CN110770356A - 使用珠寡核苷酸的mda - Google Patents

使用珠寡核苷酸的mda Download PDF

Info

Publication number
CN110770356A
CN110770356A CN201880041258.2A CN201880041258A CN110770356A CN 110770356 A CN110770356 A CN 110770356A CN 201880041258 A CN201880041258 A CN 201880041258A CN 110770356 A CN110770356 A CN 110770356A
Authority
CN
China
Prior art keywords
sequence
oligonucleotides
nucleotides
oligonucleotide
complementary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880041258.2A
Other languages
English (en)
Inventor
R·雷伯弗斯基
J·阿格雷丝迪
G·卡琳-纽曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biological Radiation Laboratory Co Ltd
Bio Rad Laboratories Inc
Original Assignee
Biological Radiation Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biological Radiation Laboratory Co Ltd filed Critical Biological Radiation Laboratory Co Ltd
Publication of CN110770356A publication Critical patent/CN110770356A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6832Enhancement of hybridisation reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Abstract

提供了改善的多重置换扩增(MDA)试剂和方法。

Description

使用珠寡核苷酸的MDA
相关专利申请的交叉引用
本申请要求2017年6月20日提交的美国临时专利申请号62/522,226的优先权,其通过引用纳入本文用于所有目的。
背景技术
多重置换扩增(MDA)是一种非基于PCR的DNA扩增技术,涉及使用在DNA样品上随机位置引发的随机寡核苷酸。在许多情况下,随机寡核苷酸是与DNA退火的随机六聚体引物。然后在恒定温度下用聚合酶,例如链置换聚合酶例如Φ29DNA聚合酶延伸引物。然后可以对得到的延伸产物进行测序和比对,以产生DNA序列。单细胞全基因组MDA的示例在例如Spits等,Nature Protocols 1,1965-1970(2006)中描述。
发明概述
在一些方面,提供了一种进行多重置换扩增的方法。在一些实施方式中,该方法包括,
提供多个寡核苷酸,每个寡核苷酸包含至少四个连续核苷酸的3′随机序列,条形码序列,和任选的间插序列,将寡核苷酸退火至与条形码序列,间插序列互补,或同时与条形码序列和间插序列互补的互补核酸,其中所述互补核酸不与3′随机序列互补,留下3′随机序列为单链;
在使互补核酸退火至寡核苷酸并允许3′随机序列退火至样品DNA的条件下使多个寡核苷酸与样品DNA接触;和
用链置换聚合酶以模板依赖性方式延伸3′随机序列,以产生包含与DNA互补的3′序列的延长的寡核苷酸。
在一些实施方式中,多个包含具有不同随机序列的至少25个不同寡核苷酸。
在一些实施方式中,寡核苷酸还包含5’标签序列。在一些实施方式中,标签序列长2-40个核苷酸。
在一些实施方式中,寡核苷酸缺少间插序列,并且互补核酸与条形码序列或其至少6个核苷酸的连续部分互补。在一些实施方式中,条形码序列是不连续的,并且间插序列在条形码序列的两个或更多个部分之间。
在一些实施方式中,互补核酸不包含与条形码序列互补的序列。
在一些实施方式中,寡核苷酸共价连接至互补核酸的分开的拷贝,使得寡核苷酸形成多核苷酸发夹。
在一些实施方式中,互补核酸不与寡核苷酸共价连接。在一些实施方式中,5’标签序列与固体支持珠共价连接。
在一些实施方式中,该方法在(多个)分区中进行。在一些实施方式中,分区平均包含1-3个固体支持珠。在一些实施方式中,分区是乳液内的液滴。
在一些实施方式中,该方法进一步包括在延伸之后,将分区的内容物合并成大块(bulk)反应混合物。
在一些实施方式中,互补核酸包含与链置换聚合酶不相容的一个或多个核苷酸。在一些实施方式中,一个或多个核苷酸是一个或多个尿嘧啶。在一些实施方式中,所述一个或多个核苷酸被生物素化。在一些实施方式中,生物素化的核苷酸与链霉亲和素结合。
在一些实施方式中,链置换聚合酶是Φ29聚合酶。
在一些实施方式中,随机序列长4-10个核苷酸。
在一些实施方式中,条形码序列长8-50个核苷酸。
在一些实施方式中,间插序列长6-40个核苷酸。
在一些实施方式中,该方法包括提供包封在水凝胶珠中的样品DNA,将水凝胶珠定位在含寡核苷酸中至少一个的液滴中,并从水凝胶中释放样品DNA,从而使寡核苷酸与样品DNA接触。在一些实施方式中,水凝胶中的样品DNA由来自一个或多个细胞的DNA组成。在一些实施方式中,该方法包括:将一个或多个细胞包封在水凝胶珠中,裂解一个或多个细胞,以及任选地使裂解的细胞与一种或多种蛋白酶接触;和从水凝胶珠中分离出从水凝胶珠中扩散出来的细胞裂解产物。
在一些实施方式中,该方法包括使被水凝胶珠包封的样品DNA变性。在一些实施方式中,该方法进一步包括将变性的DNA与随机的寡核苷酸杂交以维持变性的DNA。
在一些实施方式中,该方法包括将水凝胶珠包封在分开的水性分区中,使水凝胶珠进入分区内的溶液中,然后在水性分区中进行延伸。在一些实施方式中,分区是液滴。
在一些方面,提供了产生部分双链寡核苷酸的方法。在一些实施方式中,该方法包括,
提供与寡核苷酸的5′末端共价连接的固体支持珠,该寡核苷酸按以下顺序包含:至少四个连续核苷酸的3′随机序列,共有通用序列,和条形码序列;
使寡核苷酸引物退火至共有通用序列;和
以模板依赖的方式用聚合酶延伸退火的寡核苷酸引物以产生与共有通用序列和条形码序列互补的第二链核酸,从而产生部分双链寡核苷酸,其中一条链与固体支持珠共价连接并具有单链3′随机序列。
在一些实施方式中,寡核苷酸还包含间插序列。在一些实施方式中,条形码序列是不连续的,并且间插序列在条形码序列的两个或更多个部分之间。
在一些实施方式中,寡核苷酸还包含5’标签序列。
在一些实施方式中,在dUTP的存在下进行延伸,使得将尿嘧啶掺入第二链核酸中。在一些实施方式中,dUTP被生物素化,使得掺入到第二链核酸中的尿嘧啶被生物素化。在一些实施方式中,该方法还包括使第二链核酸与链霉亲和素接触。
在一些实施方式中,随机序列长4-10个核苷酸。在一些实施方式中,条形码序列长8-50个核苷酸。在一些实施方式中,间插序列长6-40个核苷酸。
在一些方面,提供了具有不同序列的多个寡核苷酸。在一些实施方式中,每个寡核苷酸共价连接至分开的的固体支持珠,每个寡核苷酸包含至少四个连续核苷酸的3′随机序列,条形码序列和任选的间插序列,其中所述寡核苷酸通过具有不同的3′随机序列而不同,每个寡核苷酸退火至与条形码序列,间插序列互补或同时与条形码序列和间插序列互补的互补核酸,其中该互补核酸与3′随机序列不互补,留下3′随机序列为单链。
在一些实施方式中,多个包含具有不同随机序列的至少25个不同寡核苷酸。
在一些实施方式中,寡核苷酸还包含5’标签序列。
在一些实施方式中,标签序列长2-40个核苷酸。
在一些实施方式中,寡核苷酸缺少间插序列,并且互补核酸与条形码序列或其至少6个核苷酸的连续部分互补。
在一些实施方式中,条形码序列对于每个固体支持珠是独特的。
在一些实施方式中,条形码序列是不连续的,并且间插序列在条形码序列的两个或更多个部分之间。
在一些实施方式中,其中互补核酸不包含与条形码序列互补的序列。
在一些实施方式中,寡核苷酸共价连接至互补核酸的分开的拷贝,使得寡核苷酸形成多核苷酸发夹。
在一些实施方式中,互补核酸不与寡核苷酸共价连接。
在一些实施方式中,互补核酸包含与链置换聚合酶不相容的一个或多个核苷酸。
在一些实施方式中,所述一个或多个核苷酸是尿嘧啶。在一些实施方式中,所述一个或多个核苷酸被生物素化并结合至链霉亲和素。
在一些实施方式中,随机序列长4-10个核苷酸。在一些实施方式中,条形码序列长8-50个核苷酸。在一些实施方式中,间插序列长6-40个核苷酸。在一些实施方式中,其中随机序列长4-10个核苷酸。
附图简要说明
图1描绘了用短随机寡核苷酸的多重置换扩增(MDA)。
图2描述了用带有随机3’末端的条码化引物的MDA。图的底部显示了较长的寡核苷酸引物如何导致潜在的新引物结合位点,从而导致寡核苷酸序列本身的不希望的伪扩增。
图3描绘了解决图2中的问题的方法。具体地,提供具有互补序列的条码化的MDA寡核苷酸可防止其中寡核苷酸起模板作用的伪扩增。
图4继续图5的方法,显示了MDA反应的后续步骤。具体地,当条码化引物退火至新生单链DNA而导致DNA合成时,先前掺入的条码化MDA寡核苷酸互补序列被置换,从而导致衔接体的完全合成。
图5描绘了一种MDA方法,其中将dsDNA变性并与随机引物杂交,包封到液滴中,然后使用具有自由随机3′末端的条码化寡核苷酸和防止寡核苷酸自身被伪扩增的互补序列进行扩增。
图6描绘了MDA方法的初始部分,其中将细胞包封在水凝胶中,消化以保留被圈留在内部的高分子量DNA,然后使包封的细胞DNA变性。
图7继续图6的方法,并显示了使用分区(液滴)内寡核苷酸的MDA。
图8描绘了通过使用“共有通用序列”从具有3′末端序列的条码化寡核苷酸产生互补序列的方法,该“共有通用序列”可以用作引物延伸位点以产生互补序列。
图9描绘了互补序列如何也可能潜在地成为伪扩增的来源。
图10描述了用于合成互补序列的实施方式,其将减少互补序列作为伪扩增的来源的可用性。例如,将UTP掺入互补序列将降低Φ29或其他置换聚合酶使用互补序列作为模板的能力。
图11描述了用于合成互补序列的实施方式,其将减少互补序列作为伪扩增的来源的可用性。例如,将生物素化的核苷酸掺入互补序列并将掺入的生物素与链霉亲和素结合将降低Φ29或其他置换聚合酶使用该互补序列作为模板的能力。
图12描绘了也可以将图10-11的方面引入发夹寡核苷酸的互补序列。
发明详述
导言
发明人发现了可用于用条码化的随机引物进行MDA,同时防止了当使用较长引物时可能发生的潜在的自引发问题的方法和组合物。例如,虽然简单的六聚体太短而无法产生明显的自引发产物,但除了随机序列外,较长的引物还具有其他5′序列,例如条形码序列,5′标签或其他序列,其可能在引物的随机3′末端互相用作模板时会导致明显不期望的副产物形成。
为了解决这个问题,发明人发现可以为条码化的随机引物提供互补序列以阻断自引发。互补序列可以共价连接至条码化随机引物(例如,作为发夹),或者可以是不共价连接至条码化随机化引物的分开的寡核苷酸。在MDA中使用条码化随机化引物和互补序列将产生所需的MDA产物,并大大降低了不期望的自引发产物的背景。
如本文所述,MDA涉及使用随机化引物在DNA中的随机位置退火,从而允许包含随机化引物序列和与DNA互补的3’序列的延伸产物。本文提供条码化随机化引物。这些引物,也称为寡核苷酸,至少包含在3’末端的随机化序列(也称为“随机序列”)和条形码序列。随机化序列可以是全部或部分随机的,并且可以具有足够的长度以达到特定靶DNA所需的随机引发水平。在一些实施方式中,该随机化序列为至少4个核苷酸长,例如在一些实施方式中,该随机化序列为4-10个核苷酸长,例如6个核苷酸长。在一些实施方式中,随机化序列长于10个核苷酸,例如长度在10-20个核苷酸之间。
在其最简单的形式中,本文中描述的寡核苷酸仅包含条形码和随机序列。或者,如下文进一步所述,寡核苷酸可包括其他序列,包括但不限于间插序列,5′标签序列,共有序列或其他序列。
如本文所用“条形码”是鉴别其所偶联分子的短核苷酸序列(例如,长至少约4、6、8、10或12个核苷酸)。条形码可以是一个连续的序列或两个或多个不连续的子序列。条形码可用于,例如识别寡核苷酸所连接的分区或珠中的分子。在一些实施方式中,与连接至其他珠的寡核苷酸中的条形码相比,珠特异性条形码对于该珠是独特的。在另一个实例中,来自各细胞的核酸可藉由独特“细胞条形码”而与其它细胞的核酸相区分。可以使用多种方法来产生这种分区特异性的,细胞的或珠的条形码。一些情况中,使用例如WO2015/200541中所述的拆分(split)与混合(也称拆分与汇集)合成方案来产生分区特异性细胞或颗粒条形码。在一些实施方式中,超过一种类型的条形码可以在本文所述的寡核苷酸中。
在一些实施方式中,条形码独特地识别其所偶联的分子。这些类型的条形码有时被称为“独特分子标识符”或“UMI”。同样在另一些实施例中,可以利用包含各分区独特的“分区特异性条形码”、以及各分子独特的“分子条形码”的引物。条码化之后,可以合并分区,并任选地扩增分区,同时根据特定条形码保持“虚拟”划分。因此,例如,可计算或追踪包括各条形码的靶核酸的存在与否(例如通过测序),而无需维持实体分区。
条形码序列的长度决定了可以对多少独特的条形码进行区分。例如,1个核苷酸条形码可以对不多于4个样品或分子进行分区;4个核苷酸条形码可以对不多于44(即256)个样品进行分区;6个核苷酸条形码可以对不多于4096个不同样品进行分区;而8个核苷酸的条形码可以标引不多于65,536个不同样品。
通常使用固有不精确的过程来合成和/或聚合(例如,扩增)条形码。因此,旨在均一的条形码(例如,单个分区、细胞或珠的全部条码化核酸所共有的细胞、颗粒或分区特异性条形码)可以相对于范本条形码序列包含不同的N-1缺失或其它突变。因此,被称作“相同的”或“基本相同的”拷贝的条形码在一些实施方式中可包括由于例如合成、聚合或纯化错误中一个或多个错误,因此可含有导致条形码相对范本条形码序列含有不同的N-1缺失或其它突变的不同的条形码。但是,这类偏离理论上理想的条形码的轻微偏差不会干扰本文所述的高通量测序分析方法、组合物和试剂盒。因此,如本文所用,术语“独特”在涉及颗粒、细胞、分区特异性或分子条形码的内容中涵盖偏离理想条形码序列的各种非有意的N-1缺失和突变。一些情况中,由于条形码合成、聚合和/或扩增所致的不精确性质造成的问题通过对与待区分的条形码序列的数量相比进行可能的条形码序列的过量采样(oversampling)来克服(例如,至少约2、5、10倍或更多倍的可能的条形码序列)。例如,可用具有9个条形码核苷酸的细胞条形码(代表262,144个可能的条形码序列)来分析10,000个细胞。本领域熟知条形码技术的使用,参见例如Katsuyuki Shiroguchi等人Proc NatlAcad Sci U S A.,2012年1月24日109(4):1347-52和Smith,AM等人的Nucleic AcidsResearch Can 11,(2010)。使用条形码技术的其他方法和组合物包括U.S.2016/0060621中描述的那些。
在一些实施方式中,寡核苷酸包含在本文中称为“间插序列”的序列。间插序列是以下序列,其可以(1)在条形码和随机序列之间,(2)条形码序列的5′,或(3)将条形码分成两个或更多个条形码部分的序列,其中条形码部分被间插序列分开。图3描绘了间插序列的某些实施方式。间插序列本身可以例如以分开的(例如2、3、4或更多)部分出现,使得寡核苷酸的部分如下布置:5′第一条形码部分-第一间插序列部分-第二条形码部分-第二间插部分序列-寡核苷酸的其余部分。间插序列可以是不抑制引物功能的任何序列。在一些实施方式中,间插序列是1-40个核苷酸,例如2-20个核苷酸长。如下面进一步讨论的,在一些实施方式中,互补序列与至少间插序列互补。
在一些实施方式中,寡核苷酸还包含5′序列,例如标签序列或所需的其他序列。标签序列可以足够长以支持新的引发事件(例如,至少10nt长,但是在一些实施方式中,不超过40nt)。在一些实施方式中,标签序列是测序引物序列(例如,如在Illumina测序中使用,例如,Illumina TruSeq的RD1的部分)。或者,如果测序引物序列在上述间插序列中提供,则该标签序列可以是P5或P7移植序列。RD1,P5和P7序列如下所示:
Figure BDA0002326880270000081
在本文所述的一些实施方式中,寡核苷酸(共价或非共价地)连接至固体支持物,例如珠。珠可以是任何具有固体支持表面的颗粒或珠。在一些实施方式中,珠的尺寸,即各种尺寸的珠的直径,可以在0.1μm至100μm的范围内。在一些实施方式中,该范围是1μm至30μm。适用于颗粒的固体支持物包括调孔玻璃(CPG)(可购自Glen Research公司,弗吉尼亚州斯特灵),草酰-调孔玻璃(参见,如Alul等,Nucleic Acids Research 1991,19,1527),TentaGel支持物-一种氨基聚乙二醇衍生化支持物(参见,如Wright等,TetrahedronLetters 1993,34,3373),聚苯乙烯,Poros(一种聚苯乙烯/二乙烯基苯的共聚物)或可逆交联的丙烯酰胺。很多其它固体支持物市售可得且适用于本发明。在一些实施方式中,珠材料是聚苯乙烯树脂或聚(甲基丙烯酸甲酯)(PMMA)。珠材料可以是金属。术语“珠”涵盖微粒。
在一些实施方式中,该珠是水凝胶珠。一些情况中,水凝胶是溶胶(sol)形式。一些情况中,水凝胶是凝胶(gel)形式。示例性水凝胶是琼脂糖水凝胶。其它水凝胶包括但不限于例如下列文件中所述:美国专利号4,438,258、6,534,083、8,008,476、8,329,763;美国专利申请号2002/0,009,591、2013/0,022,569、2013/0,034,592;以及国际专利申请号WO/1997/030092和WO/2001/049240。
珠的固体支持物表面可以经修饰以包括用于连接条形码寡核苷酸的接头。该接头可以包括可切割部分。可切割部分非限制性的示例包括二硫键、二氧尿苷部分和限制酶识别位点。本领域已知用于共价连接寡核苷酸与一种或多种水凝胶基质的许多方法。仅举一例,醛衍生化琼脂糖可共价连接至合成寡核苷酸的5’-胺基团。在一些实施方式中,构造成将水凝胶连接至条形码的寡核苷酸偶联于高分子量(例如,至少约5、10、15、20、25、30、35、40、50kDa或更大)的聚合物,所述聚合物能被空间约束于gel形式的水凝胶基质内。例如,寡核苷酸可偶联于高分子量线性或支链聚丙烯酰胺。如另一示例,寡核苷酸可偶联于高分子量核酸。高分子量聚合物寡核苷酸偶联物(例如,线性聚丙烯酰胺寡核苷酸偶联物)可通过与溶胶水凝胶混合并将该水凝胶硬化成凝胶形式而纳入水凝胶基质中。一些情况中,所述多个分区含有偶联于高分子线性或支链聚丙烯酰胺的寡核苷酸、sol形式的水凝胶和含有独特分区特异性条形码的双功能条形码模板。其它高分子量聚合物适合与寡核苷酸偶联并包封入水凝胶。示例性聚合物包括但不限于:葡聚糖、壳聚糖、苯乙烯化明胶、透明质酸、海藻酸、明胶、聚乙二醇,及其衍生物。
一些情况中,通过形成包含一或多个丙烯酰胺-寡核苷酸和多个丙烯酰胺单体的反应混合物,并将该反应混合物聚合产生线性聚丙烯酰胺-寡核苷酸偶联物,寡核苷酸被偶联入线性聚丙烯酰胺。可进行该反应来产生多种线性聚丙烯酰胺-寡核苷酸偶联物。纳入线性聚丙烯酰胺分子的寡核苷酸的平均数量可通过改变反应条件来控制。例如,可改变下列非限制性反应条件来控制所纳入寡核苷酸的平均数量:pH,温度,入射光强度,聚合反应时间,或寡核苷酸、丙烯酰胺单体、催化剂(例如,TEMED)或引发剂(例如,核黄素或过硫酸铵)的浓度。
如上所述,本文所述的寡核苷酸具有互补序列,该互补序列与该寡核苷酸至少部分互补,并因此阻止了错误引发事件,否则其中引物将使用一种引物本身作为模板。互补序列将包含足够数量的互补核苷酸,使得互补序列在MDA测定的条件下与寡核苷酸杂交。互补序列不必与寡核苷酸序列的全长互补,并且在许多情况下可以仅与寡核苷酸部分互补(例如,与寡核苷酸序列的至少98%,95%,90%,85%,80%,70%互补)。在一些实施方式中,寡核苷酸包含如上所述的间插序列,并且互补序列至少与一些或全部间插序列互补。在一些实施方式中,互补序列包含与条形码的全部或部分(例如,至少50%,60%,70%,80%,90%)互补的一个或多个序列。通常,互补序列与寡核苷酸的3’随机序列不互补,即使在存在互补序列的情况下,留下3’末端也仍为单链,因此可在MDA反应中引发。
互补序列可以与寡核苷酸序列连接,使得寡核苷酸序列和互补序列形成“发夹”。参见例如图3。例如,在一些实施方式中,互补序列在寡核苷酸序列本身的5′末端或附近,在随机寡核苷酸,条形码和其他5′标签序列与互补序列之间具有环核苷酸序列。
或者,互补序列不与寡核苷酸序列共价连接,而是在MDA条件下可与寡核苷酸杂交的独立分子。
寡核苷酸序列和互补序列可以根据需要通过合成或其他方法来产生。用于产生未共价连接至图8-12中的寡核苷酸序列的分开的互补序列的一些方法。例如,如图8所示,在一些实施方式中,寡核苷酸序列可以包括随机序列的直接5′的“通用”序列(在图8中,其被称为“共有通用序列”),其可以是引物退火的位点,允许互补序列的DNA合成。例如,在一些实施方式中,在条形码寡核苷酸的合成过程中,以模板依赖的方式用聚合酶延伸退火的引物以产生与通用序列和条形码序列互补的第二链核酸,从而产生部分双链寡核苷酸,其中一条链与固体支持珠共价连接并具有单链3′随机序列。
如图9所示,在一些实施方式中,如果互补序列未与寡核苷酸序列共价连接,则互补序列本身可能不适当地用作形成错误引发事件的模板。因此,在一些实施方式中,也希望抑制这些错误引发事件。在一些实施方式中,可以通过在与一个或多个核苷酸的反应中延伸与共有序列互补的引物来抑制此类错误引发的产物,所述一个或多个核苷酸可以被掺入第二链但也与在后面的MDA步骤中使用的链置换聚合酶不相容。与可掺入互补序列的链置换聚合酶(例如Φ29)不相容的示例性核苷酸包括但不限于尿嘧啶(UTP)或生物素化的核苷酸。如图10所示,互补序列中掺入的尿嘧啶的存在将抑制聚合酶使用该互补序列作为模板的活性。或者,例如如图11所示,如果将生物素化的核苷酸引入互补序列,则可在链置换反应之前加入对生物素具有亲和力的链霉亲和素或其他亲和素分子,从而抑制互补链的链置换聚合酶活性。如图12中所指出的,与链置换聚合酶不相容的核苷酸也可以有利地被包括在共有序列中作为发夹的一部分,以抑制反应在链置换反应过程中使用互补序列作为模板。
还提供了如本文所述的具有不同序列的多个寡核苷酸,其各自共价连接至分开的固体支持物。每个寡核苷酸可包含3′随机寡核苷酸序列(如上所述),条形码序列(如上所述)和任选地间插序列(如上所述),其中寡核苷酸至少通过具有不同的3′随机序列(即,序列是不同的)而不同。每个寡核苷酸将被退火至如上所述的互补序列。多个可以包括至少5、10、25、50、100或更多个如上所述的不同的寡核苷酸,每个寡核苷酸连接至分开的固体支持物。
在一些实施方式中,任选地连接至珠的少量(例如1-5、1-4、1-3、1-2)或单个寡核苷酸在分开的分区中。本文所用术语“划分”或“经划分的”指将样品分为多个部分或多个“分区(partition)”。分区通常是实体意义上的,例如,一个分区中的样品不与或基本不与邻近分区中的样品混合。分区可以是固体或流体。在一些实施方式中,分区是固体分区,例如微通道。在一些实施方式中,分区是流体分区,例如液滴。在一些实施方式中,流体分区(如液滴)是不互溶的流体(如水和油)的混合物。在一些实施方式中,流体分区(如液滴)是水性液滴,其被不互溶的运载体流体(如油)包围。任何类型的分区均可与本文所述的寡核苷酸和珠一起使用。
用于进行划分分区的方法和组合物描述于例如公开的专利申请WO 2010/036,352,US 2010/0173,394,US 2011/0092,373和US 2011/0092,376中,其全部内容通过引用并入本文。多个混合物分区可以是多个乳液液滴,或多个微孔等。
混合物分区可以是皮孔(picowell)、纳米孔或微孔。混合物分区可以是皮米,纳米或微米反应室,例如皮米,纳米或微米胶囊。混合物分区可以是皮米,纳米或微米通道。
在一些实施方式中,分区是液滴。在一些实施方式中,液滴包含乳液组合物,即不互溶的流体(如水和油)的混合物。在一些实施方式中,液滴是水性液滴,其被不互溶的运载体流体(如油)包围。在一些实施方式中,液滴是油性液滴,其被不互溶的运载体流体(如水性溶液)包围。在一些实施方式中,本文所述液滴是相对稳定的并在两个或更多个液滴之间具有最小聚结。在一些实施方式中,由样品生成的液滴中少于0.0001%、0.0005%、0.001%、0.005%、0.01%、0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%或10%与其他液滴聚结。这些乳液还可具有有限的絮凝,一种分散相以薄片中悬浮液产生的过程。在一些情况下,这种稳定性或最小聚结可保持长达4、6、8、10、12、24或48小时或更长时间(例如,在室温下,或在约0、2、4、6、8、10或12℃下)。在一些实施方式中,使油相流过水相或试剂,从而形成液滴。
该油相可包含氟化基础油,其可通过与氟化表面活性剂(如全氟聚醚)联用而进一步稳定。在一些实施方式中,该基础油包括以下一种或多种:HFE 7500、FC-40、FC-43、FC-70或其他常见氟化油。在一些实施方式中,该油相包含阴离子含氟表面活性剂。在一些实施方式中,该阴离子含氟表面活性剂是Ammonium Krytox(Krytox-AS)、Krytox FSH的铵盐或Krytox FSH的吗啉代衍生物。Krytox-AS的浓度可以是约0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、2.0%、3.0%或4.0%(w/w)。在一些实施方式中,Krytox-AS的浓度是约1.8%。在一些实施方式中,Krytox-AS的浓度是约1.62%。KrytoxFSH的吗啉代衍生物的浓度可以是约0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、2.0%、3.0%或4.0%(w/w)。在一些实施方式中,Krytox FSH的吗啉代衍生物的浓度是约1.8%。在一些实施方式中,Krytox FSH的吗啉代衍生物的浓度是约1.62%。
在一些实施方式中,该油相还包含用于调节油性质(如蒸气压、粘度或表面张力)的添加剂。非限制性示例包括全氟辛醇和1H,1H,2H,2H-全氟癸醇。在一些实施方式中,1H,1H,2H,2H-全氟癸醇添加至约0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.25%、1.50%、1.75%、2.0%、2.25%、2.5%、2.75%或3.0%(w/w)的浓度。在一些实施方式中,1H,1H,2H,2H-全氟癸醇添加至约0.18%(w/w)的浓度。
在一些实施方式中,该乳液配制为生成具有类液界面膜的高度单分散液滴,其可通过加热转化为具有类固界面膜的微胶囊;这类微胶囊可作为生物反应器以通过一段时间的孵育保持其含量。转化为微胶囊可在一经加热后即发生。例如,这类转化可发生在大于约40°、50°、60°、70°、80°、90°或95℃的温度下。加热过程期间,流体或矿物油覆盖物可用于阻止蒸发。过量的连续相油可在加热前去除或留在原位。这些微胶囊可在大范围的热和机械处理下抗聚结和/或絮凝。
在将液滴转化成微胶囊之后,这些微胶囊可储存于约-70℃、-20℃、0℃、3℃、4℃、5℃、6℃、7℃、8℃、9℃、10℃、15℃、20℃、25℃、30℃、35℃或40℃下。在一些实施方式中,这些微胶囊可用于储存或运输分区混合物。例如,可在一个位置处收集样品,划分到任选地含有本文所述的一种或多种试剂的液滴中,任选地可进行一个或多个聚合反应,然后可加热该分区以进行微囊化,并且可储存或运输微胶囊用于进一步分析。
在一些实施例中,将样品划分为至少500个分区,1000个分区,2000个分区,3000个分区,4000个分区,5000个分区,6000个分区,7000个分区,8000个分区,10,000个分区,15,000个分区,20,000个分区,30,000个分区,40,000个分区,50,000个分区,60,000个分区,70,000个分区,80,000个分区,90,000个分区,100,000个分区,200,000个分区,300,000个分区,400,000个分区,500,000个分区,600,000个分区,700,000个分区,800,000个分区,900,000个分区,1,000,000个分区,2,000,000个分区,3,000,000个分区,4,000,000个分区,5,000,000个分区,10,000,000个分区,20,000,000个分区,30,000,000个分区,40,000,000个分区,50,000,000个分区,60,000,000个分区,70,000,000个分区,80,000,000个分区,90,000,000个分区,100,000,000个分区,150,000,000个分区或200,000,000个分区。
在一些实施方式中,生成的液滴在形状和/或尺寸方面基本均匀。例如,在一些实施方式中,这些液滴在平均直径方面基本均匀。在一些实施方式中,生成的液滴的平均直径为约0.001微米、约0.005微米、约0.01微米、约0.05微米、约0.1微米、约0.5微米、约1微米、约5微米、约10微米、约20微米、约30微米、约40微米、约50微米、约60微米、约70微米、约80微米、约90微米、约100微米、约150微米、约200微米、约300微米、约400微米、约500微米、约600微米、约700微米、约800微米、约900微米或约1000微米。在一些实施方式中,生成的液滴的平均直径为小于约1000微米、小于约900微米、小于约800微米、小于约700微米、小于约600微米、小于约500微米、小于约400微米、小于约300微米、小于约200微米、小于约100微米、小于约50微米,或小于约25微米。在一些实施方式中,生成的液滴在形状和/或尺寸方面是不均匀的。
在一些实施方式中,生成的液滴在体积上基本均匀。例如,液滴体积的标准偏差可以低于约1皮升、5皮升、10皮升、100皮升、1nL或低于约10nL。在一些情况中,液滴体积的标准偏差可低于平均液滴体积的约10-25%。在一些实施方式中,生成的液滴的平均体积为约0.001nL、约0.005nL、约0.01nL、约0.02nL、约0.03nL、约0.04nL、约0.05nL、约0.06nL、约0.07nL、约0.08nL、约0.09nL、约0.1nL、约0.2nL、约0.3nL、约0.4nL、约0.5nL、约0.6nL、约0.7nL、约0.8nL、约0.9nL、约1nL、约1.5nL、约2nL、约2.5nL、约3nL、约3.5nL、约4nL、约4.5nL、约5nL、约5.5nL、约6nL、约6.5nL、约7nL、约7.5nL、约8nL、约8.5nL、约9nL、约9.5nL、约10nL、约11nL、约12nL、约13nL、约14nL、约15nL、约16nL、约17nL、约18nL、约19nL、约20nL、约25nL、约30nL、约35nL、约40nL、约45nL或约50nL。
样品DNA是指待从任何类型的样品中检测,测序或以其他方式表征的DNA。样品DNA可以源自一个或多个细胞,并且可以是例如基因组DNA或cDNA。该DNA可以是天然存在的(例如,来自细胞的初级拷贝),或者可以是例如扩增的DNA。在一些实施方式中,DNA可以是嵌合的(例如,在一端或两端包括异源衔接子序列的DNA)。这样的细胞可以是原代细胞或培养的细胞。在一些实施方式中,从生物样品中扩增DNA。DNA可以来自病毒,原核生物或真核生物(包括但不限于动物(包括但不限于人),植物或真菌。
方法
还提供了使用所述寡核苷酸的方法。在一些实施方式中,所述寡核苷酸在多重置换扩增(MDA)反应中用作引物。MDA是一种非基于PCR的等温方法,其基于将具有随机3′末端的引物退火至变性DNA,然后在恒定温度下进行链置换合成(参见例如Blanco等,J.Biol.Chem.1989,264,8935-8940)。该反应可由诸如但不限于Φ29 DNA聚合酶或Bst DNA聚合酶的大片段的酶催化。在一些实施方式中,使本文所述的寡核苷酸(即具有3′随机化序列,条形码,任选地间插序列,并连接或分开(separate)本文所述的互补序列)与变性的靶DNA接触以至少将随机化序列退火至靶DNA,然后用链置换聚合酶以模板依赖性方式延伸。进行MDA的条件可以在例如美国专利号6,977,148中找到。在图3中提供了使用本文所述的寡核苷酸的一个实施方式的MDA的某些步骤,其描绘了例如将寡核苷酸退火至样品(靶)DNA以及随后用聚合酶延伸寡核苷酸,从而产生了包括条形码的随机引物延伸产物。随后可以使用任何所需的测序技术对MDA反应的延伸产物进行测序。
在一些实施方式中,在与本文所述的寡核苷酸接触之前,可以将样品DNA退火至短变性的随机寡核苷酸(例如,长度为5-25个核苷酸)。如果随后经历非变性(例如,较冷的)条件,则退火的寡核苷酸可用于防止样品DNA的互补链完全再退火。如果需要,可以例如使用大小选择柱从样品DNA中去除过量的非退火随机寡核苷酸。然后可以将变性的样品DNA与本文所述的寡核苷酸(即具有3′随机化序列,条形码,任选的间插序列,并连接或分开本文所述的互补序列,并任选地与珠连接)混合并且可以进行MDA反应。
在一些实施方式中,寡核苷酸和DNA样品可以合并并划分在一起。寡核苷酸可以从珠中释放出来,如果存在的话,可以在分区中,并且MDA可以随后在分区中进行,从而在分区中产生条码化的MDA延伸产物。随后可以合并这些分区,并且可以表征(例如,测序)延伸产物,其中每个分区由不同的条形码表示。图5描绘了该方法的各个方面。
在其他方面,提供了用来自单个细胞的所述寡核苷酸进行MDA的方法。例如,在一些实施方式中,可以将分开的细胞包封在可逆水凝胶珠内。先前已经描述了将细胞包封在水凝胶珠中的方法,例如,在Nicodemus,Tissue Eng Part B Rev.2008年6月;14(2):149-165中所述。一旦细胞被包封,可以用蛋白酶处理细胞以从细胞中去除蛋白质,而在水凝胶中保留更高分子量的DNA。可以如上所述(例如通过加热或碱性)使DNA变性,并任选地退火至短变性的随机寡核苷酸(例如长度为5-25个核苷酸),以防止样品DNA的互补链随后完全重退火。任选地,可以洗涤水凝胶珠以去除过量的未退火的随机引物。然后可以将包封的样品DNA与本文所述的寡核苷酸(即具有3′随机化序列,条形码,任选的间插序列,并连接或分开本文所述的互补序列,并任选地与珠连接)混合并且基本上按照以上段落中的描述划分在一起。寡核苷酸可以从珠中释放出来,如果存在的话,可以在分区中,并且MDA可以随后在分区中进行,从而在分区中产生条码化的MDA延伸产物。随后可以组合这些分区,并且可以表征(例如,测序)延伸产物,其中每个分区由不同的条形码表示。图6-7描绘了该方法的各个方面。
遵循MDA,可以对延伸产物进行混合和测序。可以使用所需的的任何核苷酸测序方法,只要能确定至少一些DNA样品序列和任选的条形码序列。高通量测序和基因分型的方法是本领域已知的。例如,此类测序技术包括但不限于:焦磷酸测序、连接法测序、单分子测序、合成法测序(SBS)、大量同步克隆法、大量同步单分子SBS、大量同步单分子实时法,大量同步单分子纳米孔技术等。Morozova和Marra提供对一些此类技术的综述,见Genomics,92:255(2008),该文在此通过引用全文纳入本文。
示例性的DNA测序技术包括基于荧光的测序技术(参见如Birren等,GenomeAnalysis:Analyzing DNA,1(基因组分析:DNA分析,第1卷),纽约冷泉港,该文在此通过引用全文纳入本文)。在一些实施方式中,使用本领域已理解的自动化测序技术。在一些实施方式中,本技术提供经划分的扩增子的同步测序(PCT申请号WO 2006/0841,32,该文在此通过引用全文纳入本文)。在一些实施方式中,DNA测序的实现是通过同步寡核苷酸延伸(参见如美国专利号5,750,341和6,306,597,两者在此通过引用全文纳入本文)。测序技术的补充示例包括:Church多克隆技术(Mitra等,2003,Analytical Biochemistry 320,55-65;Shendure等,2005Science 309,1728-1732;和美国专利号6,432,360,6,485,944,6,511,803;在此通过引用全文纳入本文),454皮升焦磷酸测序技术(picotiter pyrosequencingtechnology,Margulies等,2005Nature 437,376-380;美国公布号2005/0130173;在此通过引用全文纳入本文),Solexa单碱基添加技术(Bennett等,2005,Pharmacogenomics,6,373-382;美国专利号6,787,308和6,833,246;在此通过引用全文纳入本文),Lynx大量同步极好测序技术(Brenner等,(2000).Nat.Biotechnol.18:630-634;美国专利号5,695,934,5,714,330;在此通过引用全文纳入本文)和Adessi PCR克隆技术(Adessi等(2000).NucleicAcid Res.28,E87;WO 2000/018957;在此通过引用全文纳入本文)。
通常,高通量测序都具有大量同步这一共同特征,高通量策略的目的是使成本比较早的测序方法低(参见如Voelkerding等,Clinical Chem.,55:641-658,2009;MacLean等,Nature Rev.Microbiol.,7:287-296;两者在此都通过引用全文纳入本文)。此类方法可大致分成通常用和不用模板扩增两大类。需要扩增的方法包括罗氏公司以454技术平台商业化的焦磷酸测序(例如,GS 20和GS FLX),Illumina销售的Solexa平台,和应用生物系统公司(Applied Biosystems)销售的支持态寡核苷酸连接和检测(SupportedOligonucleotide Ligation and Detection,SOLiD)平台。非扩增方法也称为单分子测序,其示例有螺旋生物科学公司(Helicos BioSciences)销售的HeliScope平台,VisiGen公司、牛津纳米孔技术公司(Oxford Nanopore Technologies)、生命技术公司(LifeTechnologies)/离子流(Ion Torrent)和太平洋生物科学公司销售的平台。
焦磷酸测序(Voelkerding等,Clinical Chem.,55:641-658,2009;MacLean等,Nature Rev.Microbial.,7:287-296;美国专利号6,210,891和6,258,568;其各自通过引用全文纳入本文)中,模板DNA被片段化、末端修复、连接衔接子、并用珠捕获单模板分子来进行原位克隆性扩增,珠上载有与衔接子互补的寡核苷酸。载有单模板类型的各珠被分入油包水微泡中,模板被克隆性扩增,所用技术被称作乳液PCR。扩增后破乳,珠被置入皮升微孔板(picotitre plate)的各孔内,孔在测序反应中作为流动室。在测序酶和发光报告物如萤光酶的存在下,流动室中发生四种dNTP试剂各自的有序迭代引入。合适的dNTP被加到测序引物的3′端时,所产生的ATP导致孔内发光脉冲,用CCD相机予以记录。能够实现大于或等于400个碱基的读数长度,且能够实现106个序列读数,得到最多达5亿碱基对(Mb)的序列。
在Solexa/Illumina平台中(Voelkerding等,Clinical Chem.,55.641-658,2009;MacLean等,Nature Rev.Microbial.,7:287-296;美国专利号6,833,246,7,115,400和6,969,488;其各自通过引用全文纳入本文),以较短的读数形式产生测序数据。该方法中,单链的片段化DNA末端修复产生5′-磷酸化钝端,然后由Klenow介导添加单一A碱基至这些片段的3′端。添加A便于添加T-突端衔接子寡核苷酸,后者将被用来捕获流动室表面上模板-衔接子分子,流动室中插有寡核苷酸锚。锚被用作PCR引物,但由于模板的长度且其靠近其它邻近的锚寡核苷酸,PCR延伸导致分子“拱跨(arching over)”杂交邻近的锚寡核苷酸在流动室表面形成桥式结构。这些DNA环被变性并切割。正链随后通过可逆染料终止子来测序。通过检测纳入后荧光来确定所纳入核苷酸的序列,在下一轮dNTP添加前除去各荧光团和阻断。序列读数长度从36个核苷酸到超过50个核苷酸,总体输出为每次运行分析超过10亿个核苷酸对。
用SOLiD技术(Voelkerding等,Clinical Chem.,55:641-658,2009;MacLean等,Nature Rev.Microbial.,7:287-296;美国专利号5,912,148;和6,130,073;其各自通过引用全文纳入本文)对核酸分子进行测序还包括片段化模板,连接寡核苷酸衔接子,连接珠,以及乳液PCR克隆性扩增。此后,载有模板的珠被固定化在玻璃流动室的衍生化表面,与衔接子寡核苷酸互补的引物发生退火。但该引物并不用作3′延伸,而是用来提供5′磷酸基团供连接至问询探针,这些探针含有两个探针特异性碱基及其后6个简并碱基和四种荧光标记其一。SOLiD系统中,问询探针中每个探针3′的两个碱基有16种可能的组合而在5′端是四种荧光标记之一。荧光颜色,及由此辨识的各探针对应于指定的颜色-空间编码方案。多轮(通常7轮)探针退火、连接和荧光检测后变性,然后用相对初始引物错开一位碱基的引物进行第二轮的测序。以此方式,模板序列可通过计算得以重建,而且模板碱基问询两次,得到更高的精确度。序列读数长度平均为35个核苷酸,总体输出为每次测序运行超过40亿个碱基。
某些实施方式中,采用纳米孔测序(参见如Astier等,J.Am.Chem.Soc.2006年2月8日;128(5)1705-10,通过引用纳入本文)。纳米孔测序的原理涉及纳米孔浸入传导液并跨纳米孔施加电压(伏特)时所发生的现象。这些条件下,可观察到由于离子传导有微弱电流通过纳米孔,而电流的量对纳米孔的大小极度敏感。随着核酸的每个碱基通过该纳米孔,就会导致通过纳米孔的电流幅度有变化,这种变化对于四种碱基的每一种是不同的,从而允许确定DNA分子的序列。
某些实施方式中,采用螺旋生物科学公司(Helicos BioSciences Corporation)的HeliScope(Voelkerding等,Clinical Chem.,55.641-658,2009;MacLean等,NatureRev.Microbial,7:287-296;美国专利号7,169,560,7,282,337,7,482,120,7,501,245,6,818,395,6,911,345和7,501,245;其各自通过引用全文纳入本文)。模板DNA被片段化并在3′端多腺苷化,最后的腺苷载有荧光素标记。变性的多腺苷化模板片段连接到流动室表面上的聚(dT)寡核苷酸上。由CCD相机记录被捕获模板的初始物理位置,然后切下并洗去标记。通过添加聚合酶并系列添加带荧光标记的dNTP试剂来实现测序。纳入事件产生对应于dNTP的荧光信号,而CCD相机在每轮dNTP添加前捕捉信号。序列读数长度在25-50个核苷酸,总体输出为每次运行分析超过10亿个核苷酸对。
离子激流技术是基于对DNA聚合所释放氢离子的检测的DNA测序(参见如Science327(5970):1190(2010);美国专利申请号2009/0026082;2009/0127589;2010/0301398;2010/0197507;2010/0188073和2010/0137143;全部通过引用全文纳入本文用于所有目的)。微孔含有待测序的模板DNA链。微孔层下方是超敏ISFET离子传感器。所有层都包含在CMOS半导体芯片内,该芯片与电子工业中所用的类似。在dNTP被纳入生长中的互补链时释放氢离子,触发超敏离子传感器。若模板系列中存在均聚重复系列,单次循环中会纳入多个dNTP分子。这导致对应数量的氢释放,和成比例的更高电子信号。这一技术与其它测序技术的区别之处在于不适用带修饰核苷酸和光学元件。离子流测序仪的单碱基精确度为每50碱基读数约99.6%,每次运行产生约100Mb。读数长度是100个碱基对。5个重复的均聚重复序列的精确度是约98%。离子半导体测序的优势在于测序速度快且前期和运行成本低。
可适用于本发明的另一示例性核酸测序方法是由Stratos Genomics公司开发并用到Xpandomer分子的测序方法。该测序方法通常包括提供由模板引导的合成产生的子链。该子链通常包括按对应于靶核酸全部或部分的连续核苷酸序列偶联的多个亚单元,各亚单元含有系连物(tether)、至少一个探针或核碱基残基和至少一个选择性可切割的键。选择性可切割的键是被切割来得到Xpandomer,其长度大于子链的所述多个亚单元的长度。Xpandomer通常包括系连物和报告子元件,报告子元件用以解析序列中对应于靶核酸的全部或部分的连续核苷酸序列的遗传信息。Xpandomer随后被测得。对基于Xpandomer的方法的补充细节在文献中有记载,例如美国专利公开号2009/0035777,其通过引用全文纳入本文。
其它单分子测序方法包括利用VisiGen平台通过合成来实时测序(Voelkerding等,Clinical Chem.,55:641-58,2009;美国专利号7,329,492,美国专利申请序列号11/671,956和11/781,166;其各自通过引用全文纳入本文),其中,固定化的带引物DNA模板用带荧光素修饰的聚合酶和荧光素受体分子来进行链延伸,在核苷酸添加时产生可测的荧光共振能量转移(FRET)。
另一由太平洋生物科学公司(Pacific Biosciences)开发的实时单分子测序系统(Voelkerding等,Clinical Chem.,55.641-658,2009;MacLean等,NatureRev.Microbiol.,7:287-296;美国专利号7,170,050,7,302,146,7,313,308和7,476,503;其各自通过引用全文纳入本文)利用直径50-100nm含有约20仄升(10-21L)反应体积的反应孔。利用固定化模板、改良的Φ29 DNA聚合酶和高局部浓度荧光素标记的dNTP来进行测序反应。高局部浓度和连续反应条件允许采用激光激发、光学波导和CCD相机来通过荧光信号检测实时捕捉纳入事件。
在某些实施方式中,单分子实时(SMRT)DNA测序方法采用太平洋生物科学公司(Pacific Biosciences)开发的零级波导(zero-mode waveguide,ZMW)或类似方法。用此技术,DNA测序在SMRT芯片上进行,这些芯片各自含有数千个零级波导(ZMW)。ZMW是孔,直径是纳米的几十分之一,制造在100nm金属膜中,该膜置于二氧化硅底物上。每个ZMW成为提供检测体积仅20仄升(10-21L)的纳米光子可视化室。以此体积,可在数千个标记的核苷酸背景中检测出单个分子的活性。ZMW通过合成进行测序,为观察DNA聚合酶提供了窗口。各ZMW室内,单个DNA聚合酶分子结合在底面从而永久保持在检测体积内。磷酸连接的(phospholinked)核苷酸每种标记有不同颜色的荧光团,这些核苷酸随后以高浓度引入反应溶液中,这些浓度提高酶速度、精确性和处理能力(processivity)。由于ZMW体积小,即使在这些高浓度下,检测体积被众核苷酸占据的时间占比很小。此外,由于转运核苷酸的扩散距离很短,对检测体积的经停很快,仅持续几微秒。结果就是背景很低。
可调试用于本发明的用于此类实时测序的方法和系统记载于,例如,美国专利号7,405,281、7,315,019、7,313,308、7,302,146和7,170,050;美国专利公布号2008/0212960、2008/0206764、2008/0199932、2008/0199874、2008/0176769、2008/0176316、2008/0176241、2008/0165346、2008/0160531、2008/0157005、2008/0153100、2008/0153095、2008/0152281、2008/0152280、2008/0145278、2008/0128627、2008/0108082、2008/0095488、2008/0080059、2008/0050747、2008/0032301、2008/0030628、2008/0009007、2007/0238679、2007/0231804、2007/0206187、2007/0196846、2007/0188750、2007/0161017、2007/0141598、2007/0134128、2007/0128133、2007/0077564、2007/0072196和2007/0036511,以及Korlach等(2008)“选择性铝钝化用于将单个DNA聚合酶分子靶向固定在零级波导纳米结构中(Selective aluminum passivation for targetedimmobilization of single DNA polymerase molecules in zero-mode waveguidenanostructures)”PNAS 105(4):1176-81,其全部在此通过引用全文纳入本文。
虽然通过阐述和举例的方式详细描述了上述发明以清晰理解,但本发明技术人员应理解可在所附权利要求书范围内实施某些改变和修改。此外,本文提供的各参考文献通过引用全文纳入本文,就如同各参考文献单独通过引用纳入本文。当即时应用和本文提供的参考之间存在冲突时,即时应用占主导地位。

Claims (56)

1.一种进行多重置换扩增的方法,所述方法包括,
提供多个寡核苷酸,每个寡核苷酸包含至少四个连续核苷酸的3′随机序列,条形码序列,和任选的间插序列,将寡核苷酸退火至与条形码序列,间插序列互补,或同时与条形码序列和间插序列互补的互补核酸,其中所述互补核酸不与3′随机序列互补,留下3′随机序列为单链;
在使互补核酸退火至寡核苷酸并允许3′随机序列退火至样品DNA的条件下使多个寡核苷酸与样品DNA接触;和
用链置换聚合酶以模板依赖性方式延伸3′随机序列,以产生包含与所述DNA互补的3′序列的延长的寡核苷酸。
2.如权利要求1所述的方法,其中所述多个包含具有不同随机序列的至少25个不同的寡核苷酸。
3.如权利要求1所述的方法,其中所述寡核苷酸还包含5’标签序列。
4.如权利要求3所述的方法,其中所述标签序列长度为2-40个核苷酸。
5.如权利要求1所述的方法,其中所述寡核苷酸缺少间插序列,并且互补核酸与条形码序列或其至少6个核苷酸的连续部分互补。
6.如权利要求1所述的方法,其中所述条形码序列是不连续的,并且间插序列在条形码序列的两个或更多个部分之间。
7.如权利要求1或6所述的方法,其中所述互补核酸不包含与条形码序列互补的序列。
8.如权利要求1所述的方法,其中所述寡核苷酸共价连接至互补核酸的分开的拷贝,使得所述寡核苷酸形成多核苷酸发夹。
9.如权利要求1所述的方法,其中所述互补核酸不与寡核苷酸共价连接。
10.如权利要求9所述的方法,其中所述5’标签序列与固体支持珠共价连接。
11.如权利要求1-10中任一项所述的方法,其中所述方法在分区中进行。
12.如权利要求11所述的方法,其中所述分区平均包含1-3个固体支持珠。
13.如权利要求12或13所述的方法,其中所述分区是乳液中的液滴。
14.如权利要求11-13中任一项所述的方法,还包括在延伸之后,将分区的内容物合并成大块反应混合物。
15.如权利要求1-14中任一项所述的方法,其中所述互补核酸包含与链置换聚合酶不相容的一个或多个核苷酸。
16.如权利要求15所述的方法,其中一个或多个核苷酸是一个或多个尿嘧啶。
17.如权利要求15所述的方法,其中所述一个或多个核苷酸是生物素化的。
18.如权利要求17所述的方法,其中生物素化的核苷酸与链霉亲和素结合。
19.如权利要求1-15中任一项所述的方法,其中所述链置换聚合酶是Φ29聚合酶。
20.如权利要求1-19中任一项所述的方法,其中所述随机序列的长度为4-10个核苷酸。
21.如权利要求1-19中任一项所述的方法,其中所述条形码序列的长度为8-50个核苷酸。
22.如权利要求1-19中任一项所述的方法,其中所述间插序列的长度为6-40个核苷酸。
23.如权利要求1-22中任一项所述的方法,其中所述方法包括提供包封在水凝胶珠中的样品DNA,将水凝胶珠定位在含寡核苷酸中至少一个的液滴中,并从水凝胶中释放样品DNA,从而使寡核苷酸与样品DNA接触。
24.如权利要求23所述的方法,其中所述水凝胶中的样品DNA由来自一个或多个细胞的DNA组成。
25.如权利要求23或24所述的方法,包括:
将一个或多个细胞包封在水凝胶珠中,
裂解所述一个或多个细胞并任选地使所述裂解的细胞与一种或多种蛋白酶接触;并且
从水凝胶珠中分离出从水凝胶珠中扩散出来的细胞裂解产物。
26.如权利要求23-25中任一项所述的方法,包括使由水凝胶珠包封的样品DNA变性。
27.如权利要求26所述的方法,还包括将变性的DNA与随机的寡核苷酸杂交以维持变性的DNA。
28.如权利要求23-28中任一项所述的方法,包括将水凝胶珠包封在分开的水性分区中,使水凝胶珠进入分区内的溶液中,然后在水性分区中进行延伸。
29.如权利要求28所述的方法,其中所述分区是液滴。
30.一种产生部分双链寡核苷酸的方法,所述方法包括,
提供与寡核苷酸的5′末端共价连接的固体支持珠,该寡核苷酸按以下顺序包含:至少四个连续核苷酸的3′随机序列,共有通用序列,和条形码序列;
使寡核苷酸引物退火至共有通用序列;和
以模板依赖的方式用聚合酶延伸退火的寡核苷酸引物以产生与共有通用序列和条形码序列互补的第二链核酸,从而产生部分双链寡核苷酸,其中一条链与固体支持珠共价连接并具有单链3′随机序列。
31.如权利要求30所述的方法,其中所述寡核苷酸还包含间插序列。
32.如权利要求31所述的方法,其中所述条形码序列是不连续的,并且间插序列在条形码序列的两个或更多个部分之间。
33.如权利要求30所述的方法,其中所述寡核苷酸还包含5’标签序列。
34.如权利要求30所述的方法,其中在dUTP的存在下进行延伸,使得将尿嘧啶掺入第二链核酸中。
35.如权利要求34所述的方法,其中dUTP被生物素化,使得掺入到第二链核酸中的尿嘧啶被生物素化。
36.如权利要求35所述的方法,还包括使第二链核酸与链霉亲和素接触。
37.如权利要求30-36中任一项所述的方法,其中所述随机序列的长度为4-10个核苷酸。
38.如权利要求30-36中任一项所述的方法,其中所述条形码序列的长度为8-50个核苷酸。
39.如权利要求30-36中任一项所述的方法,其中所述间插序列的长度为6-40个核苷酸。
40.具有不同序列的多个寡核苷酸,每个寡核苷酸共价连接至分开的固体支持珠,每个寡核苷酸包含至少四个连续核苷酸的3′随机序列,条形码序列和任选的间插序列,其中所述寡核苷酸通过具有不同的3′随机序列而不同,每个寡核苷酸退火至与条形码序列,间插序列互补或同时与条形码序列和间插序列互补的互补核酸,其中该互补核酸与3′随机序列不互补,留下3′随机序列为单链。
41.如权利要求1所述的方法,其中所述多个包含具有不同随机序列的至少25个不同的寡核苷酸。
42.如权利要求40所述的多个寡核苷酸,其中所述寡核苷酸还包含5’标签序列。
43.如权利要求42所述的多个寡核苷酸,其中所述标签序列长度为2-40个核苷酸。
44.如权利要求40所述的多个寡核苷酸,其中所述寡核苷酸缺少间插序列,并且互补核酸与条形码序列或其至少6个核苷酸的连续部分互补。
45.如权利要求40所述的多个寡核苷酸,其中所述条形码序列对于每个固体支持珠是独特的。
46.如权利要求40所述的多个寡核苷酸,其中所述条形码序列是不连续的,并且所述间插序列在所述条形码序列的两个或更多个部分之间。
47.如权利要求40-46中任一项所述的多个寡核苷酸,其中所述互补核酸不包含与条形码序列互补的序列。
48.如权利要求40所述的多个寡核苷酸,其中所述寡核苷酸共价连接至互补核酸的分开的拷贝,使得所述寡核苷酸形成多核苷酸发夹。
49.如权利要求40所述的多个寡核苷酸,其中所述互补核酸不与所述寡核苷酸共价连接。
50.如权利要求40-49中任一项所述的多个寡核苷酸,其中所述互补核酸包含与链置换聚合酶不相容的一个或多个核苷酸。
51.如权利要求50所述的多个寡核苷酸,其中所述一个或多个核苷酸是尿嘧啶。
52.如权利要求50或51所述的多个寡核苷酸,其中所述一个或多个核苷酸被生物素化并结合至链霉亲和素。
53.如权利要求40-52中任一项所述的多个寡核苷酸,其中所述随机序列的长度为4-10个核苷酸。
54.如权利要求40-52中任一项所述的多个寡核苷酸,其中所述条形码序列的长度为8-50个核苷酸。
55.如权利要求40-52中任一项所述的多个寡核苷酸,其中所述间插序列的长度为6-40个核苷酸。
56.如权利要求40-52中任一项所述的多个寡核苷酸,其中所述随机序列的长度为4-10个核苷酸。
CN201880041258.2A 2017-06-20 2018-06-19 使用珠寡核苷酸的mda Pending CN110770356A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762522226P 2017-06-20 2017-06-20
US62/522,226 2017-06-20
PCT/US2018/038351 WO2018236918A1 (en) 2017-06-20 2018-06-19 MDA USING A BALL OLIGONUCLEOTIDE

Publications (1)

Publication Number Publication Date
CN110770356A true CN110770356A (zh) 2020-02-07

Family

ID=62842330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880041258.2A Pending CN110770356A (zh) 2017-06-20 2018-06-19 使用珠寡核苷酸的mda

Country Status (4)

Country Link
US (3) US11186862B2 (zh)
EP (1) EP3642363A1 (zh)
CN (1) CN110770356A (zh)
WO (1) WO2018236918A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923837A (zh) 2015-02-09 2022-08-19 弹弓生物科学公司 具有可调光学性质的水凝胶颗粒以及使用其的方法
WO2018081113A1 (en) 2016-10-24 2018-05-03 Sawaya Sterling Concealing information present within nucleic acids
US11186862B2 (en) * 2017-06-20 2021-11-30 Bio-Rad Laboratories, Inc. MDA using bead oligonucleotide
WO2020218554A1 (ja) * 2019-04-26 2020-10-29 bitBiome株式会社 デジタル体細胞変異解析
JPWO2020218553A1 (zh) * 2019-04-26 2020-10-29
EP4004232A4 (en) * 2019-07-22 2023-08-09 Igenomx International Genomics Corporation METHODS AND COMPOSITIONS FOR HIGH THROUGHPUT SAMPLE PREPARATION USING A UNIQUE DUAL INDEXING
WO2021262971A1 (en) * 2020-06-25 2021-12-30 Bio-Rad Laboratories, Inc. Barcoding methods and compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971039A2 (en) * 1998-06-24 2000-01-12 Enzo Diagnostics, Inc. Processes useful for nucleic acid amplification and sequencing, and for the production of nucleic acid having decreased thermodynamic stability
WO2012162267A2 (en) * 2011-05-20 2012-11-29 Fluidigm Corporation Nucleic acid encoding reactions
US20140213485A1 (en) * 2013-01-28 2014-07-31 Yale University Methods For Preparing cDNA From Low Quantities of Cells
WO2015019247A1 (en) * 2013-08-09 2015-02-12 Genebio Systems, Inc. Dna amplification via scissor-like structures (dasl)
WO2016126871A2 (en) * 2015-02-04 2016-08-11 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
CN106715715A (zh) * 2014-08-14 2017-05-24 雅培分子公司 多功能寡核苷酸

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK260782A (da) 1981-06-12 1982-12-13 Nat Res Dev Hydrogeler
US5714330A (en) 1994-04-04 1998-02-03 Lynx Therapeutics, Inc. DNA sequencing by stepwise ligation and cleavage
CA2195562A1 (en) 1994-08-19 1996-02-29 Pe Corporation (Ny) Coupled amplification and ligation method
US5695934A (en) 1994-10-13 1997-12-09 Lynx Therapeutics, Inc. Massively parallel sequencing of sorted polynucleotides
US5750341A (en) 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
GB9603146D0 (en) 1996-02-15 1996-04-17 Innovative Tech Ltd Hydrogels
GB9609474D0 (en) 1996-05-08 1996-07-10 Innovative Tech Ltd Hydrogels
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
GB9626815D0 (en) 1996-12-23 1997-02-12 Cemu Bioteknik Ab Method of sequencing DNA
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
JP2001519538A (ja) 1997-10-10 2001-10-23 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ 核酸アレイのレプリカ増幅
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6485944B1 (en) 1997-10-10 2002-11-26 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6787308B2 (en) 1998-07-30 2004-09-07 Solexa Ltd. Arrayed biomolecules and their use in sequencing
AR021833A1 (es) 1998-09-30 2002-08-07 Applied Research Systems Metodos de amplificacion y secuenciacion de acido nucleico
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US7501245B2 (en) 1999-06-28 2009-03-10 Helicos Biosciences Corp. Methods and apparatuses for analyzing polynucleotide sequences
WO2001023610A2 (en) 1999-09-29 2001-04-05 Solexa Ltd. Polynucleotide sequencing
DE60114565T2 (de) 2000-01-05 2006-07-27 Novartis Ag Hydrogele
US6936702B2 (en) 2000-06-07 2005-08-30 Li-Cor, Inc. Charge-switch nucleotides
EP1368460B1 (en) 2000-07-07 2007-10-31 Visigen Biotechnologies, Inc. Real-time sequence determination
US6977148B2 (en) 2001-10-15 2005-12-20 Qiagen Gmbh Multiple displacement amplification
ES2396245T3 (es) 2003-01-29 2013-02-20 454 Life Sciences Corporation Método de amplificación y secuenciamiento de ácidos nucleicos
DE10344411A1 (de) 2003-09-25 2005-04-28 Roehm Gmbh Hydrogel
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
WO2005078016A1 (en) 2004-02-05 2005-08-25 Millipore Corporation Room temperature stable agarose solutions
US7476503B2 (en) 2004-09-17 2009-01-13 Pacific Biosciences Of California, Inc. Apparatus and method for performing nucleic acid analysis
US7170050B2 (en) 2004-09-17 2007-01-30 Pacific Biosciences Of California, Inc. Apparatus and methods for optical analysis of molecules
US7482120B2 (en) 2005-01-28 2009-01-27 Helicos Biosciences Corporation Methods and compositions for improving fidelity in a nucleic acid synthesis reaction
EP2239342A3 (en) 2005-02-01 2010-11-03 AB Advanced Genetic Analysis Corporation Reagents, methods and libraries for bead-based sequencing
US20070141598A1 (en) 2005-02-09 2007-06-21 Pacific Biosciences Of California, Inc. Nucleotide Compositions and Uses Thereof
US7805081B2 (en) 2005-08-11 2010-09-28 Pacific Biosciences Of California, Inc. Methods and systems for monitoring multiple optical signals from a single source
US7405281B2 (en) 2005-09-29 2008-07-29 Pacific Biosciences Of California, Inc. Fluorescent nucleotide analogs and uses therefor
US7763423B2 (en) 2005-09-30 2010-07-27 Pacific Biosciences Of California, Inc. Substrates having low density reactive groups for monitoring enzyme activity
US7935310B2 (en) 2005-11-28 2011-05-03 Pacific Biosciences Of California, Inc. Uniform surfaces for hybrid material substrate and methods for making and using same
US7998717B2 (en) 2005-12-02 2011-08-16 Pacific Biosciences Of California, Inc. Mitigation of photodamage in analytical reactions
CA2633476C (en) 2005-12-22 2015-04-21 Pacific Biosciences Of California, Inc. Active surface coupled polymerases
CA2633524A1 (en) 2005-12-22 2007-07-05 Pacific Biosciences Of California, Inc. Polymerases for nucleotide analogue incorporation
US7715001B2 (en) 2006-02-13 2010-05-11 Pacific Biosciences Of California, Inc. Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US7995202B2 (en) 2006-02-13 2011-08-09 Pacific Biosciences Of California, Inc. Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US7692783B2 (en) 2006-02-13 2010-04-06 Pacific Biosciences Of California Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US8975216B2 (en) 2006-03-30 2015-03-10 Pacific Biosciences Of California Articles having localized molecules disposed thereon and methods of producing same
US20080050747A1 (en) 2006-03-30 2008-02-28 Pacific Biosciences Of California, Inc. Articles having localized molecules disposed thereon and methods of producing and using same
US7563574B2 (en) 2006-03-31 2009-07-21 Pacific Biosciences Of California, Inc. Methods, systems and compositions for monitoring enzyme activity and applications thereof
US7282337B1 (en) 2006-04-14 2007-10-16 Helicos Biosciences Corporation Methods for increasing accuracy of nucleic acid sequencing
AU2007261114B2 (en) 2006-06-12 2012-07-12 Pacific Biosciences Of California, Inc. Substrates for performing analytical reactions
EP2029780A4 (en) 2006-06-16 2010-03-31 Pacific Biosciences California CONTROLLED INITIATION OF A PRIMARY EXTENSION
WO2008028160A2 (en) 2006-09-01 2008-03-06 Pacific Biosciences Of California, Inc. Substrates, systems and methods for analyzing materials
US20080080059A1 (en) 2006-09-28 2008-04-03 Pacific Biosciences Of California, Inc. Modular optical components and systems incorporating same
WO2008051530A2 (en) 2006-10-23 2008-05-02 Pacific Biosciences Of California, Inc. Polymerase enzymes and reagents for enhanced nucleic acid sequencing
EP2677309B9 (en) 2006-12-14 2014-11-19 Life Technologies Corporation Methods for sequencing a nucleic acid using large scale FET arrays, configured to measure a limited pH range
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8551704B2 (en) 2007-02-16 2013-10-08 Pacific Biosciences Of California, Inc. Controllable strand scission of mini circle DNA
ES2559313T3 (es) 2007-06-19 2016-02-11 Stratos Genomics Inc. Secuenciación de ácidos nucleicos de alto rendimiento por expansión
US20090023190A1 (en) * 2007-06-20 2009-01-22 Kai Qin Lao Sequence amplification with loopable primers
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
EP3964821A1 (en) 2008-09-23 2022-03-09 Bio-Rad Laboratories, Inc. Droplet-based assay system
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
JP5542200B2 (ja) 2010-04-22 2014-07-09 帝人株式会社 ハイドロゲル
US20130022569A1 (en) 2011-05-16 2013-01-24 Uhrich Kathryn E Hydrogels
WO2013022961A1 (en) * 2011-08-08 2013-02-14 3The Broad Institute Compositions and methods for co-amplifying subsequences of a nucleic acid fragment sequence
US9469874B2 (en) * 2011-10-18 2016-10-18 The Regents Of The University Of California Long-range barcode labeling-sequencing
US20140378349A1 (en) * 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
CN114214314A (zh) 2014-06-24 2022-03-22 生物辐射实验室股份有限公司 数字式pcr条码化
EP3998351A1 (en) * 2016-03-25 2022-05-18 Qiagen Sciences, LLC Primers with self-complementary sequences for multiple displacement amplification
EP3464634B1 (en) * 2016-05-24 2021-02-17 The Translational Genomics Research Institute Molecular tagging methods and sequencing libraries
US11186862B2 (en) * 2017-06-20 2021-11-30 Bio-Rad Laboratories, Inc. MDA using bead oligonucleotide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971039A2 (en) * 1998-06-24 2000-01-12 Enzo Diagnostics, Inc. Processes useful for nucleic acid amplification and sequencing, and for the production of nucleic acid having decreased thermodynamic stability
WO2012162267A2 (en) * 2011-05-20 2012-11-29 Fluidigm Corporation Nucleic acid encoding reactions
US20140213485A1 (en) * 2013-01-28 2014-07-31 Yale University Methods For Preparing cDNA From Low Quantities of Cells
WO2015019247A1 (en) * 2013-08-09 2015-02-12 Genebio Systems, Inc. Dna amplification via scissor-like structures (dasl)
CN106715715A (zh) * 2014-08-14 2017-05-24 雅培分子公司 多功能寡核苷酸
WO2016126871A2 (en) * 2015-02-04 2016-08-11 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities

Also Published As

Publication number Publication date
EP3642363A1 (en) 2020-04-29
US20220042077A1 (en) 2022-02-10
US11905551B2 (en) 2024-02-20
US20180371525A1 (en) 2018-12-27
US20240093268A1 (en) 2024-03-21
US11186862B2 (en) 2021-11-30
WO2018236918A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US11759761B2 (en) Multiple beads per droplet resolution
US11905551B2 (en) MDA using bead oligonucleotide
EP3161157B1 (en) Digital pcr barcoding
EP3746552B1 (en) Methods and compositions for deconvoluting partition barcodes
US11834710B2 (en) Transposase-based genomic analysis
CN113166807A (zh) 通过分区中条码珠共定位生成核苷酸序列
US20230313278A1 (en) Cell barcoding for single cell sequencing
US20210403989A1 (en) Barcoding methods and compositions
WO2024086217A2 (en) Methods and compositions for tracking barcodes in partitions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination