CN110767266A - 基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 - Google Patents
基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 Download PDFInfo
- Publication number
- CN110767266A CN110767266A CN201911064826.3A CN201911064826A CN110767266A CN 110767266 A CN110767266 A CN 110767266A CN 201911064826 A CN201911064826 A CN 201911064826A CN 110767266 A CN110767266 A CN 110767266A
- Authority
- CN
- China
- Prior art keywords
- erbb
- graph
- protein
- data
- ligand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 98
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 98
- 238000010276 construction Methods 0.000 title claims abstract description 21
- 230000006870 function Effects 0.000 claims abstract description 103
- 238000000034 method Methods 0.000 claims abstract description 74
- 238000010801 machine learning Methods 0.000 claims abstract description 53
- 238000012549 training Methods 0.000 claims abstract description 17
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 101150029707 ERBB2 gene Proteins 0.000 claims abstract description 6
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 claims abstract description 6
- 108091008598 receptor tyrosine kinases Proteins 0.000 claims abstract description 6
- 102000027426 receptor tyrosine kinases Human genes 0.000 claims abstract description 6
- 101150039808 Egfr gene Proteins 0.000 claims abstract description 5
- 239000003446 ligand Substances 0.000 claims description 87
- 230000008569 process Effects 0.000 claims description 52
- 239000011159 matrix material Substances 0.000 claims description 20
- 238000010586 diagram Methods 0.000 claims description 17
- 238000012546 transfer Methods 0.000 claims description 15
- 238000000547 structure data Methods 0.000 claims description 13
- 238000013527 convolutional neural network Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 10
- 238000012512 characterization method Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000010494 dissociation reaction Methods 0.000 claims description 7
- 230000005593 dissociations Effects 0.000 claims description 7
- 230000005764 inhibitory process Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 108020003175 receptors Proteins 0.000 claims description 6
- 102000005962 receptors Human genes 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 6
- 238000011176 pooling Methods 0.000 claims description 5
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 230000008447 perception Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 210000003746 feather Anatomy 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 abstract description 10
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 abstract description 5
- 230000008685 targeting Effects 0.000 description 13
- 230000003993 interaction Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 208000025966 Neurological disease Diseases 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 102000001301 EGF receptor Human genes 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 101100067974 Arabidopsis thaliana POP2 gene Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000026889 Cell metabolism disease Diseases 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 101100118549 Homo sapiens EGFR gene Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010068052 Mosaicism Diseases 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 101100123851 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HER1 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003092 force field based scoring function Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000003095 knowledge based scoring function Methods 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000000324 molecular mechanic Methods 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B15/00—ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
- G16B15/30—Drug targeting using structural data; Docking or binding prediction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Biotechnology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioethics (AREA)
- Software Systems (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
ErbB靶向蛋白数据集 | 来源 |
蛋白质-配体复合物信息列表 | ZINC15 |
蛋白质-配体亲和力数据 | ZINC15、RCSB PDB |
配体结构数据 | ZINC15、RCSB PDB |
蛋白质结构数据 | RCSB PDB |
蛋白质-配体结合位点数据 | RCSB PDB |
构象名称 | 说明 |
原始构象 | 蛋白质-配体复合物原始结构构象 |
旋转构象 | 将原始构象绕Z轴旋转180度得到的构象 |
优化构象 | 将旋转构象用OPLS-2005力场优化后的构象 |
术语 | 中文注释 |
Input Graph Signals | 蛋白质、配体分子图数据载入。 |
Molecular Feature | 分子特征矩阵,包含原子邻接矩阵和特征矩阵。 |
Neighbor autocoder | 提取分子中原子邻接矩阵的过程。 |
Feature autocoder | 提取分子中原子特征的过程。 |
Neighbor Matrix | 分子中原子的邻接矩阵。 |
Feature Matrix | 分子中原子的特征矩阵。 |
Message Passing | 特征传递过程。 |
Message Update | 特征更新过程。 |
Layer-wise Learning | 分层学习,深度学习中的卷积、池化、全连接层设计。 |
Predictions | 模型输出蛋白质-配体相互作用(亲和力)的数值。 |
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911064826.3A CN110767266B (zh) | 2019-11-04 | 2019-11-04 | 基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911064826.3A CN110767266B (zh) | 2019-11-04 | 2019-11-04 | 基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110767266A true CN110767266A (zh) | 2020-02-07 |
CN110767266B CN110767266B (zh) | 2023-04-18 |
Family
ID=69335543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911064826.3A Active CN110767266B (zh) | 2019-11-04 | 2019-11-04 | 基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110767266B (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111627493A (zh) * | 2020-05-29 | 2020-09-04 | 北京晶派科技有限公司 | 一种激酶抑制剂的选择性预测方法和计算设备 |
CN111798933A (zh) * | 2020-06-23 | 2020-10-20 | 苏州浦意智能医疗科技有限公司 | 一种基于深度学习的分子对接判别方法 |
CN111816252A (zh) * | 2020-07-21 | 2020-10-23 | 腾讯科技(深圳)有限公司 | 一种药物筛选方法、装置及电子设备 |
CN112185458A (zh) * | 2020-10-23 | 2021-01-05 | 深圳晶泰科技有限公司 | 基于卷积神经网络预测蛋白和配体分子结合自由能的方法 |
CN112289372A (zh) * | 2020-12-15 | 2021-01-29 | 武汉华美生物工程有限公司 | 一种基于深度学习的蛋白质结构设计方法及装置 |
CN112289371A (zh) * | 2020-09-23 | 2021-01-29 | 北京望石智慧科技有限公司 | 蛋白质与小分子样本生成及结合能、结合构象预测方法 |
CN112786122A (zh) * | 2021-01-21 | 2021-05-11 | 北京晶派科技有限公司 | 一种分子筛选方法和计算设备 |
CN113241117A (zh) * | 2021-05-21 | 2021-08-10 | 北京工业大学 | 一种基于残差图卷积神经网络rna-蛋白质结合位点判别方法 |
CN113241126A (zh) * | 2021-05-18 | 2021-08-10 | 百度时代网络技术(北京)有限公司 | 用于训练确定分子结合力的预测模型的方法和装置 |
CN113517038A (zh) * | 2021-03-02 | 2021-10-19 | 阿里巴巴新加坡控股有限公司 | 药物与靶点之间亲和力的预测方法、装置及设备 |
WO2021218791A1 (zh) * | 2020-04-29 | 2021-11-04 | 中国科学院上海药物研究所 | 一种配体-蛋白质相互作用的预测方法及装置 |
CN114360637A (zh) * | 2022-01-10 | 2022-04-15 | 山东省计算中心(国家超级计算济南中心) | 一种基于图注意力网络的蛋白质-配体亲和力评价方法 |
CN114496109A (zh) * | 2021-12-20 | 2022-05-13 | 石家庄鲜虞数字生物科技有限公司 | 基于深度学习的配体-受体复合物构象亲和力预测方法 |
CN114360637B (zh) * | 2022-01-10 | 2024-10-29 | 山东省计算中心(国家超级计算济南中心) | 一种基于图注意力网络的蛋白质-配体亲和力评价方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930181A (zh) * | 2012-11-07 | 2013-02-13 | 四川大学 | 基于分子描述符的蛋白质-配体亲和力预测方法 |
US20190304568A1 (en) * | 2018-03-30 | 2019-10-03 | Board Of Trustees Of Michigan State University | System and methods for machine learning for drug design and discovery |
-
2019
- 2019-11-04 CN CN201911064826.3A patent/CN110767266B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930181A (zh) * | 2012-11-07 | 2013-02-13 | 四川大学 | 基于分子描述符的蛋白质-配体亲和力预测方法 |
US20190304568A1 (en) * | 2018-03-30 | 2019-10-03 | Board Of Trustees Of Michigan State University | System and methods for machine learning for drug design and discovery |
Non-Patent Citations (1)
Title |
---|
刘志海;李婕;韩莉;李嫣;王任小: "构建药物-靶标亲合性打分函数的评价方法体系" * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021218791A1 (zh) * | 2020-04-29 | 2021-11-04 | 中国科学院上海药物研究所 | 一种配体-蛋白质相互作用的预测方法及装置 |
CN111627493A (zh) * | 2020-05-29 | 2020-09-04 | 北京晶派科技有限公司 | 一种激酶抑制剂的选择性预测方法和计算设备 |
CN111798933B (zh) * | 2020-06-23 | 2024-03-01 | 苏州浦意智能医疗科技有限公司 | 一种基于深度学习的分子对接判别方法 |
CN111798933A (zh) * | 2020-06-23 | 2020-10-20 | 苏州浦意智能医疗科技有限公司 | 一种基于深度学习的分子对接判别方法 |
CN111816252A (zh) * | 2020-07-21 | 2020-10-23 | 腾讯科技(深圳)有限公司 | 一种药物筛选方法、装置及电子设备 |
CN111816252B (zh) * | 2020-07-21 | 2021-08-31 | 腾讯科技(深圳)有限公司 | 一种药物筛选方法、装置及电子设备 |
CN112289371A (zh) * | 2020-09-23 | 2021-01-29 | 北京望石智慧科技有限公司 | 蛋白质与小分子样本生成及结合能、结合构象预测方法 |
CN112185458A (zh) * | 2020-10-23 | 2021-01-05 | 深圳晶泰科技有限公司 | 基于卷积神经网络预测蛋白和配体分子结合自由能的方法 |
CN112185458B (zh) * | 2020-10-23 | 2024-04-26 | 深圳晶泰科技有限公司 | 基于卷积神经网络预测蛋白和配体分子结合自由能的方法 |
CN112289372A (zh) * | 2020-12-15 | 2021-01-29 | 武汉华美生物工程有限公司 | 一种基于深度学习的蛋白质结构设计方法及装置 |
CN112289372B (zh) * | 2020-12-15 | 2022-04-22 | 武汉华美生物工程有限公司 | 一种基于深度学习的蛋白质结构设计方法及装置 |
CN112786122A (zh) * | 2021-01-21 | 2021-05-11 | 北京晶派科技有限公司 | 一种分子筛选方法和计算设备 |
CN112786122B (zh) * | 2021-01-21 | 2023-12-29 | 北京晶泰科技有限公司 | 一种分子筛选方法和计算设备 |
CN113517038A (zh) * | 2021-03-02 | 2021-10-19 | 阿里巴巴新加坡控股有限公司 | 药物与靶点之间亲和力的预测方法、装置及设备 |
CN113241126B (zh) * | 2021-05-18 | 2023-08-11 | 百度时代网络技术(北京)有限公司 | 用于训练确定分子结合力的预测模型的方法和装置 |
CN113241126A (zh) * | 2021-05-18 | 2021-08-10 | 百度时代网络技术(北京)有限公司 | 用于训练确定分子结合力的预测模型的方法和装置 |
CN113241117A (zh) * | 2021-05-21 | 2021-08-10 | 北京工业大学 | 一种基于残差图卷积神经网络rna-蛋白质结合位点判别方法 |
CN113241117B (zh) * | 2021-05-21 | 2024-05-31 | 北京工业大学 | 一种基于残差图卷积神经网络rna-蛋白质结合位点判别方法 |
CN114496109A (zh) * | 2021-12-20 | 2022-05-13 | 石家庄鲜虞数字生物科技有限公司 | 基于深度学习的配体-受体复合物构象亲和力预测方法 |
CN114496109B (zh) * | 2021-12-20 | 2024-09-13 | 石家庄鲜虞数字生物科技有限公司 | 基于深度学习的配体-受体复合物构象亲和力预测方法 |
CN114360637A (zh) * | 2022-01-10 | 2022-04-15 | 山东省计算中心(国家超级计算济南中心) | 一种基于图注意力网络的蛋白质-配体亲和力评价方法 |
CN114360637B (zh) * | 2022-01-10 | 2024-10-29 | 山东省计算中心(国家超级计算济南中心) | 一种基于图注意力网络的蛋白质-配体亲和力评价方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110767266B (zh) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110767266B (zh) | 基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 | |
Noble et al. | Spatial structure governs the mode of tumour evolution | |
Preuer et al. | DeepSynergy: predicting anti-cancer drug synergy with Deep Learning | |
Mason et al. | Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning | |
Qu et al. | Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning | |
Li et al. | Network-constrained regularization and variable selection for analysis of genomic data | |
CN105138862B (zh) | 一种协同抗癌症药物组合预测方法及药物组合物 | |
Zheng et al. | Spatial cellular architecture predicts prognosis in glioblastoma | |
JP2020501240A (ja) | 汎がんゲノムにおけるdnaアクセシビリティを予測するための方法及びシステム | |
Pei et al. | Prediction of functional specificity determinants from protein sequences using log-likelihood ratios | |
Stojković et al. | Assessment of the nucleotide modifications in the high-resolution cryo-electron microscopy structure of the Escherichia coli 50S subunit | |
CN114203269B (zh) | 一种基于机器学习和分子对接技术的抗癌中药筛选方法 | |
Zou et al. | Albumin-to-fibrinogen ratio as an independent prognostic parameter in untreated chronic lymphocytic leukemia: a retrospective study of 191 cases | |
Guo et al. | A subgroup cluster‐based Bayesian adaptive design for precision medicine | |
CN111312334A (zh) | 一种影响细胞间通讯的受体-配体系统分析方法 | |
Liu et al. | SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics | |
CN110426512A (zh) | 区分过氧化酶激活增殖受体γ完全激动剂、部分激动剂、拮抗剂活性的方法 | |
Golriz Khatami et al. | Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures | |
Zhou et al. | Spatial transcriptomics deconvolution at single-cell resolution using Redeconve | |
Zhao et al. | Structured penalized regression for drug sensitivity prediction | |
Liu et al. | Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma | |
Braun et al. | Mapping of Protein Binding Sites using clustering algorithms-Development of a pharmacophore based drug discovery tool | |
Subramanian et al. | Angiogenesis goes computational–The future way forward to discover new angiogenic targets? | |
Li et al. | GxVAEs: Two Joint VAEs Generate Hit Molecules from Gene Expression Profiles | |
Hoang et al. | The network architecture of the Saccharomyces cerevisiae genome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Shandong Provincial Computing Center, No. 19 Keyuan Road, Lixia District, Jinan City, Shandong Province Patentee after: SHANDONG COMPUTER SCIENCE CENTER(NATIONAL SUPERCOMPUTER CENTER IN JINAN) Country or region after: China Patentee after: Qingdao Marine Science and Technology Center Address before: Shandong computing center, No.19 Keyuan Road, Lixia District, Jinan City, Shandong Province 250014 Patentee before: SHANDONG COMPUTER SCIENCE CENTER(NATIONAL SUPERCOMPUTER CENTER IN JINAN) Country or region before: China Patentee before: QINGDAO NATIONAL LABORATORY FOR MARINE SCIENCE AND TECHNOLOGY DEVELOPMENT CENTER |