CN110783548B - 电化学活性材料及其制备方法 - Google Patents

电化学活性材料及其制备方法 Download PDF

Info

Publication number
CN110783548B
CN110783548B CN201911079126.1A CN201911079126A CN110783548B CN 110783548 B CN110783548 B CN 110783548B CN 201911079126 A CN201911079126 A CN 201911079126A CN 110783548 B CN110783548 B CN 110783548B
Authority
CN
China
Prior art keywords
lithium
active material
carbon nanotube
nanogold
electrochemically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911079126.1A
Other languages
English (en)
Other versions
CN110783548A (zh
Inventor
王金娥
董明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou First Element Nano Technology Co ltd
Original Assignee
Suzhou First Element Nano Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou First Element Nano Technology Co ltd filed Critical Suzhou First Element Nano Technology Co ltd
Priority to CN201911079126.1A priority Critical patent/CN110783548B/zh
Publication of CN110783548A publication Critical patent/CN110783548A/zh
Application granted granted Critical
Publication of CN110783548B publication Critical patent/CN110783548B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电化学活性材料及其制备方法,属于电极材料技术领域。该电化学活性材料的制备方法,包括以下步骤:S1,制备表面包覆有纳米金晶的碳纳米管纸,再在充氩气手套箱中,于包覆有纳米金晶的碳纳米管纸表面辊轧金属锂箔;S2,加热至锂融化,使锂浸润到碳纳米管纸内部,得到锂‑金‑碳纳米管复合箔材;S3,在锂‑金‑碳纳米管复合箔材表面低温溅射一层纳米硅,得到电化学活性材料。本发明通过在碳纳米管表面设置纳米金晶层,避免了锂晶界对碳纳米管的排斥,使熔融锂很容易浸润碳纳米管,保证了碳纳米管在金属锂中的均匀分散。

Description

电化学活性材料及其制备方法
技术领域
本发明涉及的是一种电极材料领域的技术,具体是一种电化学活性材料及其制备方法。
背景技术
作为下一代锂金属电池关键负极材料之一,锂金属因其极大的比容量(3860mAh/g)受到了业界 越来越广泛的关注。在提供接近十倍于传统石墨负极的比容量的同时,锂金属负极的使用还可以显著 的拓展锂电池正极材料的选择,使得一些本身不含锂的正极材料,如硫,氧化钒等的应用成为可能。 但是由于锂金属十分活泼,导致其表面成分极其复杂,由此进一步导致了在电化学过程中的锂金属的 沉积和溶解具有明显的不均匀性,从而导致枝晶的过度生长。枝晶和电解液之间大量的副反应,在显 著拉低电池的库伦效率的同时,也极大的限制了锂电池的循环寿命和电池的安全性。
为了解决现有技术存在的上述问题,本发明由此而来。
发明内容
本发明针对现有技术存在的上述不足,提出了一种电化学活性材料及其制备方法,通过在碳纳 米管表面设置纳米金晶层,避免了锂晶界对碳纳米管的排斥,使熔融锂很容易浸润碳纳米管,保证了 碳纳米管在金属锂中的均匀分散。
本发明涉及一种电化学活性材料的制备方法,包括以下步骤:
S1,制备表面包覆有纳米金晶的碳纳米管纸,再在充氩气手套箱中,于包覆有纳米金晶的碳纳 米管纸表面辊轧金属锂箔;
S2,加热至锂融化,使锂浸润到碳纳米管纸内部,得到锂-金-碳纳米管复合箔材;
S3,在锂-金-碳纳米管复合箔材表面低温溅射一层纳米硅,得到电化学活性材料。
优选的,所述表面包覆有纳米金晶的碳纳米管纸通过在大孔隙率碳纳米管纸表面低压冷态溅射 金金属得到。
优选的,所述纳米金晶厚度为1~100nm,进一步优选为10~20nm。
优选的,所述锂箔厚度为0.1~100μm,进一步优选为1~20μm。
优选的,步骤S2中,加热温度为200℃~300℃。
优选的,所述辊轧金属锂箔及后续步骤均在充氩气手套箱中操作。
优选的,所述包覆纳米硅的厚度为100~300nm。
本发明涉及一种电化学活性材料,采用上述方法制备得到。
技术效果
与现有技术相比,本发明具有如下技术效果:
1)碳纳米管表面纳米金晶层的存在避免了锂晶界对碳纳米管的排斥,使熔融锂很容易浸润碳纳 米管,保证了碳纳米管在金属锂中的均匀分散;
2)碳纳米管的均匀加入解决了负极材料在充放电过程中巨大的体积膨胀问题,能够保证稳定的 SEI膜结构;
3)表面纳米硅层的存在,可有效避免电解液和活泼锂金属表面的直接接触,减少副反应的发生, 同时它还为锂金属和电解液之间构建了一层导离子过渡层,起到了很好的均匀离子通道的作用。
附图说明
图1为实施例1制备的电化学活性材料、锂箔分别与磷酸亚铁锂组装电池,测得的电池循环 性能对比图。
具体实施方式
下面结合附图及具体实施方式对本发明进行详细描述。
实施例1
本实施例涉及一种电化学活性材料的制备方法,包括以下步骤:
S1,裁取6cm*8cm的自制碳纳米管纸,将其固定于低压冷态溅射仪中,溅射功率14W,溅射 时间10s,使碳纳米管纸表面形成金金属层,金金属层厚度约15nm;
S2,在充氩气手套箱中,于金金属层表面辊轧相同大小的锂箔,然后置于加热板上加热至200℃, 锂完全融化后冷却得到Li/Au/CNTs复合箔材,备用;
S3,将冷却后的Li/Au/CNTs复合箔材固定于手套箱中的低压冷态溅射仪中,溅射功率14W, 溅射时间1min,使Li/Au/CNTs复合箔材表面形成纳米硅层,得到电化学活性材料Si/Li/Au/CNTs, 其中纳米硅层厚度约100nm。
将所制得的电化学活性材料用作负极与磷酸亚铁锂组装成电池Si/Li/Au/CNTs-LFP,作为对比, 以锂箔为负极与磷酸亚铁锂组装成电池Li-LFP。其0.1C相同倍率下循环性能对比曲线见附图1。由图 可见,以本发明实施例所制得的电化学活性材料为负极组成的电池循环性能明显优于以锂箔为负极的 电池。
实施例2
本实施例涉及一种电化学活性材料的制备方法,包括以下步骤:
S1,裁取6cm*8cm的自制碳纳米管纸,将其固定于低压冷态溅射仪中,溅射功率12W,溅射 时间15s,使碳纳米管纸表面形成金金属层,金金属层厚度约20nm;
S2,在充氩气手套箱中,于金金属层表面辊轧相同大小的锂箔,然后置于加热板上加热至220℃, 锂完全融化后冷却得到Li/Au/CNTs复合箔材,备用;
S3,将冷却后的Li/Au/CNTs复合箔材固定于手套箱中的低压冷态溅射仪中,溅射功率14W, 溅射时间1min,使Li/Au/CNTs复合箔材表面形成纳米硅层,得到电化学活性材料,其中纳米硅层厚 度约100nm。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是 依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方 案的范围内。

Claims (7)

1.一种电化学活性材料的制备方法,其特征在于,包括以下步骤:
S1,制备表面包覆有纳米金晶的碳纳米管纸,再在充氩气手套箱中,于包覆有纳米金晶的碳纳米管纸表面辊轧金属锂箔;
S2,加热,至锂融化,使锂浸润到碳纳米管纸内部,得到锂-金-碳纳米管复合箔材;
S3,在锂-金-碳纳米管复合箔材表面低温溅射一层纳米硅,得到电化学活性材料。
2.根据权利要求1所述电化学活性材料的制备方法,其特征是,所述表面包覆有纳米金晶的碳纳米管纸通过在大孔隙率碳纳米管纸表面低压冷态溅射金金属得到。
3.根据权利要求2所述电化学活性材料的制备方法,其特征是,所述纳米金晶厚度为1~100nm。
4.根据权利要求1所述电化学活性材料的制备方法,其特征是,所述锂箔厚度为0.1~100μm。
5.根据权利要求2所述电化学活性材料的制备方法,其特征是,步骤S2中,加热温度为200℃~300℃。
6.根据权利要求1所述电化学活性材料的制备方法,其特征是,所述纳米硅的厚度为100~300nm。
7.一种电化学活性材料,其特征在于,采用权利要求1-6任一项权利要求所述制备方法制成。
CN201911079126.1A 2019-11-07 2019-11-07 电化学活性材料及其制备方法 Active CN110783548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911079126.1A CN110783548B (zh) 2019-11-07 2019-11-07 电化学活性材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911079126.1A CN110783548B (zh) 2019-11-07 2019-11-07 电化学活性材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110783548A CN110783548A (zh) 2020-02-11
CN110783548B true CN110783548B (zh) 2022-04-22

Family

ID=69389864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911079126.1A Active CN110783548B (zh) 2019-11-07 2019-11-07 电化学活性材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110783548B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900333B (zh) * 2020-08-15 2021-11-30 江西理工大学 一种碳纳米管膜直接复合熔融锂金属的无锂枝晶阳极及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365200A (zh) * 2018-02-11 2018-08-03 清华大学 一种复合锂金属负极的制备方法
CN109546141A (zh) * 2018-12-14 2019-03-29 蜂巢能源科技有限公司 锂金属复合电极及其制备方法、锂离子电池
CN109713224A (zh) * 2018-12-28 2019-05-03 蜂巢能源科技有限公司 复合锂金属负极及制备方法、锂离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365200A (zh) * 2018-02-11 2018-08-03 清华大学 一种复合锂金属负极的制备方法
CN109546141A (zh) * 2018-12-14 2019-03-29 蜂巢能源科技有限公司 锂金属复合电极及其制备方法、锂离子电池
CN109713224A (zh) * 2018-12-28 2019-05-03 蜂巢能源科技有限公司 复合锂金属负极及制备方法、锂离子电池

Also Published As

Publication number Publication date
CN110783548A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
Meng et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene
Ma et al. Materials and structure engineering by magnetron sputtering for advanced lithium batteries
Thakur et al. Gold-coated porous silicon films as anodes for lithium ion batteries
Zhang et al. Super‐Assembled Hierarchical CoO Nanosheets‐Cu Foam Composites as Multi‐Level Hosts for High‐Performance Lithium Metal Anodes
WO2017190588A1 (zh) 一种采用激光熔覆复合扩散焊和脱合金制备锂离子电池硅负极的方法
Leveau et al. Silicon nano-trees as high areal capacity anodes for lithium-ion batteries
EP3699996B1 (en) Production method for all-solid-state battery
CN112928238B (zh) 超薄金属锂电极及其制备以及作为二次锂电池负极的用途
CN111715857B (zh) 一种金属锂合金负极的制备装置及方法
CN113871696A (zh) 一种全固态厚膜锂电池及其制备方法
Dong et al. Challenges and Prospects of All‐Solid‐State Electrodes for Solid‐State Lithium Batteries
CN113506872A (zh) 锂金属负极材料及其制备方法和应用
Cheng et al. Conducting nitrogen-incorporated ultrananocrystalline diamond coating for highly structural stable anode materials in lithium ion battery
Wang et al. A large-area lithium metal–carbon nanotube film for precise contact prelithiation in lithium-ion batteries
CN110783548B (zh) 电化学活性材料及其制备方法
Kuwata et al. Thin film batteries with Li3PO4 solid electrolyte fabricated by pulsed laser deposition
Xing et al. Endowing Cu foil self-wettable in molten lithium: A roll-to-roll wet coating strategy to fabricate high-performance ultrathin lithium metal anodes
Qi et al. A review on engineering design for enhancing interfacial contact in solid-state lithium–sulfur batteries
Hui et al. Nanosecond Pulsed Laser‐Assisted Deposition to Construct a 3D Quasi‐Gradient Lithiophilic Skeleton for Stable Lithium Metal Anodes
CN110783547A (zh) 锂-金-碳纳米管复合箔材的制备方法
CN115050920B (zh) 一种锑基一体化电极及其制备方法和应用
CN106532025B (zh) 一种锂离子电池多孔负极材料的制备方法和应用
WO2022204978A1 (zh) 负极材料、负极片、电化学装置及电子装置
Kuang et al. Silicon nanoparticles within the carbonized SU-8 cages as a micro lithium-ion battery anode
CN114824184A (zh) 锂金属阳极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant