输出滤波电路和电网。本发明在传统单级反激并网逆变结构基础上,通过添加主动解耦电路,将输出脉动功率完全转移至解耦电容中,从而实现输入电流低频纹波的抑制,达到消除大容量、短寿命电解电容的目的。

Description

一种具有低频纹波抑制功能的反激式并网逆变器
技术领域
本发明涉及一种具有低频纹波抑制功能的反激式并网逆变器,属于微型逆变器,特别涉及一种具有功率解耦功能的微型逆变器,实现了输入电流低频纹波的消除,适用于光伏等新能源发电领域,其能够实现光伏电池板的最大功率点跟踪(MPPT)。
背景技术
在新能源并网发电系统中,要求并网电流与电网电压实现同步,因此瞬时输出功率中存在两倍工频脉动,此脉动功率会传播到直流输入侧,使得输入电流中同样含有两倍频的交流分量。电流低频纹波会造成光伏电池板难以跟踪其最大功率点,影响其发电效率。通常会在逆变器输入侧或直流母线上并联大容量电解电容来平衡输入输出功率,但电解电容会严重制约光伏逆变器的寿命,使其与光伏电池板寿命严重不匹配,因此,如何消除逆变器输入电流低频纹波,以及避免使用电解电容元件成为研究热点之一。
微逆变器作为光伏逆变器的一种,因其能够实现单块光伏电池板的最大功率点跟踪、显著提高光伏发电效率而越来越受到关注。其中,反激逆变器因具有结构简单、电气隔离、便于控制等多种优点而备受青睐。但同时,反激逆变器也存在输入电流低频纹波问题。综上所述,研究基于反激式逆变器的输入电流低频纹波抑制技术,对于推动光伏产业的发展具有重要的理论意义和实际价值。
发明内容
本发明的目的在于针对上述传统逆变器所存在的技术缺陷提供一种具有低频纹波抑制功能的反激式并网逆变器。该逆变器具有结构简单、输入电流无低频纹波、并网功率因数高、无电解电容等特点。
本发明为实现上述目的,采用如下技术方案:
本发明的一种具有低频纹波抑制功能的反激式并网逆变器,包括输入直流电源、输入电容、输入二极管、隔离变压器、原边开关管、副边二极管、副边开关管、输出滤波电路和电网;其中输入直流电源的正极与输入电容的一端、输入二极管的阳极相连接,输入直流电源的负极与输入电容的另一端、原边开关管的源极相连接;隔离变压器原边绕组的同名端与输入二极管的阴极相连接,隔离变压器原边绕组的非同名端与原边开关管的漏极相连接;隔离变压器副边包括两个绕组,副边二极管包括两个二极管,副边开关管包括两个开关管,输出滤波电路由一个输出滤波电容和一个输出滤波电感组成,其中,第一副边绕组的非同名端与第一副边二极管的阳极相连接,第一副边二极管的阴极与第一副边开关管的漏极相连接,第二副边绕组的同名端与第二副边二极管的阴极相连接,第二副边二极管的阳极与第二副边开关管的源极相连接,第一副边开关管的源极与第二副边开关管的漏极、输出滤波电容的一端、输出滤波电感的一端相连接,输出滤波电感的另一端与电网的一端相连接,电网的另一端与第一副边绕组的同名端、第二副边绕组的非同名端、输出滤波电容的另一端相连接;其特征在于:
还包括由三个解耦二极管、一个解耦开关管和一个解耦电容所组成的主动解耦电路,其中第一解耦二极管的阴极与解耦开关管的源极、输入二极管的阴极、隔离变压器原边绕组的同名端相连接,第一解耦二极管的阳极与第二解耦二极管的阴极、解耦电容的一端相连接,解耦电容的另一端与解耦开关管的漏极、第三解耦二极管的阴极相连接,第三解耦二极管的阳极与隔离变压器原边绕组的非同名端、原边开关管的漏极相连接,第二解耦二极管的阳极与输入直流电源的负极、输入电容的另一端、原边开关管的源极相连接。
有益效果:
本发明披露了一种具有低频纹波抑制功能的反激式并网逆变器,与原有技术相比,本发明的主要特点是:通过在传统反激并网逆变器原边加入主动解耦电路,能够实现输入输出功率解耦,消除输入电流中的低频纹波,实现光伏电池板的最大功率点跟踪;并通过提高解耦电容电压平均值和脉动量来减小其容值,使得整个逆变器中的电容均可采用高性能的薄膜电容来替代电解电容,保证逆变器寿命与光伏电池板寿命相匹配。
附图说明
附图1是本发明的一种具有低频纹波抑制功能的反激式并网逆变器主电路拓扑。
附图2是本发明的一种具有低频纹波抑制功能的反激式并网逆变器进一步等效电路图。
附图3是本发明的一种具有低频纹波抑制功能的反激式并网逆变器主要工作波形示意图。
附图4~附图8是本发明的一种具有低频纹波抑制功能的反激式并网逆变器的各开关模态示意图。
附图9是本发明应用于110V/50Hz交流电网的输入电流、解耦电容电压、电网电压、并网电流的仿真波形。
上述附图中的主要符号名称:Vin、直流电源电压。Cin是输入电容。D1、输入二极管。T、隔离变压器。N1、隔离变压器原边绕组。N2、N3、隔离变压器副边绕组。Lm、隔离变压器激磁电感。S1、原边开关管。D2、D3、均为副边二极管。S2、S3、副边开关管。Cf、输出滤波电容。Lf、输出滤波电感。vgrid、电网电压。Cx、解耦电容。Dx1~Dx3、均为解耦二极管。Sx、解耦开关管。Iin、输入电流。i1、流过输入二极管的电流。ip、原边电流。ix、解耦电容电流。ix1、流过解耦二极管Dx1的电流。ix2、流过解耦开关管Sx的电流。vx、解耦电容电压。i2、流过副边绕组N2的电流。i3、流过副边绕组N3的电流。is、流入输出滤波电路的电流。igrid、并网电流。
具体实施方式
下面结合附图对发明的技术方案进行详细说明:
附图1所示的是一种具有低频纹波抑制功能的反激式并网逆变器。由输入直流电源Vin、输入电容1、输入二极管2、主动解耦电路3、隔离变压器4、原边开关管5、副边二极管6、副边开关管7、输出滤波电路8和电网组成。Cin是输入电容,D1是输入二极管,T是隔离变压器,N1是隔离变压器原边绕组,N2、N3是隔离变压器副边绕组,S1是原边开关管,D2、D3是副边二极管,S2、S3是副边开关管,Cf是输出滤波电容,Lf是输出滤波电感,vgrid是电网电压,Cx是解耦电容,Dx1~Dx3是解耦二极管,Sx是解耦开关管。由于隔离变压器类似于一个具有特定激磁电感的理想变压器,为了便于分析,可将附图1等效为附图2所示的电路。
下面以附图2所示的等效后的主电路结构,结合附图3~附图8叙述本发明的具体工作原理,根据输入功率Pin和瞬时输出功率po之间的关系可将该逆变器的工作模式分为两种:当po<Pin时,逆变器工作于模式1;否则该逆变器工作于模式2。两种模式下的关键波形如附图3所示。由附图3可知,逆变器工作于模式1和模式2下在一个开关周期Ts均有4种开关模态,模式1:[t10-t11]、[t11-t12]、[t12-t13]、[t13-t14];模式2:[t20-t21]、[t21-t22]、[t22-t23]、[t23-t24]。下面以电网电压处于正半周期为例对逆变器工作情况进行详细分析;当电网电压处于负半周期时,其工作情况与正半周期时类似,不再赘述。
在分析之前,先作如下假设:①电路中所有元器件均视为理想;②解耦电容电压vx在每个高频开关周期内视为一定值;③隔离变压器各绕组匝比为:N1∶N2∶N3=1∶n∶n。
模式1具体工作情况:
1.开关模态1[t10-t11][对应于附图4]
t10时刻,开通原边开关管S1,隔离变压器原边绕组N1承受直流输入电压Vin且同名端为正,直流电源向隔离变压器的激磁电感Lm释放能量,原边电流ip等于i1,从零开始,线性上升,其表达式为
Figure BSA0000193348810000041
t11时刻,原边电流ip上升至输入电流基准I1_ref,原边开关管S1关断,此模态结束。输入电流基准的表达式为
2.开关模态2[t11-t12][对应于附图5]
t11时刻,解耦二极管Dx1和Dx3自然导通,隔离变压器原边绕组N1承受解耦电容电压vx且同名端为负,激磁电感将输入多于输出的这部分能量向解耦电容传递,原边电流ip等于ix1,从I1_ref开始,线性下降,其表达式为
Figure BSA0000193348810000043
t12时刻,原边电流ip下降至原边电流基准ip_ref,此模态结束。ip_ref的表达式为
Figure BSA0000193348810000044
3.开关模态3[t12-t13][对应于附图6]
t12时刻,开通副边开关管S2,隔离变压器副边绕组N2承受输出滤波电容电压且同名端为负,其值约等于电网电压vgrid,解耦二极管Dx1和Dx3因承受反向电压而关断,因此,为了确保逆变器的正常工作,vx必须要大于|vgrid|/n。激磁电感中储存的能量向并网侧释放,副边电流i2等于is,从ip_ref/n开始线性下降,其表达式为
Figure BSA0000193348810000051
t13时刻,副边电流i2下降到零,此模态结束。
4.开关模态4[t13-t14][对应于附图7]
t13时刻以后,副边开关管S2仍然处于导通状态,但由于副边二极管D2的存在,副边电流i2保持为零,隔离变压器完成磁复位,输出滤波电路提供电网所需能量。这一模态一直持续到下一开关周期来临为止。
模式2下具体工作情况:
1.开关模态1[t20-t21][对应于附图4]
此模态中逆变器的工作情况与模式1下的模态1类似,输入电源向激磁电感传递能量,不同的是,t21时刻,原边电流ip上升至I1_ref后,原边开关管S1不关断。
2.开关模态2[t21-t22][对应于附图8]
t21时刻,开通解耦开关管Sx,S1和Sx同时处于导通状态,隔离变压器原边绕组N1承受解耦电容电压vx且同名端为正,解耦电容提供不足部分的能量,原边电流ip继续线性上升,其表达式为
Figure BSA0000193348810000052
t22时刻,原边电流ip上升至原边电流基准ip_ref,同时关断原边开关管S1和解耦开关管Sx,此模态结束。
此后逆变器的工作情况与模式1相同。
附图9是本发明应用于110V/50Hz交流电网的输入电流Iin、解耦电容电压vx、电网电压vgrid及并网电流igrid的仿真波形。由仿真波形可知,本发明能够有效抑制直流电源输入电流低频纹波。
从以上的描述可以得知,本发明提出的一种具有低频纹波抑制功能的反激式并网逆变器具有以下几方面的优点:
1)增加的主动解耦电路结构简单、能够消除输入电流中的低频交流分量,实现光伏电池板的最大功率点跟踪。
2)消除了传统逆变器中的大容量、短寿命电解电容,可采用容值小、寿命长、可靠性高的薄膜电容,使逆变器寿命与光伏电池板寿命相匹配。

Claims (1)

1.一种具有低频纹波抑制功能的反激式并网逆变器,包括输入直流电源、输入电容(1)、输入二极管(2)、隔离变压器(4)、原边开关管(5)、副边二极管(6)、副边开关管(7)、输出滤波电路(8)和电网;其中输入直流电源的正极与输入电容(1)的一端、输入二极管(2)的阳极相连接,输入直流电源的负极与输入电容(1)的另一端、原边开关管(5)的源极相连接;隔离变压器(4)原边绕组的同名端与输入二极管(2)的阴极相连接,隔离变压器(4)原边绕组的非同名端与原边开关管(5)的漏极相连接;隔离变压器(4)副边包括两个绕组,副边二极管(6)包括两个二极管,副边开关管(7)包括两个开关管,输出滤波电路(8)由一个输出滤波电容和一个输出滤波电感组成,其中,第一副边绕组的非同名端与第一副边二极管的阳极相连接,第一副边二极管的阴极与第一副边开关管的漏极相连接,第二副边绕组的同名端与第二副边二极管的阴极相连接,第二副边二极管的阳极与第二副边开关管的源极相连接,第一副边开关管的源极与第二副边开关管的漏极、输出滤波电容的一端、输出滤波电感的一端相连接,输出滤波电感的另一端与电网的一端相连接,电网的另一端与第一副边绕组的同名端、第二副边绕组的非同名端、输出滤波电容的另一端相连接;其特征在于:
还包括由三个解耦二极管、一个解耦开关管和一个解耦电容所组成的主动解耦电路(3),其中第一解耦二极管的阴极与解耦开关管的源极、输入二极管(2)的阴极、隔离变压器(4)原边绕组的同名端相连接,第一解耦二极管的阳极与第二解耦二极管的阴极、解耦电容的一端相连接,解耦电容的另一端与解耦开关管的漏极、第三解耦二极管的阴极相连接,第三解耦二极管的阳极与隔离变压器(4)原边绕组的非同名端、原边开关管(5)的漏极相连接,第二解耦二极管的阳极与输入直流电源的负极、输入电容(1)的另一端、原边开关管(5)的源极相连接。
CN201911041242.4A 2019-10-29 2019-10-29 一种具有低频纹波抑制功能的反激式并网逆变器 Pending CN110783951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911041242.4A CN110783951A (zh) 2019-10-29 2019-10-29 一种具有低频纹波抑制功能的反激式并网逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911041242.4A CN110783951A (zh) 2019-10-29 2019-10-29 一种具有低频纹波抑制功能的反激式并网逆变器

Publications (1)

Publication Number Publication Date
CN110783951A true CN110783951A (zh) 2020-02-11

Family

ID=69387508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911041242.4A Pending CN110783951A (zh) 2019-10-29 2019-10-29 一种具有低频纹波抑制功能的反激式并网逆变器

Country Status (1)

Country Link
CN (1) CN110783951A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188687A (zh) * 2020-10-30 2021-01-05 福州大学 一种复合Flyback-TiCuk LED驱动电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618470A (zh) * 2013-12-03 2014-03-05 东南大学 一种光伏并网微逆变器及功率解耦控制方法
CN203675000U (zh) * 2013-12-03 2014-06-25 东南大学 一种光伏并网微逆变器
CN108111039A (zh) * 2016-11-25 2018-06-01 南京航空航天大学 一种抑制输入低频纹波的高效率微型光伏并网逆变器
CN108111038A (zh) * 2016-11-25 2018-06-01 南京航空航天大学 一种基于反激电路和有源纹波抑制的微型光伏并网逆变器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618470A (zh) * 2013-12-03 2014-03-05 东南大学 一种光伏并网微逆变器及功率解耦控制方法
CN203675000U (zh) * 2013-12-03 2014-06-25 东南大学 一种光伏并网微逆变器
CN108111039A (zh) * 2016-11-25 2018-06-01 南京航空航天大学 一种抑制输入低频纹波的高效率微型光伏并网逆变器
CN108111038A (zh) * 2016-11-25 2018-06-01 南京航空航天大学 一种基于反激电路和有源纹波抑制的微型光伏并网逆变器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188687A (zh) * 2020-10-30 2021-01-05 福州大学 一种复合Flyback-TiCuk LED驱动电路
CN112188687B (zh) * 2020-10-30 2022-05-13 福州大学 一种复合Flyback-TiCuk LED驱动电路

Similar Documents

Publication Publication Date Title
CN108448913B (zh) 一种单级式基于交错并联无桥pfc电路和llc谐振的隔离型ac-dc变换器
CN106059306B (zh) 一种多单元二极管电容网络高增益全桥隔离型直流变换器
CN105958816B (zh) 一种多单元二极管电容网络和耦合电感高增益直流变换器
CN103944397A (zh) Boost型隔离DC/DC变换器及其控制方法
CN102522766A (zh) 一种带有功率解耦电路的反激式微型光伏并网逆变器及其控制方法
CN112072942A (zh) 一种改进型开关耦合电感准z源逆变器
CN105141138A (zh) 一种倍压式软开关型推挽直流变换器
CN204089603U (zh) 一种基于boost隔离升压拓扑的太阳能并网变流器
CN113783418B (zh) 一种低输入电流纹波高增益软开关直流变换器
CN110224601A (zh) 一种基于三绕组耦合电感的高增益Boost变换器及其工作方法
CN103887981A (zh) 一种全桥dc-dc变换器
CN112019080B (zh) 一种含lc有源升压缓冲网络的单相电流型逆变器
CN203675000U (zh) 一种光伏并网微逆变器
TWI581553B (zh) 交錯式高升壓dc-dc轉換器
CN109672332A (zh) 一种单管高增益零纹波dc-dc变换器
TWM408678U (en) Photovoltaic powered system
CN108123633B (zh) 一种无电解电容纹波抑制的高效率光伏并网逆变器
CN110783951A (zh) 一种具有低频纹波抑制功能的反激式并网逆变器
CN203339952U (zh) 一种开关电容式交流-交流变换器
CN109842311A (zh) 一种带功率解耦电路的三端口反激式光伏并网微逆变器及调制方法
CN202475260U (zh) 高升压比变换器、太阳能逆变器与太阳能电池系统
CN202334349U (zh) 一种直流隔离的并网逆变电路及光伏逆变系统
CN108111039B (zh) 一种抑制输入低频纹波的高效率微型光伏并网逆变器
CN108123635B (zh) 一种零输入纹波和极性反转输出式微型逆变器
CN203883678U (zh) 一种全桥dc-dc变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200211