CN110777369A - 一种主动式封装吸氢材料及其制备方法 - Google Patents

一种主动式封装吸氢材料及其制备方法 Download PDF

Info

Publication number
CN110777369A
CN110777369A CN201911091716.6A CN201911091716A CN110777369A CN 110777369 A CN110777369 A CN 110777369A CN 201911091716 A CN201911091716 A CN 201911091716A CN 110777369 A CN110777369 A CN 110777369A
Authority
CN
China
Prior art keywords
hydrogen
hydrogen storage
sputtering
substrate
absorption material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911091716.6A
Other languages
English (en)
Inventor
谢新根
董一鸣
敖冬飞
刘雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clp Guoji Nanfang Group Co Ltd
Original Assignee
Clp Guoji Nanfang Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clp Guoji Nanfang Group Co Ltd filed Critical Clp Guoji Nanfang Group Co Ltd
Priority to CN201911091716.6A priority Critical patent/CN110777369A/zh
Publication of CN110777369A publication Critical patent/CN110777369A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种主动式封装吸氢材料及其制备方法,吸氢材料包括储氢基体,以及结合在储氢基体表面的起催化裂解渗透作用的Pd膜,其中储氢基体为Ti基体或Zr基体;制备方法为采用化学湿法镀覆或磁控溅射物理沉积工艺在储氢基体表面形成Pd膜。本发明制得的吸氢材料能够有效的吸附电子系统中使用的各类固态微波器件和组件中的氢,从而防止氢中毒引起的各类失效。

Description

一种主动式封装吸氢材料及其制备方法
技术领域
本发明涉及微电子封装领域的各类固态微波器件和组件用吸气材料,特别是一种主动式封装吸氢材料及其制备方法。
背景技术
电子系统中密封电子器件和组件内的气体组成和含量对器件本身的性能、寿命及可靠性都有极大影响,容易造成电子器件组件性能降低和寿命减短等严重后果。其中氢造成的失效主要表现为:(1)加速电子器件腐蚀;(2)造成电子元器件氧化、短路、烧毁失效;(3)GaAs芯片氢中毒,芯片和器件的功能严重退化。因此,对密封电子器件组件中氢含量的控制亟待解决。
电子系统中密封电子器件组件中的氢含量主要来源是金属外壳、内部元件、吸波材料等,具体表现为:(1)金属外壳材料在制造过程中本身会引入氢;(2)退火、烧结等工艺过程可能在氢气气氛中进行从而引入氢;(3)金属外壳电镀过程也会引入氢;(4)芯片等焊接过程同样可能在氢气保护下进行;(5)内部元件如钽电容、环形器等等,都可能是氢的来源途径。这些引入氢的过程不能完全避免,随着器件的使用,外壳、各封装元件中的氢会缓慢释放,由于在密封外壳环境下,这些氢无法释放到器件组件外部,所以氢在密封腔体内部聚集,易造成器件功能失效。所以需要采取一定措施来降低密封电子器件组件中的氢含量。
目前常见的方法是在器件组件密封前在氮气气氛下进行长时间的烘烤,从而排除封装材料中吸附的氢气。长期的高温烘烤,一方面对设备有较高要求,同时也增加了生产周期;另一方面,有研究人员发现,镀金壳体经长时间高温烘烤,镀层底部的镍会扩散至顶部金层表面从而发生氧化,造成组装过程的可焊性降低。同时,对于环形器、钽电容等需封装的元件无法进行高温烘烤除氢,在使用过程中极易造成密封电子器件组件氢含量超标失效。
发明内容
本发明的目的在于提供一种主动式封装吸氢材料及其制备方法,吸附电子系统中使用的各类固态微波器件和组件中的氢。
实现本发明目的的技术解决方案为:一种主动式封装吸氢材料,包括储氢基体,以及结合在储氢基体表面的起催化裂解渗透作用的Pd膜,其中储氢基体为Ti基体或Zr基体。
进一步的,Pd膜厚度为
进一步的,储氢基体可加工为片式、围框或螺钉。
本发明还提供一种主动式封装吸氢材料的制备方法,通过化学湿法镀覆或磁控溅射物理沉积工艺在储氢基体表面形成Pd膜。
进一步的,化学湿法镀覆工艺的具体方法为:
1)通过化学镀钯工艺,在储氢基体上镀覆一层Pd膜,Pd膜厚度为
Figure BDA0002267037320000022
2)将化学镀钯后的储氢基体在高真空或氮气条件下高温扩散,增强基体材料与Pd膜层之间的结合力。
化学镀钯步骤中,氯化钯6~12g/L,乙二胺60~100g/L,次亚磷酸钠70~110g/L,pH8~12,温度50~65℃,镀覆时间5~15min。
高温扩散条件:温度为300~600℃,时间为20~300min。
进一步的,磁控溅射物理沉积工艺为:
1)抽真空:真空控制在2×10-4Pa以下;
2)加热基片:对基片进行加热,温度范围为150~350℃之间;
3)氩气分压:溅射气体为氩气,压力在0.01~1Pa范围内,气体流量为30sccm,溅射功率为100W;
4)预溅射:溅射前进行2~10min的预溅射,以去除靶材表面氧化膜;
5)溅射:溅射过程中基片可在±15°的范围内摆动以保证薄膜的均匀性,溅射厚度为
Figure BDA0002267037320000023
6)将溅射Pd后的储氢基体在高真空或氮气条件下高温扩散增强基体材料与Pd膜层之间的结合力。
高温扩散条件:温度为300~600℃,时间为20~300min。
进一步的,化学湿法镀覆或磁控溅射物理沉积前对储氢基体进行除油、蚀刻和粗化的前处理,具体工艺为:
(1)将加工成不同形状的储氢基体先用碱性超声除油清洗2~10min,自来水清洗1~3min,去离子水清洗1~3min;
(2)将除油清洗干净后的储氢基体放入100~800ml/L的氢氟酸溶液或20~200ml/L氢氟酸和20~100ml/L过氧化氢的混合溶液中清洗20s~2min,以去除储氢基体表面氧化物,同时对表面进行蚀刻和粗化,去离子水清洗30s~3min
与现有技术相比,本发明的显著优点为:(1)本发明通过制备不同形状吸氢材料,能够有效的吸附电子系统中使用的各类固态微波器件和组件中的氢,突破各类材料的制备和微组装应用技术,提升封装的主动式吸氢能力,用于封装的氢含量控制和管理,实现典型激发条件下氢含量≤100ppm的技术指标,从而防止密封器件组件中的芯片等受到氢的影响而导致失效;(2)本发明设计的主动式封装吸氢材料,能够在-65℃~+250℃范围内具有良好的吸氢能力,Ti基体制备的吸氢材料最大吸收氢气质量约为吸氢材料质量的1.8%,Zr基体制备的吸氢材料最大吸收氢气质量约为吸氢材料质量的1.9%,且在该温度范围内不会出现已吸收的氢再次释放出来的现象;(3)该方法生产效率高、可靠性高,且无需对封装壳体、封装的元器件进行额外的烘烤。
附图说明
图1是本发明中吸氢材料的结构图。
图2是本发明中吸氢材料的吸氢原理图。
图3是本发明中实验用可伐外壳结构图。
图4是Ti或Zr螺钉制作吸氢材料使用示意图。
具体实施方式
Ti或Zr做为一种储氢材料可用于吸氢,但其在>300℃的高温才可以固溶氢,不能用于密封电子器件组件的吸氢。Pd可吸收氢气并将其裂解为氢原子,氢原子在其原子间隙中可自由通行,但这一过程为可逆过程,在较低温度即可双向进行,其吸附的氢会释放出来,故不可单独用于密封电子器件组件的吸氢。
本发明提出一种主动式封装吸氢材料及其制备方法,应用于吸附电子系统中使用的各类固态微波器件和组件中的氢,从而防止氢中毒引起的各类失效,属于微电子封装领域的各类固态微波器件和组件用吸气材料。
如图1所示,吸氢材料结构包括发挥储氢作用的储氢基体和结合在储氢基体表面的起催化裂解渗透作用的Pd膜,其中储氢基体为Ti基体或Zr基体。
所述Ti或Zr基体可以加工为各种形状,包括但不限于片式、围框、螺钉。
所述Pd膜通过化学湿法镀覆或磁控溅射物理沉积,Pd膜厚度为
Figure BDA0002267037320000031
Pd钯纯度大于99.9%。下面分别对过化学湿法镀覆、磁控溅射物理沉积工艺进行说明:
(一)化学湿法镀覆工艺
1)定制基材:纯Ti或Zr可加工为各种形状,包括但不限于片式、围框、螺钉等,均可作为储氢基体;
2)基片清洗:先用碱性超声除油清洗2~10min,自来水清洗1~3min,去离子水清洗1~3min;
3)表面蚀刻:将除油清洗干净后的储氢基体放入100~800ml/L的氢氟酸溶液或20~200ml/L氢氟酸和20~100ml/L过氧化氢的混合溶液中清洗20s~2min,以去除储氢基体表面氧化物,同时对表面进行蚀刻和粗化,去离子水清洗30s~3min;
4)化学镀钯:氯化钯6~12g/L,乙二胺60~100g/L,次亚磷酸钠70~110g/L,pH 8~12,温度50~65℃,镀覆时间5~15min,控制Pd膜厚度为
Figure BDA0002267037320000041
其中化学镀Pd配方为典型配方,任何可达到同等目的的化学镀Pd溶液都可满足要求;
5)将化学镀Pd后的储氢基体在高真空或氮气条件下高温扩散增强基体材料与Pd膜层之间的结合力,高温扩散条件:气氛:高真空(真空度为2×10-3Pa以下)或氮气保护,温度:300~600℃,时间:20~300min;
(二)磁控溅射物理沉积工艺
1)定制基材:纯Ti或Zr可加工为各种形状,包括但不限于片式、围框、螺钉等,均可作为储氢基体;
2)基片清洗:先用碱性超声除油清洗2~10min,自来水清洗1~3min,去离子水清洗1~3min;
3)表面蚀刻:将除油清洗干净后的储氢基体放入100~800ml/L的氢氟酸溶液或20~200ml/L氢氟酸和20~100ml/L过氧化氢的混合溶液中清洗20s~2min,以去除储氢基体表面氧化物,同时对表面进行蚀刻和粗化,去离子水清洗30s~3min;
4)抽真空:真空需控制在2×10-4Pa以下,以保证薄膜纯度;
5)加热基片:为除去基片表面水分,提高膜与基片的结合力,需对基片进行加热,温度范围为150~350℃之间;
6)氩气分压:溅射气体为99.999%高纯氩气,压力在0.01~1Pa范围内,气体流量为30sccm,溅射功率约为100W;
7)预溅射:靶材选用纯度为99.99%的纯钯,溅射前进行2~10min的预溅射,以去除靶材表面氧化膜,避免影响薄膜质量;
8)溅射:溅射过程中基片可在±15°的范围内摆动以保证薄膜的均匀性,溅射厚度为
Figure BDA0002267037320000051
9)将溅射Pd后的储氢基体在高真空或氮气条件下高温扩散增强基体材料与Pd膜层之间的结合力,高温扩散条件:气氛:高真空(真空度为2×10-3Pa以下)或氮气保护,温度:300~600℃,时间:20~300min;
本发明的主动式封装吸氢材料,能够在-65℃~+250℃范围内具有良好的吸氢能力,Ti基体制备的吸氢材料最大吸收氢气质量约为吸氢材料质量的1.8%,Zr基体制备的吸氢材料最大吸收氢气质量约为吸氢材料质量的1.9%,且在该温度范围内不会出现已吸收的氢再次释放出来的现象。如图2所示,具体的吸氢原理如下:
1)膜层外部氢分子运动到吸氢材料表面吸附于Pd膜表面;
2)由于Pd的4d电子层为缺电子状态,能与氢形成不稳定的化学键,氢分子解离为两个氢原子,该过程遵循n=0.5的Sieverts定律;
3)随着氢分子在Pd表层的吸附和解离,同时Pd膜层两侧具有一定的氢浓度(氢分压)差。氢原子从氢浓度高的一侧向浓度低的一侧(Ti或Zr基体)扩散,该过程遵循n=1的Fick定律;
4)透过钯钛界面的氢原子向Ti或Zr基体内部渗透,并和Ti或Zr基体发生固溶。
气态氢分子在Ti或Zr基体表面裂解能较高,所以Ti或Zr在>300℃的条件下才可吸收固溶氢原子。通过Pd对氢分子的解离作用,氢原子在常温即可透过PdTi(或PdZr)界面向储氢基体固溶渗透。
本发明制定的Ti(或Zr)基材加工,Pd催化层厚度,化学湿法镀覆或磁控溅射物理沉积工艺参数,是在众多试验后得出的综合考虑效率和效果的较优参数,能保证密封电子器件组件内部气氛中的氢被有效吸收。
下面结合实施例对本发明进行详细说明。
实施例1
一种主动式封装吸氢材料,吸氢材料的结构如图1所示,采用纯度大于99%的钛片作为溅射基片,厚度为0.2mm。溅射钯层厚度为
Figure BDA0002267037320000052
按照发明内容所述的制备方法进行制备。溅射时真空需控制在2×10-4Pa以下。
将本发明的吸氢材料和常见控氢方法进行除氢效果的对比。选用的实验用可伐封装外壳如图3所示,1#外壳样品镀金前后均不进行高温烘烤除氢处理。2#外壳样品使用常见的高温烘烤的控氢方法,镀前不进行除氢处理,镀金后在250℃氮气气氛下烘烤48h进行除氢,然后进行封帽。3#外壳样品使用本发明中吸氢材料,外壳镀金前后均不进行除氢处理,将吸氢材料置于镀金外壳中,然后进行封帽。三种样品均在封帽后在250℃的烘箱内进行48h的高温储存激发后,按GJB548B-2005方法1018.1检测管壳内部气氛。4#和5#外壳样品镀金前后均不进行高温烘烤除氢处理,其中A腔不放置吸氢材料,B腔放置吸氢材料,封帽后在100℃的烘箱内进行1000h的高温储存激发后,检测管壳内部气氛。
表1.可伐外壳不同方法控氢后气氛含量检测结果(250℃,48h激发)
Figure BDA0002267037320000061
内部气氛检测结果如表1、表2所示,1#样品为未进行除氢处理的外壳气氛检测结果,氢含量大于5%;2#样品为高温烘烤控氢方法后外壳的气氛检测结果,氢含量约1.6%;3#样品为未进行除氢处理的外壳使用本发明方法吸氢材料的气氛检测结果,氢含量小于100ppm。4#和5#A腔未放置吸氢材料,氢含量接近4%;4#和5#B腔放置吸氢材料,氢含量未检出。
表2.可伐外壳气氛含量检测结果(100℃,1000h激发)
Figure BDA0002267037320000062
通过对比可以发现,本发明方法所制备的吸氢材料,其控氢效果要远远优于常见的控氢方法。
实施例2
一种主动式封装吸氢材料,吸氢材料的结构为Ti或Zr螺钉,如图4所示。采用纯度大于99%的Ti或Zr作为基体材料,螺钉规格为沉头M1.6*4。化学镀钯按照发明内容所述的制备方法进行制备。
将本发明的吸氢材料和常见控氢方法进行除氢效果的对比。选用的实验用可伐封装外壳如图3所示,1#外壳样品镀金前后均不进行高温烘烤除氢处理。2#外壳样品使用常见的高温烘烤的控氢方法,镀前不进行除氢处理,镀金后在250℃氮气气氛下烘烤48h进行除氢,然后进行封帽。3#外壳样品使用本发明中Ti或Zr螺钉制作的吸氢材料,外壳镀金前后均不进行除氢处理,将吸氢材料置于镀金外壳中,然后进行封帽。三种样品均在封帽后在250℃的烘箱内进行48h的高温储存激发后,按GJB548B-2005方法1018.1检测管壳内部气氛。
表3.可伐外壳不同方法控氢后气氛含量检测结果(250℃,48h激发)
Figure BDA0002267037320000071
内部气氛检测结果如表3所示,1#样品为未进行除氢处理的外壳气氛检测结果,氢含量约6%;2#样品为高温烘烤控氢方法后外壳的气氛检测结果,氢含量约1.5%;3#样品为未进行除氢处理的外壳使用本发明方法吸氢材料的气氛检测结果,氢含量小于100ppm。
通过对比可以发现,本发明的吸氢材料,其控氢效果要远远优于常见的控氢方法。

Claims (10)

1.一种主动式封装吸氢材料,其特征在于,包括储氢基体,以及结合在储氢基体表面的起催化裂解渗透作用的Pd膜,其中储氢基体为Ti基体或Zr基体。
2.根据权利要求1所述的主动式封装吸氢材料,其特征在于,Pd膜厚度为50~
3.根据权利要求1所述的主动式封装吸氢材料,其特征在于,储氢基体可加工为片式、围框或螺钉。
4.一种制备权利要求1所述主动式封装吸氢材料的方法,其特征在于,通过化学湿法镀覆或磁控溅射物理沉积工艺在储氢基体表面形成Pd膜。
5.根据权利要求4所述的主动式封装吸氢材料的制备方法,其特征在于,化学湿法镀覆工艺的具体方法为:
1)通过化学镀钯工艺,在储氢基体上镀覆一层Pd膜,Pd膜厚度为
Figure FDA0002267037310000013
2)将化学镀钯后的储氢基体在高真空或氮气条件下高温扩散,增强基体材料与Pd膜层之间的结合力。
6.根据权利要求5所述的主动式封装吸氢材料的制备方法,其特征在于,化学镀钯步骤中,氯化钯6~12g/L,乙二胺60~100g/L,次亚磷酸钠70~110g/L,pH 8~12,温度50~65℃,镀覆时间5~15min。
7.根据权利要求5所述的主动式封装吸氢材料的制备方法,其特征在于,高温扩散条件:温度为300~600℃,时间为20~300min。
8.根据权利要求4所述的主动式封装吸氢材料的制备方法,其特征在于,磁控溅射物理沉积工艺为:
1)抽真空:真空控制在2×10-4Pa以下;
2)加热基片:对基片进行加热,温度范围为150~350℃之间;
3)氩气分压:溅射气体为氩气,压力在0.01~1Pa范围内,气体流量为30sccm,溅射功率为100W;
4)预溅射:溅射前进行2~10min的预溅射,以去除靶材表面氧化膜;
5)溅射:溅射过程中基片可在±15°的范围内摆动以保证薄膜的均匀性,溅射厚度为
6)将溅射Pd后的储氢基体在高真空或氮气条件下高温扩散增强基体材料与Pd膜层之间的结合力。
9.根据权利要求8所述的主动式封装吸氢材料的制备方法,其特征在于,高温扩散条件:温度为300~600℃,时间为20~300min。
10.根据权利要求5或8所述的主动式封装吸氢材料的制备方法,其特征在于,化学湿法镀覆或磁控溅射物理沉积前对储氢基体进行除油、蚀刻和粗化的前处理,具体工艺为:
(1)将加工成不同形状的储氢基体先用碱性超声除油清洗2~10min,自来水清洗1~3min,去离子水清洗1~3min;
(2)将除油清洗干净后的储氢基体放入100~800ml/L的氢氟酸溶液或20~200ml/L氢氟酸和20~100ml/L过氧化氢的混合溶液中清洗20s~2min,以去除储氢基体表面氧化物,同时对表面进行蚀刻和粗化,去离子水清洗30s~3min。
CN201911091716.6A 2019-11-10 2019-11-10 一种主动式封装吸氢材料及其制备方法 Pending CN110777369A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911091716.6A CN110777369A (zh) 2019-11-10 2019-11-10 一种主动式封装吸氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911091716.6A CN110777369A (zh) 2019-11-10 2019-11-10 一种主动式封装吸氢材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110777369A true CN110777369A (zh) 2020-02-11

Family

ID=69390229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911091716.6A Pending CN110777369A (zh) 2019-11-10 2019-11-10 一种主动式封装吸氢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110777369A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114408858A (zh) * 2022-01-05 2022-04-29 北京科技大学 一种室温可吸氢锆基复合材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110808A (en) * 1998-12-04 2000-08-29 Trw Inc. Hydrogen getter for integrated microelectronic assembly
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication
US20030062610A1 (en) * 2001-09-28 2003-04-03 Kovacs Alan L. Multilayer thin film hydrogen getter
CN102438938A (zh) * 2009-05-25 2012-05-02 工程吸气公司 多层复合吸气剂材料
CN108149211A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种Mg-TM超多层复合储氢薄膜及其制备方法
CN109440074A (zh) * 2018-12-06 2019-03-08 电子科技大学 一种高能量输出的氢爆膜桥及其制备方法
CN109536908A (zh) * 2018-12-28 2019-03-29 有研工程技术研究院有限公司 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备
CN109848427A (zh) * 2018-12-04 2019-06-07 有研工程技术研究院有限公司 一种提高钯包覆锆基吸氢材料抗毒化循环稳定性的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110808A (en) * 1998-12-04 2000-08-29 Trw Inc. Hydrogen getter for integrated microelectronic assembly
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication
US20030062610A1 (en) * 2001-09-28 2003-04-03 Kovacs Alan L. Multilayer thin film hydrogen getter
CN102438938A (zh) * 2009-05-25 2012-05-02 工程吸气公司 多层复合吸气剂材料
CN108149211A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种Mg-TM超多层复合储氢薄膜及其制备方法
CN109848427A (zh) * 2018-12-04 2019-06-07 有研工程技术研究院有限公司 一种提高钯包覆锆基吸氢材料抗毒化循环稳定性的方法
CN109440074A (zh) * 2018-12-06 2019-03-08 电子科技大学 一种高能量输出的氢爆膜桥及其制备方法
CN109536908A (zh) * 2018-12-28 2019-03-29 有研工程技术研究院有限公司 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114408858A (zh) * 2022-01-05 2022-04-29 北京科技大学 一种室温可吸氢锆基复合材料的制备方法

Similar Documents

Publication Publication Date Title
DE60200438T2 (de) Wasserstoff-Getterstruktur mit silberdotierter Palladiumschicht zur Erhöhung des Wasserstoff-Getterns eines Halbleitermoduls, Halbleitermodul mit einer solchen Zusammensetzung und Herstellungsverfahren
US8289676B2 (en) Multilayer composite getter
US8363384B2 (en) Metal getter systems
US20030062610A1 (en) Multilayer thin film hydrogen getter
CN109536908A (zh) 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备
CN110777369A (zh) 一种主动式封装吸氢材料及其制备方法
CN1778990A (zh) 提高金属焊接性能的表面处理方法及用该方法处理的工件
US11335595B2 (en) Method of manufacturing a semiconductor element front side electrode
US9200359B2 (en) Thin-layered structure
CN109136867A (zh) 一种吸气剂薄膜的制备方法
WO2020255974A1 (ja) ガラスパネルユニット、ガラスパネルユニットの製造方法、複合ゲッタ材、及びゲッタペースト
CN103801252A (zh) 一种带有保护层的吸气剂及其制备方法
CN110863174A (zh) 一种无需激活的钛基吸氢材料及其制备方法
EP0693626A1 (en) Vacuum chamber for ultra high vacuum processing at high temperatures
CN109267126B (zh) 一种钛合金封装外壳及其制造方法
CN109014184B (zh) 一种具有双重腐蚀抗力的生物医用镁合金及其制备方法
EP1666410A1 (en) Hydrogen separator and process for production thereof
CN110699649A (zh) 一种用于电子封装的吸氢材料及其制备方法
CN115354273B (zh) 一种可用于低温固态互连技术的表面态纳米氧化银的制备方法
CN114520198B (zh) 用于氢敏感混合集成电路的吸氢器件及其制备方法
US6361618B1 (en) Methods and apparatus for forming and maintaining high vacuum environments
CN114182205B (zh) 一种纳米多层结构金属吸氢薄膜及其制备方法和应用
CN101350238B (zh) 一种叠层片式电子元件的表面处理方法
JP2011134875A (ja) 電子部品の製造方法
CN105039944B (zh) 钯或钯合金膜组件的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200211