CN110780272A - 一种颠簸平台sar的非参数化成对回波抑制方法 - Google Patents

一种颠簸平台sar的非参数化成对回波抑制方法 Download PDF

Info

Publication number
CN110780272A
CN110780272A CN201911036303.8A CN201911036303A CN110780272A CN 110780272 A CN110780272 A CN 110780272A CN 201911036303 A CN201911036303 A CN 201911036303A CN 110780272 A CN110780272 A CN 110780272A
Authority
CN
China
Prior art keywords
distance
signal
strong scattering
vibration error
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911036303.8A
Other languages
English (en)
Other versions
CN110780272B (zh
Inventor
梁毅
李国霏
秦翰林
邢孟道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Electronic Science and Technology
Original Assignee
Xian University of Electronic Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Electronic Science and Technology filed Critical Xian University of Electronic Science and Technology
Priority to CN201911036303.8A priority Critical patent/CN110780272B/zh
Publication of CN110780272A publication Critical patent/CN110780272A/zh
Application granted granted Critical
Publication of CN110780272B publication Critical patent/CN110780272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects

Abstract

本发明公开了一种颠簸平台SAR的非参数化成对回波抑制方法,本发明首先对传统误差模型进行改进,构建一种基于多次谐波叠加的振动误差模型,使旋翼转动带来的振动误差得到精准表征;在此基础上研究一种非参数化振动误差相位估计方法,先筛选出强散射单元,再对各强散射单元进行方位加窗截取并计算权值,通过多个强散射单元加权联合估计得到振动误差相位,最后构建振动误差相位补偿函数来抑制回波数据中的成对回波。本发明在颠簸平台SAR成像中,引入新的振动误差模型,对实际中的振动误差进行精确表征;节省了成对回波抑制方法的运算量,且实现了成对回波的有效抑制,改善颠簸平台SAR成像质量。

Description

一种颠簸平台SAR的非参数化成对回波抑制方法
技术领域
本发明属于SAR成像技术领域,特别涉及一种颠簸平台SAR的非参数化 成对回波抑制方法,可用于直升机等颠簸平台的SAR成像处理。
背景技术
合成孔径雷达(SAR)作为一种主动式微波有源传感器,可以全天 时、全天候、远距离获取观测场景的二维图像,已广泛应用于各种雷达 载体。相比于其他雷达平台,颠簸平台SAR具有较好的机动性和灵活性。 然而由于旋翼转动,平台在飞行过程会发生较高频率的振动,这种周期 性的微小振动对回波产生了相位调制,导致成像中出现成对回波问题,造成场景中各个散射点在方位向被复制多次,即“鬼影目标”,严重恶 化成像质量。同时,由于平台振动的幅度多为厘米甚至毫米级,无法通 过惯性测量单元(IMU)对其精确测量。因此,为解决颠簸平台SAR成 对回波问题,消除鬼影目标影响,研究一种基于回波数据的成对回波抑 制方法具有十分重要的意义。
传统成对回波抑制方法采用先估计振动参数,再根据误差模型构建 补偿函数的思路,存在计算量大,过程复杂的问题。同时,传统方法将 振动误差模型构建为理想的单一正弦信号,而在实际情况中,振动误差 通常包含多次谐波分量,因此,传统方法无法准确估计出存在多次谐波 情况下的振动参数,存在一定的局限性。
发明内容
为了解决上述问题,本发明的目的是提出一种颠簸平台SAR的非参数化 成对回波抑制方法。本发明在颠簸平台SAR成像中,通过引入新的振动误差 模型,对实际中的振动误差进行精确表征;大大节省了成对回波抑制方法的 运算量,且可以实现成对回波的有效抑制,进而改善颠簸平台SAR成像质量。
本发明技术原理:首先对传统误差模型进行改进,构建一种基于多次谐 波叠加的振动误差模型,使旋翼转动带来的振动误差得到精准表征;在此基 础上研究一种非参数化振动误差相位估计方法,先筛选出强散射单元,再对 各强散射单元进行方位加窗截取并计算权值,通过多个强散射单元加权联合 估计得到振动误差相位,最后构建振动误差相位补偿函数来抑制回波数据中 的成对回波。
为了达到上述目的,本发明采用以下技术方案予以解决。
一种颠簸平台SAR的非参数化成对回波抑制方法,包括以下步骤:
步骤1,构建基于多次谐波的振动误差模型;
步骤2,获取颠簸平台SAR接收的回波信号,并对回波信号进行解 调,得到基带回波信号;对基带回波信号进行距离向匹配滤波处理,得 到距离压缩后的信号;
步骤3,根据基于多次谐波的振动误差模型,采用基于谐波叠加的 加权联合估计方法对距离压缩后的信号进行振动误差估计,得到成对回 波对应的振动误差相位φe(ta);
步骤4,基于所述成对回波对应的振动相位误差,构造对应的误差 补偿函数,对距离压缩后的信号进行补偿,得到成对回波抑制后的信号。
进一步地,所述采用基于谐波叠加的加权联合估计方法对距离压缩 后的信号进行振动误差估计,得到成对回波对应的振动误差相位;其具 体步骤为:
(3.1)计算距离压缩后的信号中每个距离单元的强度;
(3.2)根据距离压缩后的信号中每个距离单元的强度,从距离压缩 后的信号中筛选出多个强散射单元,作为候选距离单元,其对应的距离 压缩后的信号为强散射单元信号;
(3.3)对每个强散射单元信号分别进行方位加窗截取并计算对应权 值,通过所有强散射单元进行加权联合估计,得到成对回波对应的振动 误差相位。
与现有技术相比,本发明的有益效果为:
(1)本发明采用基于多次谐波叠加的振动误差模型,较原有单一正弦误 差模型可以更为准确地反映实际情况中的振动误差,使得振动误差估计补偿 的准确度更高。
(2)本发明通过将自聚焦技术引入成对回波抑制,利用回波数据直接估 计出振动误差相位并进行补偿,避免了传统方法中对振动参数的估计,而且 突破传统方法只能适应单一误差频率的局限,可以解决多分量信号叠加时的 成对回波问题。
附图说明
下面结合附图和具体实施例对本发明做进一步详细说明。
图1为本发明实施例颠簸平台SAR成像几何模型示意图;
图2(a)为传统振动误差模型示意图,图2(b)为本发明提出的振动误 差模型示意图;
图3(a)为预设振动误差产生的误差相位,图3(b)为通过本发明估计 得到的振动误差相位;
图4(a)为本发明实施例中未经成对回波抑制的原始成像结果图,图4 (b)为本发明实施例中未经成对回波抑制的原始图像成像结果等高线图;
图5(a)为本发明实施例中经过成对回波抑制后的成像结果图,图5(b) 为本发明实施例中经过成对回波抑制后的成像结果等高线图;
图6(a)为图4(a)成像结果中间三点的方位向归一化幅度剖面图,图 6(b)为图5(a)成像结果中间三点的方位向归一化幅度剖面图;
图7(a)为图5(a)最下点成像结果等高线图,图7(b)为图5(a)最 下点成像结果方位向剖面图。
具体实施方式
下面结合附图对本发明的实施例及效果作进一步详细描述。
本发明的一种颠簸平台SAR的非参数化成对回波抑制方法,按照以下步 骤实施:
步骤1,构建基于多次谐波的振动误差模型;
具体地,参照图1,为颠簸平台SAR成像几何模型示意图;颠簸平台SAR 平台沿x轴方向飞行,其速度为v,飞行高度为H,P为场景中心点,对应的 最近斜距为Rs,B为场景中任意目标点。
在理想情况下,平台将沿着图中实线表示的航迹作匀速直线飞行。但在 实际情况中,由于旋翼转动会造成平台在飞行过程中出现周期性振动,这种 周期性微小振动会影响平台到目标的瞬时斜距,如图1中虚线所示,使得理 想回波产生附加的相位调制,这种附加的相位调制呈现周期性的正弦特性, 造成成像结果存在成对回波问题,即存在“鬼影目标”,并且“鬼影目标” 的间隔和强度受平台振动的频率和幅度影响。
考虑振动误差的存在,天线相位中心(APC)到场景中散射点的瞬时斜 距将发生变化。若在方位慢时间ta时刻APC到场景中任意点B的理想斜距为 Rref(ta),则其实际斜距R(ta)可以表示为理想斜距Rref(ta)与振动误差e(ta)在目 标视线上的投影之和。设该时刻振动误差的单位方向向量为
Figure BDA0002251569940000051
APC到点B 的单位方向向量为
Figure BDA0002251569940000052
则实际斜距为
Figure BDA0002251569940000053
式中,<·>表示向量内积;
因此,ta时刻振动误差造成的斜距误差可以表示为:
Figure BDA0002251569940000054
该斜距误差将会导致录取的回波数据产生相位调制,即:
Figure BDA0002251569940000055
式中,λ为雷达信号波长。
参照图2(a),为传统振动误差模型示意图;传统成对回波抑制方法中 将颠簸平台旋翼转动带来的振动误差近似为单一正弦信号模型:
e(ta)=A0sin(2πf0ta0)
其中,A0为正弦信号的振幅,f0为振动频率,φ0为初相。
然而在实际情况中,振动误差e(ta)不可能仅为单一正弦曲线,通常还包 含多次谐波,并且各次谐波的振幅往往各不相同,因此传统模型无法精确表 征实际的振动误差,导致在成对回波抑制后仍有残余误差。
针对上述问题,参照图2(b),本发明提出了振动误差模型示意图;本 发明将振动误差刻画为正弦信号与其多次谐波的叠加。定义振动方程为:
εi(ta)=Aisin(2πfitai)
其中,εi(ta)表示第i次谐波,Ai、fi、φi依次为第i次谐波的振幅、频率 和初相。通常情况下,振幅Ai为厘米级甚至毫米级,远小于距离分辨单元, 振动频率fi在几十赫兹以内。相应的,设定谐波总数为I次,则振动误差模型 可以表示为I次谐波的叠加,即
相比于传统振动误差模型,基于多次谐波叠加的振动误差模型可以更为 准确地反映实际情况中的振动误差,使得之后的振动误差估计补偿的准确度 更高。
步骤2,获取颠簸平台SAR接收的回波信号,并对回波信号进行解调, 得到基带回波信号;对基带回波信号进行距离向匹配滤波处理,得到距离压 缩后的信号;
具体地,解调后的基带回波信号s1(tr,ta)可以表示为
其中,tr为距离快时间,ta为方位慢时间;K0为目标点的后向散射系数, j为虚数单位,ωr(·)为基带回波信号的距离包络,γ为距离向调频率,ωa(·)为 基带回波信号的方位包络,c表示光速,t0表示波束中心穿越目标时刻,fc为 信号载频。
将基带回波信号s1(tr,ta)作快速傅立叶变换(FFT)并乘以距离向匹配滤波 函数,消除距离二次项,再进行逆傅立叶变换(IFFT),得到距离压缩后的 信号s2(tr,ta):
Figure BDA0002251569940000071
其中,sinc为辛格函数,H(fτ)为距离向匹配滤波函数,fτ为距离频率,B 为信号带宽。H(fτ)的具体表达式为:
Figure BDA0002251569940000072
步骤3,根据基于多次谐波的振动误差模型,采用基于谐波叠加的加权联 合估计方法对距离压缩后的信号进行振动误差估计,得到成对回波对应的振 动误差相位;
具体地,设距离压缩后数据s2(tr,ta)大小为N×M点,其中N、M分别表示 距离和方位采样点数;选取基于谐波叠加的加权联合估计方法对距离压缩后 的信号进行振动误差估计,其按以下步骤实施:
(3.1)计算距离压缩后的信号中每个距离单元的强度;
其中,sn(m)为s2(tr,ta)中第n个距离单元第m个方位单元数据,(·)*表示 复共轭。
(3.2)根据距离压缩后的信号中每个距离单元的强度,从距离压缩后的 信号中筛选出多个强散射单元,作为候选距离单元,其对应的距离压缩后的 信号为强散射单元信号;
对所有距离单元的强度进行降序排列,选择强度位于前L(10≤L≤100) 位的距离单元作为估计相位误差的候选距离单元。
(3.3)对每个强散射单元信号分别进行方位加窗截取并计算对应权值, 通过所有强散射单元进行加权联合估计,得到成对回波对应的振动误差相位;
(a)设定初始加窗长度;
(b)每个强散射单元信号分别作加窗截取,得到每个强散射单元信号初 次截取后的数据序列;
(c)计算每个强散射单元信号的归一化权值;
首先,计算第l个强散射单元的归一化幅度方差
Figure BDA0002251569940000081
其定义为:
Figure BDA0002251569940000082
其中,l=1,…,L,L为强散射单元的数量;|·|为取绝对值,μl为第l个强 散射单元幅度的均值。
然后,计算第l个强散射单元的归一化权值Wl
Figure BDA0002251569940000083
(d)计算每个强散射单元信号加权后的相关序列;
具体地,利用步骤(c)中权值计算结果,在估计相位梯度时对强度大的 单元予以大的权重,强度小的单元予以小的权重。通过第m次回波与第m-1次 回波共轭相乘并加权,得到第l个强散射单元的加权后的相关序列,即
Figure BDA0002251569940000091
(e)采用所有强散射单元信号加权后的相关序列进行联合估计,得到估 计的振动误差相位梯度;
Figure BDA0002251569940000092
(f)对估计的振动误差相位梯度进行相应积分,得到第m个方位单元的 振动误差相位φ'e(m),即得到对应方位慢时间ta的振动误差相位φe'(ta);
Figure BDA0002251569940000093
也就是,第m个方位单元的振动误差相位φe(m)就是不超过m的所有振动 误差相位梯度之和。
(g)采用(f)得到的振动误差相位对原始强散射单元信号进行补偿,得 到补偿后的强散射单元信号;同时窗长缩减为初始窗长长度的50%~80%,作 为第2次加窗窗长;
重复步骤(b)-(g),对补偿后的强散射单元信号进行反复迭代加窗处 理,直至窗长缩减到3~5个方位单元为止,得到精确估计的振动相位误差, 即为成对回波的振动相位误差φe(ta);
上述过程中的加窗截取具体为:
对于初次加窗截取,其具体过程为:每个强散射单元信号分别作方位向 FFT进行粗聚焦,并对粗聚焦图像作圆位移,将其峰值移至图像中心;采用 初始窗长对每个强散射单元对应的圆移位后的图像进行截取,对截取的图像 段分别作对应的方位向IFFT,恢复原始误差;
对于第2-D次加窗截取,其具体过程为:采用前一次联合估计振动误差 相位分别对每个原始强散射单元信号进行补偿,即乘以误差补偿项 exp[-jφe(ta)],再作方位向FFT进行粗聚焦,并对粗聚焦图像作圆位移,将其 峰值移至图像中心;采用第2次加窗窗长对每个强散射单元对应的圆移位后 的图像进行截取,对截取的图像段分别作对应的方位向IFFT,再乘以误差补 偿项的共轭,恢复原始误差。
其中,D为最大加窗处理次数,原始强散射单元信号为步骤(3.2)中选 取的强散射单元信号。
示例性地,初始加窗长度一般根据实际情况,取几十个到百余个方位单 元。理论上,利用单个强散射单元数据即可估计出振动误差相位,但考虑到 杂波和噪声,加权联合估计方法可以有效降低二者的影响。
步骤4,基于所述成对回波对应的振动相位误差,构造对应的误差补偿函 数,对距离压缩后的信号进行补偿,得到成对回波抑制后的信号。
具体地,根据步骤3中最终得到的成对回波的振动相位误差φe(ta),构造 误差补偿函数exp[-j·φe(ta)],对距离压缩后的回波数据s2(tr,ta)进行补偿,即可 得到成对回波抑制后的信号:
Figure BDA0002251569940000101
进一步,对成对回波抑制后的信号s3(tr,ta)用传统成像方法如距离多普勒 (RD)、线频调变标(CS)、快速后向投影(FBP)等进行处理,便可得到 成对回波抑制后的成像结果,即得到聚焦图像。
需要说明的是,虽然本发明所述的非参数化成对回波抑制方法是针对基 于多次谐波叠加的成对回波误差模型设计的,但是,其同样适用于传统单一 正弦误差模型,且相比传统基于参数估计的方法可以更加快速准确地抑制成 对回波。
仿真实验
下面通过点目标仿真成像实验进一步说明本发明的正确性和有效性。
1)点目标仿真成像仿真条件
表1雷达参数
Figure BDA0002251569940000111
雷达系统仿真参数如表1所示,参照图1,为颠簸平台SAR成像几何模 型示意图;其中,X轴为颠簸平台理想运动方向,Y轴垂直于平台运动方向, Z轴为平台高度方向,平台高度为H。理想情况下,载机以速度v沿X轴匀 速直线飞行,设定Rs为场景中心对应的作用距离。仿真实验中,距离向采样 点数为1024,方位向采样点数为2048,场景中有5个散射点。设颠簸平台 正弦振动误差及其谐波分别为:
ε1(ta)=0.01sin(2π·10·ta+π/6)
ε2(ta)=0.008sin(2π·20·ta+π/4)
ε3(ta)=0.005sin(2π·30·ta+π/2)
则多分量误差信号叠加产生的振动误差为
Figure BDA0002251569940000121
振动误差e(ta)的振动方向为
Figure BDA0002251569940000122
2)仿真内容
仿真实验1:为验证本发明的性能和有效性,这里对本发明进行仿真实 验,对比未经本发明处理的成像结果和经本发明处理后的成像结果。
3)仿真结果分析
参照图3(a),为预设振动误差产生的误差相位,图3(b)为通过本 发明估计得到的振动误差相位。通过对比可以发现,本发明的估计结果与预 设振动误差相位基本一致,验证了本发明的有效性。
参照图4(a),为本发明实施例中未经成对回波抑制的原始成像结果图, 图4(b)为本发明实施例中未经成对回波抑制的原始图像成像结果等高线 图。可以看出,由于成对回波的影响,原始成像结果中每个目标点在方位向 都被复制多次(即出现虚假目标),导致真实目标已经无法辨认。
参照图5(a),为本发明实施例中经过成对回波抑制后的成像结果图, 图5(b)为本发明实施例中经过成对回波抑制后的成像结果等高线图。可 以看出,通过本发明对含有振动误差相位的数据进行处理,有效抑制了成对 回波造成的虚假目标,使真实目标得以显现,消除了振动误差的影响。
参照图6(a),为图4(a)成像结果中间三点的方位向归一化幅度剖 面图,可以看出,虚假目标点具有较高幅度,造成真实目标难以辨认。参照 图6(b),为图5(a)成像结果中间三点的方位向归一化幅度剖面图,可 以看出,经过本发明方法处理后,目标点两侧的成对回波得到了明显抑制, 消除了虚假目标的影响。
参照图7(a),为图5(a)最下方的点成像结果等高线图,图7(b) 为图5(a)最下方的点成像结果方位向剖面图。可以看出,经本发明方法处 理后该点主瓣、副瓣明显分开,且呈现良好的“十字架”状,测得其方位向 峰值旁瓣比(PSLR)为-13.51dB,积分旁瓣比(ISLR)为-9.60dB,与理论 值基本吻合,说明本发明方法对振动误差导致的成对回波实现了有效抑制。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不 局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围 内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

1.一种颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,包括以下步骤:
步骤1,构建基于多次谐波的振动误差模型;
步骤2,获取颠簸平台SAR接收的回波信号,并对回波信号进行解调,得到基带回波信号;对基带回波信号进行距离向匹配滤波处理,得到距离压缩后的信号;
步骤3,根据基于多次谐波的振动误差模型,采用基于谐波叠加的加权联合估计方法对距离压缩后的信号进行振动误差估计,得到成对回波对应的振动误差相位φe(ta);
步骤4,基于所述成对回波对应的振动相位误差,构造对应的误差补偿函数,对距离压缩后的信号进行补偿,得到成对回波抑制后的信号。
2.根据权利要求1所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,所述构建基于多次谐波的振动误差模型,其具体为:
首先,由于实际中,振动误差不是单一正弦曲线,还包含多次谐波,因此,定义振动误差为正弦信号与其多次谐波的叠加,其振动方程为:
εi(ta)=Aisin(2πfitai)
其中,εi(ta)表示第i次谐波,Ai、fi、φi依次为第i次谐波的振幅、频率和初相;
然后,设定谐波总数为I次,则振动误差模型表示为I次谐波的叠加,即
Figure FDA0002251569930000011
3.根据权利要求1所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,所述对基带回波信号进行距离向匹配滤波处理,其具体为:将基带回波信号s1(tr,ta)作快速傅立叶变换并乘以距离向匹配滤波函数,消除距离二次项,再进行逆傅立叶变换,得到距离压缩后的信号s2(tr,ta):
Figure FDA0002251569930000021
其中,tr为距离快时间,ta为方位慢时间;K0为目标点的后向散射系数,j为虚数单位,ωr(·)为基带回波信号的距离包络,γ为距离向调频率,ωa(·)为基带回波信号的方位包络,c表示光速,t0表示波束中心穿越目标时刻,fc为信号载频;sinc为辛格函数,H(fτ)为距离向匹配滤波函数,fτ为距离频率,B为信号带宽,Rref(ta)为天线相位中心到场景中任意点的理想斜距,H(fτ)的具体表达式为:
Figure FDA0002251569930000022
4.根据权利要求1所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,采用基于谐波叠加的加权联合估计方法对距离压缩后的信号进行振动误差估计,其具体步骤为:
(3.1)设距离压缩后的信号s2(tr,ta)大小为N×M点,其中,N为距离采样点数,M表示方位采样点数;计算距离压缩后的信号中每个距离单元的强度:
Figure FDA0002251569930000023
其中,sn(m)为s2(tr,ta)中第n个距离单元第m个方位单元数据,(·)*表示复共轭;
(3.2)根据距离压缩后的信号中每个距离单元的强度,从距离压缩后的信号中筛选出多个强散射单元,作为候选距离单元,其对应的距离压缩后的信号为强散射单元信号;
(3.3)对每个强散射单元信号分别进行方位加窗截取并计算对应权值,通过所有强散射单元进行加权联合估计,得到成对回波对应的振动误差相位。
5.根据权利要求4所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,所述从距离压缩后的信号中筛选出多个强散射单元,作为候选距离单元,其具体为:对所有距离单元的强度进行降序排列,选择强度位于前L位的距离单元作为估计相位误差的候选距离单元,其中10≤L≤100。
6.根据权利要求4所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,所述对每个强散射单元信号分别进行方位加窗截取并计算对应权值,通过所有强散射单元进行加权联合估计,其按照以下步骤实施:
(a)设定初始加窗长度;
(b)每个强散射单元信号分别作加窗截取,得到每个强散射单元信号初次截取后的数据序列;
(c)计算每个强散射单元信号的归一化权值Wl
(d)计算每个强散射单元信号加权后的相关序列;
具体地,通过第m次回波信号sl(m)与第m-1次回波信号
Figure FDA0002251569930000031
共轭相乘并加权,得到第l个强散射单元的加权后的相关序列,即
Figure FDA0002251569930000032
(e)采用所有强散射单元信号加权后的相关序列进行联合估计,得到估计的振动误差相位梯度;
Figure FDA0002251569930000041
(f)对估计的振动误差相位梯度进行相应积分,得到第m个方位单元的振动误差相位φ'e(m),即得到对应方位慢时间ta的振动误差相位φe'(ta);
Figure FDA0002251569930000042
(g)采用(f)得到的振动误差相位对原始强散射单元信号进行补偿,得到补偿后的强散射单元信号;同时窗长缩减为初始窗长的50%~80%,作为第2次加窗窗长;
重复步骤(b)-(g),对补偿后的强散射单元信号进行反复迭代加窗处理,直至窗长缩减到3~5个方位单元为止,得到精确估计的振动相位误差,即为成对回波的振动相位误差φe(ta)。
7.根据权利要求6所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,所述加窗截取具体为:
对于初次加窗截取,其具体过程为:每个强散射单元信号分别作方位向FFT进行粗聚焦,并对粗聚焦图像作圆位移,将其峰值移至图像中心;采用初始窗长对每个强散射单元对应的圆移位后的图像进行截取,对截取的图像段分别作对应的方位向IFFT,恢复原始误差;
对于第2-D次加窗截取,其具体过程为:采用前一次联合估计振动误差相位分别对每个原始强散射单元信号进行补偿,即乘以误差补偿项exp[-jφe(ta)],再作方位向FFT进行粗聚焦,并对粗聚焦图像作圆位移,将其峰值移至图像中心;采用第2次加窗窗长对每个强散射单元对应的圆移位后的图像进行截取,对截取的图像段分别作对应的方位向IFFT,再乘以误差补偿项的共轭,恢复原始误差;
其中,D为最大加窗处理次数,原始强散射单元信号为步骤(3.2)中选取的强散射单元信号。
8.根据权利要求6所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,所述计算每个强散射单元信号的归一化权值的具体为:
首先,计算第l个强散射单元的归一化幅度方差其定义为:
其中,l=1,…,L,L为强散射单元的数量;|·|为取绝对值,μl为第l个强散射单元幅度的均值;
然后,计算第l个强散射单元的归一化权值Wl
Figure FDA0002251569930000053
9.根据权利要求1所述的颠簸平台SAR的非参数化成对回波抑制方法,其特征在于,所述构造对应的误差补偿函数,对距离压缩后的信号进行补偿,得到成对回波抑制后的信号,其具体为:
首先,构造误差补偿函数exp[-j·φe(ta)];
然后,采用误差补偿函数对距离压缩后的信号进行补偿,得到成对回波抑制后的信号s3(tr,ta):
Figure FDA0002251569930000054
其中,tr为距离快时间,ta为方位慢时间;s2(tr,ta)为距离压缩后的信号,K0为目标点的后向散射系数,j为虚数单位,γ为距离向调频率,ωa(·)为基带回波信号的方位包络,c表示光速,t0表示波束中心穿越目标时刻,λ为载波波长;sinc为辛格函数,B为信号带宽,Rref(ta)为天线相位中心到场景中任意点的理想斜距。
CN201911036303.8A 2019-10-29 2019-10-29 一种颠簸平台sar的非参数化成对回波抑制方法 Active CN110780272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911036303.8A CN110780272B (zh) 2019-10-29 2019-10-29 一种颠簸平台sar的非参数化成对回波抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911036303.8A CN110780272B (zh) 2019-10-29 2019-10-29 一种颠簸平台sar的非参数化成对回波抑制方法

Publications (2)

Publication Number Publication Date
CN110780272A true CN110780272A (zh) 2020-02-11
CN110780272B CN110780272B (zh) 2023-06-30

Family

ID=69387291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911036303.8A Active CN110780272B (zh) 2019-10-29 2019-10-29 一种颠簸平台sar的非参数化成对回波抑制方法

Country Status (1)

Country Link
CN (1) CN110780272B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693995A (zh) * 2020-06-17 2020-09-22 中国科学院光电技术研究所 一种逆合成孔径激光雷达成像振动相位误差估计装置与方法
CN113221062A (zh) * 2021-04-07 2021-08-06 北京理工大学 一种小型无人机载BiSAR系统的高频运动误差补偿算法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137129A (ja) * 1991-11-11 1993-06-01 Olympus Optical Co Ltd 動画像符号化装置
CN101900813A (zh) * 2010-05-31 2010-12-01 西安电子科技大学 基于机动目标距离-瞬时调频的isar成像方法
CN102147462A (zh) * 2010-02-09 2011-08-10 中国科学院电子学研究所 一种实现无人机载合成孔径雷达运动补偿的系统及方法
CN102236090A (zh) * 2010-04-28 2011-11-09 中国科学院电子学研究所 一种超宽带多模式雷达信号产生方法及装置
CN102540188A (zh) * 2012-01-04 2012-07-04 西安电子科技大学 基于高超声速平台sar的对比度最优自聚焦方法
US20130106651A1 (en) * 2011-10-30 2013-05-02 Raytheon Company Single-pass barankin estimation of scatterer height from sar data
CN105158739A (zh) * 2015-08-28 2015-12-16 上海无线电设备研究所 一种基于全相位处理的线性调频信号旁瓣抑制方法
CN105842665A (zh) * 2016-03-17 2016-08-10 电子科技大学 一种基于频谱加权的sar图像旁瓣抑制方法
CN108387900A (zh) * 2018-05-09 2018-08-10 西安电子科技大学 一种直升机载旋转式合成孔径雷达的振动误差补偿方法
US20190026868A1 (en) * 2017-07-21 2019-01-24 The Boeing Company Recursive suppression of clutter in video imagery
US20190227157A1 (en) * 2018-01-22 2019-07-25 Src, Inc. Distributed clutter motion suppression through multiple moving transmit phase centers
CN110146857A (zh) * 2019-05-17 2019-08-20 西安电子科技大学 一种颠簸平台sar三维运动误差估计方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137129A (ja) * 1991-11-11 1993-06-01 Olympus Optical Co Ltd 動画像符号化装置
CN102147462A (zh) * 2010-02-09 2011-08-10 中国科学院电子学研究所 一种实现无人机载合成孔径雷达运动补偿的系统及方法
CN102236090A (zh) * 2010-04-28 2011-11-09 中国科学院电子学研究所 一种超宽带多模式雷达信号产生方法及装置
CN101900813A (zh) * 2010-05-31 2010-12-01 西安电子科技大学 基于机动目标距离-瞬时调频的isar成像方法
US20130106651A1 (en) * 2011-10-30 2013-05-02 Raytheon Company Single-pass barankin estimation of scatterer height from sar data
CN102540188A (zh) * 2012-01-04 2012-07-04 西安电子科技大学 基于高超声速平台sar的对比度最优自聚焦方法
CN105158739A (zh) * 2015-08-28 2015-12-16 上海无线电设备研究所 一种基于全相位处理的线性调频信号旁瓣抑制方法
CN105842665A (zh) * 2016-03-17 2016-08-10 电子科技大学 一种基于频谱加权的sar图像旁瓣抑制方法
US20190026868A1 (en) * 2017-07-21 2019-01-24 The Boeing Company Recursive suppression of clutter in video imagery
US20190227157A1 (en) * 2018-01-22 2019-07-25 Src, Inc. Distributed clutter motion suppression through multiple moving transmit phase centers
CN108387900A (zh) * 2018-05-09 2018-08-10 西安电子科技大学 一种直升机载旋转式合成孔径雷达的振动误差补偿方法
CN110146857A (zh) * 2019-05-17 2019-08-20 西安电子科技大学 一种颠簸平台sar三维运动误差估计方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
YUAN ZHANG: "SAR-Based Paired Echo Focusing and", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 *
YUAN ZHANG: "SAR-Based Paired Echo Focusing and", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》, vol. 52, no. 12, 31 December 2014 (2014-12-31), XP011550717, DOI: 10.1109/TGRS.2014.2314681 *
夏慧婷;李银伟;付朝伟;王海涛;: "一种改进的THz-SAR高频振动误差补偿方法", 雷达科学与技术, no. 05 *
夏慧婷等: "一种改进的THz-SAR高频振动误差补偿方法", 《雷达科学与技术》 *
夏慧婷等: "一种改进的THz-SAR高频振动误差补偿方法", 《雷达科学与技术》, no. 05, 31 October 2018 (2018-10-31) *
孙伟等: "大斜视直升机载太赫兹ViSAR振动补偿成像算法", 《北京航空航天大学学报》 *
孙伟等: "大斜视直升机载太赫兹ViSAR振动补偿成像算法", 《北京航空航天大学学报》, vol. 42, no. 12, 31 December 2016 (2016-12-31) *
李今明等: "星对星SAL成像中的振动误差分析", 《光电工程》 *
李今明等: "星对星SAL成像中的振动误差分析", 《光电工程》, no. 05, 31 May 2011 (2011-05-31) *
董祺等: "直角坐标多级后投影聚束SAR成像算法", 《电子与信息学报》 *
董祺等: "直角坐标多级后投影聚束SAR成像算法", 《电子与信息学报》, vol. 38, no. 6, 30 June 2016 (2016-06-30) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693995A (zh) * 2020-06-17 2020-09-22 中国科学院光电技术研究所 一种逆合成孔径激光雷达成像振动相位误差估计装置与方法
CN111693995B (zh) * 2020-06-17 2023-10-03 中国科学院光电技术研究所 一种逆合成孔径激光雷达成像振动相位误差估计装置与方法
CN113221062A (zh) * 2021-04-07 2021-08-06 北京理工大学 一种小型无人机载BiSAR系统的高频运动误差补偿算法

Also Published As

Publication number Publication date
CN110780272B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
Wu et al. Translational motion compensation in ISAR image processing
Delisle et al. Moving target imaging and trajectory computation using ISAR
US5227801A (en) High resolution radar profiling using higher-order statistics
USH1720H (en) Time frequency processor for radar imaging of moving targets
CN108387900B (zh) 一种直升机载旋转式合成孔径雷达的振动误差补偿方法
CN110806577B (zh) 合成孔径雷达的聚焦成像方法及装置、设备、存储介质
CN112444811A (zh) 一种综合mimo雷达和isar的目标检测和成像方法
CN109407070B (zh) 一种高轨平台地面运动目标检测方法
CN110501706A (zh) 大角度非均匀转动空间目标isar成像方法
CN111856462B (zh) 基于mpt-mdpt的isar舰船目标成像方法
CA2787425C (en) Super-resolution imaging radar
CN111880180A (zh) 一种高分辨运动舰船sar成像的自聚焦方法
CN110780272A (zh) 一种颠簸平台sar的非参数化成对回波抑制方法
Jansen et al. Practical multichannel SAR imaging in the maritime environment
CN113466863B (zh) 一种sar舰船目标高分辨成像方法
Ding et al. A range grating lobes suppression method for stepped-frequency SAR imagery
Raj et al. Velocity-ISAR: On the application of ISAR techniques to multichannel SAR imaging
Yu et al. CSAR imaging with data extrapolation and approximate GLRT techniques
Wilkinson Synthetic aperture radar interferometry: A model for the joint statistics in layover areas
Zhang et al. Improved STAP algorithm based on APES
CN108983192B (zh) 基于gps辐射源的雷达运动目标参数估计方法
Munoz-Ferreras et al. Motion compensation for ISAR based on the shift-and-convolution algorithm
Kang et al. Super-resolution doppler beam sharpening based on online Tikhonov regularization
Xie et al. Moving Target Detection and Speed Estimation for One-stationary Bistatic Synthetic Aperture Radar Based on Multi-channels
Hu et al. A novel range alignment algorithm for ISAR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant