CN110783583A - 三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用 - Google Patents

三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用 Download PDF

Info

Publication number
CN110783583A
CN110783583A CN201911093169.5A CN201911093169A CN110783583A CN 110783583 A CN110783583 A CN 110783583A CN 201911093169 A CN201911093169 A CN 201911093169A CN 110783583 A CN110783583 A CN 110783583A
Authority
CN
China
Prior art keywords
gqds
agpt
dimensional
shell structure
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911093169.5A
Other languages
English (en)
Inventor
张东霞
杨江花
罗聪
赫世杰
李金灵
周喜斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201911093169.5A priority Critical patent/CN110783583A/zh
Publication of CN110783583A publication Critical patent/CN110783583A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种三维Au‑GQDs@AgPt蛋黄壳结构复合材料,是以Au球为核,GQDs为中间层,AgPt合金为壳层,组成的三维蛋黄壳结构。本发明采用Au‑GQDs@Ag核壳纳米粒子作为硬模板,通过PtCl6 2‑和Ag之间的电流置换反应获得Au‑GQDs@AgPt蛋黄壳纳米复合材料。由于AgPt的电子效应和Au‑Ag金属的协同效应,GQDs的分散性以及特殊的蛋黄壳结构,大大地提高了对甲醇的电催化活性(其催化性能是商业Pt/C的5~10倍)和对CO中毒的耐受性和稳定性,在DMFCs中具有潜在的应用前景。

Description

三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用
技术领域
本发明属于化学领域,具体涉及一种用AA作为绿色还原剂,GQDs为分散剂,三维Au-GQDs@AgPt蛋黄壳纳米催化剂的制备及对甲醇催化氧化性能的研究。
背景技术
近年来,直接甲醇氧化燃料电池(DMFCs)作为可持续能源,因其工作温度低,能量转换效率高和绿色友好而引起了广泛的关注。贵金属催化剂(主要是铂)由于其有效的催化活性具有进一步改进的显著潜力,被广泛用作甲醇氧化反应(MOR)的阳极催化剂。但是,其差的抗CO中毒性,低的Pt利用率和高成本,严重阻碍了DMFC的商业化。因此,在电催化领域中,很多研究都围绕着Pt催化剂的更高效利用。而Pt基多金属核-壳催化剂由于比纯Pt催化剂具有更高的催化活性和较低的Pt消耗而备受瞩目。
Ag和Pt的协同作用提高MOR催化性能的报道很少,因此Ag纳米颗粒(AgNPs)的引入很受关注。首先,Ag与Pt具有相似的晶格常数,这有利于Ag与Pt的生长以及合金的形成。其次,由于Pt和Ag之间的协同作用,通常可以在与Ag合金化后提高Pt基催化剂的催化性能。将Au掺入Pt基催化剂中亦带来许多好处。一方面,Au具有良好的导电性,是用于构造功能化层的出色基材,还可以有效去除氧化中间体并提高催化剂的耐久性。另一方面,Au可以改变Pt的电子结构,从而提高Pt基催化剂的催化活性。石墨烯量子点由于其良好的化学稳定性、高的电导率和大的比表面积,无论是作为催化剂载体还是分散剂都备受欢迎。蛋黄壳(Yolk-shell Y-SNPs)结构因其具有较大的空腔,在催化、储能等领域都有着巨大的应用潜力。本发明采用绿色简便的方法合成了一种三维的Au-GQDs @ AgPt蛋黄壳纳米复合材料并应用于甲醇的催化氧化研究。
发明内容
本发明的目的是提供一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法;
本发明的另一目的是提供上述三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料对于催化氧化甲醇的性能进行研究,以期用于甲醇燃料电池的阳极催化剂。
一、三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备
(1)Au-GQDs纳米颗粒的制备:将石墨烯量子点(GQDs)、氯金酸加入水中搅拌混合均匀后加热到80℃~100℃;再加入柠檬酸钠,反应20~40min;冷却至室温,离心,得到Au-GQDs纳米颗粒。其中,氯金酸与石墨烯量子点(GQDs)的质量比为0.5:1~0.7:1;氯金酸与柠檬酸钠的质量比为0.2:1~0.6:1。
(2)Au-GQDs@Ag核壳纳米球的制备:在Au-GQDs溶液中加入硝酸银溶液,搅拌并培养3~8min,再加入还原剂抗坏血酸(AA),室温反应1~3h;反应产物经离心分离后用乙醇和水连续冲洗去除残余物,得到Au-GQDs@Ag核壳纳米球。其中,硝酸银的浓度为0.006~0.1M;硝酸银与还原剂抗坏血酸的质量比为0.05:1~0.10:1。所述离心分离是以10000~14000转/分的速度离心10~30分钟。
(3)三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备:在Au-GQDs@Ag溶液中加入20~30mM160~200μL氯铂酸,室温下反应1~3h;反应产物用乙醇和水离心洗涤去除残留物,得到目标产物Au-GQDs@AgPt蛋黄壳结构纳米复复合材料。
二、三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的结构
为考察催化剂核壳结构的合成,通过TEM、HRTEM、XRD、XPS、EDX等一系列手段进行物理表征,表征结构表明Au-GQDs@AgPt蛋黄壳纳米复合材料成功合成。
1、TEM分析
图1为Au-GQDs@Ag、Au-GQDs@AgPt的HRTEM、TEM图。图1(a)为Au-GQDs@Ag的TEM图,如图所示,Au-GQDs@Ag纳米颗粒呈球形或椭圆形,分散的非常均匀,无团聚颗粒存在,这些纳米颗粒的平均尺寸约为20.0nm。图1(b)为Au-GQDs@Ag的HRTEM 图。从图可以清楚地观察到较深的核和较浅的壳区域,证实了Au-GQDs@Ag核-壳结构的存在。在核-壳Au-GQDs@Ag纳米颗粒的边缘区域观察到间距为0.236 nm的晶格条纹,这与Ag纳米颗粒晶体的(111)(0.2359nm)衍射平面是一致的。图1(c)为Au-GQDs@AgPt的TEM图,可以看出,材料分布的比较均匀,分散性好,而且每个颗粒都包含一个暗黑中心和一个表面粗糙的灰色壳,中间有一个很明显的空腔。可见,蛋黄壳结构的Au-GQDs @ AgPt纳米复合物成功合成。
2、XRD分析
图2为Au-GQDs@AgPt的XRD图。从图2可以看出,Au-GQDs@Ag,Au-GQDs@AgPt在20°-30°范围内表现出较宽的衍射峰,这可能归因于碳(002)晶面,表明催化剂中存在GQDs。当仔细观察(111)峰时,很明显Au-GQDs@AgPt在2θ= 39-40o处显示一个宽峰,位于Ag和Pt组分之间,而且Au-GQDs@ AgPt的衍射峰向更高角度偏移,以上结果表明AgPt合金壳层的形成。同时,该衍射峰恰好出现在Pt(JCPDS no. 04-0802)和Ag(JCPDS no. 04-0783)的标准峰之间,进一步验证了Au-GQDs @ AgPt的成功合成。
三、三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的催化性能
取Au-GQDs@AgPt 5~10μL,滴到已经打磨好的电极上,自然晾干,然后利用三电极系统进行电催化及稳定性测试。
采用循环伏安法(Cyclic Voltammetry,CV),在1M NaOH包含0.5M CH3OH的混合溶液中进行CV测试的电势范围为-0.8~0.4V,在0.5M H2SO4硫酸中CV测试的电位范围为-0.20~1.0V,电势扫描速率为50mV/s。
图3为Au-GQDs@AgPt、Au-GQDs@Pt、Au@Pt、Pt/C催化剂修饰电极在0.5M H2SO4溶液中的CV曲线(扫描电位从-0.4~1.2V,扫速为50mVs-1)。由图3可见,Au-GQDs@AgPt催化剂在0.5M H2SO4中测试的CV曲线,-0.3和0.1V之间的电流峰值归因于氢吸附和解吸,并且它是获得催化剂的电化学活性表面积(ECSA)的可用参数。ECSA可以通过以下公式计算:
在该式中,“QH”表示氢吸附的库仑电荷;0.21mC-2表示Pt的清洁表面上的单层氢吸附电荷。“MPt”是Pt在电极上的负载量,其值通过ICP测量。计算结果表明,Au-GQDs@AgPt具有大的电化学活性表面积。说明GQDs作为分散剂增大了AgPt合金的附着位点。
图4为Au-GQDs@AgPt、Au-GQDs@Pt、Au@Pt、Pt/C催化剂修饰电极在含0.5M甲醇1.0MNaOH溶液中的CV曲线(电势范围为-0.8~0.4V,电势扫描速率为50mV/s。)。图4的测试结果表明,Au-GQDs@AgPt表面上的甲醇氧化比其他催化剂表面上的甲醇氧化更容易且更快。此外,Au-GQDs@ AgPt的峰值电流密度(33.20mA cm-2)比Au-GQDs@Pt(15.68mA cm-2),Au@Pt(8.91mA cm-2)和Pt/ C(3.65mA cm-2)大得多,进一步证明Au-GQDs@ AgPt催化剂对甲醇氧化有更高的电催化活性。
图5为Au-GQDs@AgPt、Au-GQDs@Pt、Au@Pt、Pt/C催化剂修饰电极在含0.5M甲醇的1.0M NaOH溶液中的CA曲线:电压为0.182V,扫描速率为50mV/s,测试3000s。图5显示,经过3000s,Au-GQDs@AgPt纳米催化剂电极的电流密度速率比Au-GQDs@Pt、Au@Pt和商用Pt/C电极降的慢,表明其优异的催化稳定性。
综上所述,本发明制备的三维Au-GQDs@AgPt电极与Au-GQDs@Pt、Au@Pt和商业Pt/C电极相比,由于AgPt的电子效应和Au-Ag金属的协同效应,GQDs的分散性以及特殊的蛋黄壳结构,大大地提高了对甲醇的电催化活性(其催化活性约为商业Pt/C的7倍)和对CO中毒的耐受性和稳定性,在DMFCs中具有潜在的应用前景。
附图说明
图1为Au-GQDs@Ag、Au-GQDs@AgPt核壳纳米材料的TEM图。
图2为Au-GQDs@AgPt的XRD图。
图3为Au-GQDs@AgPt、Au-GQDs@Pt、Au@Pt、Pt/C催化剂修饰电极在0.5M H2SO4溶液中的CV曲线。
图4为Au-GQDs@AgPt、Au-GQDs@Pt、Au@Pt、Pt/C催化剂修饰电极在含0.5M甲醇的1.0M NaOH溶液中的CV曲线。
图5为Au-GQDs@AgPt、Au-GQDs@Pt、Au@Pt、Pt/C催化剂修饰电极在含0.5M甲醇的1.0M NaOH溶液中的CA曲线。
具体实施方式
下面通过具体实施例对本发明三维Au-GQDs@AgPt蛋黄壳纳米复合催化剂的制备及性能做进一步说明。
实施例1.一种三维Au-GQDs@AgPt蛋黄壳纳米催化剂的制备
(1)GQDs的制备:称取300mg的石墨粉,超声混合在20mL硝酸和60mL硫酸的混合酸中,然后在120℃的油浴锅中连续搅拌回流12h,待反应终止后自然降至室温,将溶液稀释到300mL的去离子水中,并用碳酸钠中和,接着用240nm滤膜在-4℃冰水浴中去除溶液中的硫酸钠和硝酸钠盐。最后,将制备的溶液在透析袋(保留分子量3500da)中用去离子水透析2天,得到石墨烯量子点(GQDs);
(2)Au-GQDs纳米颗粒的制备:取步骤(1)制备的GQDs35mg,加入35mL的水搅拌5min,逐滴加入25.4mM 200μL氯金酸(HAuCl4),然后搅拌加热到100℃后加入0.1M 200μL柠檬酸钠回流反应30min,冷却至室温后离心得到Au-GQDs纳米颗粒;
(3)Au-GQDs@Ag蛋黄壳纳米球的制备:取步骤(2)制备的Au-GQDs 5mL加入15mL的水,磁力搅拌5min后加入0.01M 120μL的硝酸银,搅拌并培养5min,然后在25℃下加入0.1M 160μL抗坏血酸(AA),反应2h;然后以12000转/分的速度离心20分钟,最后用乙醇和水连续冲洗三次去除残余物,得到黄色Au-GQDs@Ag纳米球;
(4)Au-GQDs@AgPt蛋黄壳结构纳米催化剂的制备:取步骤(3)中制备的Au-GQDs@Ag5mL,加入5mL的水,加入25.4mM 200μL氯铂酸(H2PtCl6),室温下搅拌反应2h,最终用乙醇和水离心四次去除残留物得到复合Au-GQDs@AgPt核壳纳米催化剂;
(5)Au-GQDs@AgPt蛋黄壳结构纳米催化剂的的活性:Au-GQDs@AgPt用作甲醇氧化反应(MOR)的阳极催化剂,其催化活性约为商业Pt/C的7倍,且表现出很大的电催化性能和耐毒性,在DMFCs中具有潜在的应用前景。

Claims (9)

1.一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料,其特征在于:以Au-GQDs为核,封装纳米Ag的Au-GQDs@Ag为中间层,Pt纳米颗粒作为壳层,三者结合形成了三维蛋黄壳结构。
2.如权利要求1所述一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法,包括以下步骤:
(1)Au-GQDs纳米颗粒的制备:将石墨烯量子点、氯金酸加入水中搅拌混合均匀后加热到80℃~100℃;再加入柠檬酸钠,反应20~40min;冷却至室温,离心,得到Au-GQDs纳米颗粒;
(2)Au-GQDs@Ag核壳纳米球的制备:在Au-GQDs溶液中加入硝酸银溶液,搅拌并培养3~8min,再加入还原剂抗坏血酸(AA),室温反应1~3h;反应产物离心分离后用乙醇和水连续冲洗去除残余物,得到Au-GQDs@Ag核壳纳米球;
(3)三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备:在Au-GQDs@Ag溶液中加入氯铂酸,室温下反应1~3h;反应产物用乙醇和水离心洗涤去除残留物,得到目标产物Au-GQDs@AgPt蛋黄壳结构纳米复复合材料。
3.如权利要求2所述一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法,其特征在于:步骤(1)中,氯金酸与石墨烯量子点(GQDs)的质量比为0.5:1~0.7:1。
4.如权利要求2所述一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法,其特征在于:步骤(1)中,氯金酸与柠檬酸钠的质量比为0.2:1~0.6:1。
5.如权利要求2所述一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法,其特征在于:步骤(2)中,硝酸银与氯铂酸的质量比为0.07:1~0.1:1。
6.如权利要求2所述一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法,其特征在于:步骤(2)中,硝酸银与还原剂抗坏血酸的质量比为0.05:1~0.10:1。
7.如权利要求2所述一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法,其特征在于:步骤(2)中,离心分离是以10000~14000转/分的速度离心10~30分钟。
8.如权利要求2所述一种三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料的制备方法,其特征在于:步骤(3)中,氯铂酸的浓度为20~30mM。
9.如权利要求所述三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料作为催化剂用于甲醇氧化反应(MOR)中。
CN201911093169.5A 2019-11-11 2019-11-11 三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用 Pending CN110783583A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911093169.5A CN110783583A (zh) 2019-11-11 2019-11-11 三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911093169.5A CN110783583A (zh) 2019-11-11 2019-11-11 三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用

Publications (1)

Publication Number Publication Date
CN110783583A true CN110783583A (zh) 2020-02-11

Family

ID=69390601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911093169.5A Pending CN110783583A (zh) 2019-11-11 2019-11-11 三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN110783583A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668498A (zh) * 2020-06-30 2020-09-15 西北师范大学 多枝晶Au@GQDs@PtPb核壳结构纳米复合材料的制备及应用
CN112599788A (zh) * 2021-01-11 2021-04-02 西北师范大学 N-GQDs/AgPt中空树突结构纳米复合材料及其制备与应用
CN113118454A (zh) * 2021-03-11 2021-07-16 上海应用技术大学 一种光伏电池用石墨烯量子点负载的超细银粉的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769583A (zh) * 2014-03-03 2014-05-07 上海交通大学 石墨烯量子点修饰的金纳米颗粒的制备方法
CN103785380A (zh) * 2014-02-24 2014-05-14 山东招金集团有限公司 一种高稳定性纳米金催化剂及其制备方法
US20170125819A1 (en) * 2011-09-12 2017-05-04 The Board Of Trustees Of The Leland Stanford Junior University Encapsulated sulfur cathodes for rechargeable lithium batteries
CN109701527A (zh) * 2019-01-28 2019-05-03 三峡大学 石墨烯量子点稳定的金纳米颗粒的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125819A1 (en) * 2011-09-12 2017-05-04 The Board Of Trustees Of The Leland Stanford Junior University Encapsulated sulfur cathodes for rechargeable lithium batteries
CN103785380A (zh) * 2014-02-24 2014-05-14 山东招金集团有限公司 一种高稳定性纳米金催化剂及其制备方法
CN103769583A (zh) * 2014-03-03 2014-05-07 上海交通大学 石墨烯量子点修饰的金纳米颗粒的制备方法
CN109701527A (zh) * 2019-01-28 2019-05-03 三峡大学 石墨烯量子点稳定的金纳米颗粒的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANGHUA YANG等: ""Synthesis of three-dimensional Au-graphene quantum dots@Pt core-shell dendritic nanoparticles for enhanced methanol electro-oxidation"", 《NANOTECHNOLOGY》 *
NING SUI等: ""Boosting methanol oxidation reaction with Au@AgPt yolk-shell nanoparticles"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668498A (zh) * 2020-06-30 2020-09-15 西北师范大学 多枝晶Au@GQDs@PtPb核壳结构纳米复合材料的制备及应用
CN112599788A (zh) * 2021-01-11 2021-04-02 西北师范大学 N-GQDs/AgPt中空树突结构纳米复合材料及其制备与应用
CN113118454A (zh) * 2021-03-11 2021-07-16 上海应用技术大学 一种光伏电池用石墨烯量子点负载的超细银粉的制备方法

Similar Documents

Publication Publication Date Title
Lei et al. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts
US11201335B2 (en) Noble metal nanoparticles on a support
Yang et al. Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium
Sheng et al. Hollow PdCo alloy nanospheres with mesoporous shells as high-performance catalysts for methanol oxidation
Sun et al. Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction
Shi et al. FeNi-functionalized 3D N, P doped graphene foam as a noble metal-free bifunctional electrocatalyst for direct methanol fuel cells
Burhan et al. Highly efficient carbon hybrid supported catalysts using nano-architecture as anode catalysts for direct methanol fuel cells
Zhang et al. Cu3P/RGO promoted Pd catalysts for alcohol electro-oxidation
Zhu et al. Three-dimensional porous graphene supported Ni nanoparticles with enhanced catalytic performance for Methanol electrooxidation
CN110783583A (zh) 三维Au-GQDs@AgPt蛋黄壳结构纳米复合材料及其制备和应用
Wei et al. Highly efficient Pt-Co alloy hollow spheres with ultra-thin shells synthesized via Co-BO complex as intermediates for hydrogen evolution reaction
Song et al. Rapid one-step synthesis of carbon-supported platinum–copper nanoparticles with enhanced electrocatalytic activity via microwave-assisted heating
Pei et al. Ultra-low Au decorated PtNi alloy nanoparticles on carbon for high-efficiency electro-oxidation of methanol and formic acid
CN104607186B (zh) 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
Gao et al. One step synthesis of PtNi electrocatalyst for methanol oxidation
Ren et al. One-pot solvothermal preparation of ternary PdPtNi nanostructures with spiny surface and enhanced electrocatalytic performance during ethanol oxidation
Cheng et al. Enhanced activity and stability of core–shell structured PtRuNix electrocatalysts for direct methanol fuel cells
CN111359613B (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
Yan et al. High quality electrocatalyst by Pd–Pt alloys nanoparticles uniformly distributed on polyaniline/carbon nanotubes for effective methanol oxidation
Duraisamy et al. Novel palladium-decorated molybdenum carbide/polyaniline nanohybrid material as superior electrocatalyst for fuel cell application
CN113363507A (zh) 一种碳化钛负载铂钯纳米花电极催化剂的制备方法
Salarizadeh et al. Comparison of methanol oxidation reaction process for NiCo2O4/X (X= rGO, MWCNTs, HCNs) nanocatalyst
Zhang et al. One-step fabrication of bimetallic PtPd mesoporous nanospheres for methanol electrooxidation
Du et al. Cu-template-dependent synthesis of PtCu nanotubes for oxygen reduction reactions
Zhang et al. Prussian-blue-analogue derived FeNi2S4/NiS nanoframes supported by N-doped graphene for highly efficient methanol oxidation electrocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200211