CN111798933A - 一种基于深度学习的分子对接判别方法 - Google Patents
一种基于深度学习的分子对接判别方法 Download PDFInfo
- Publication number
- CN111798933A CN111798933A CN202010578183.0A CN202010578183A CN111798933A CN 111798933 A CN111798933 A CN 111798933A CN 202010578183 A CN202010578183 A CN 202010578183A CN 111798933 A CN111798933 A CN 111798933A
- Authority
- CN
- China
- Prior art keywords
- module
- information
- deep learning
- discrimination method
- data structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003032 molecular docking Methods 0.000 title claims abstract description 22
- 238000013135 deep learning Methods 0.000 title claims abstract description 18
- 238000012850 discrimination method Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000012549 training Methods 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 14
- 238000000605 extraction Methods 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 3
- 239000013598 vector Substances 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 15
- 230000004927 fusion Effects 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 8
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000007500 overflow downdraw method Methods 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 abstract description 9
- 238000004458 analytical method Methods 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940043263 traditional drug Drugs 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/50—Molecular design, e.g. of drugs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/90—Programming languages; Computing architectures; Database systems; Data warehousing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C60/00—Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010578183.0A CN111798933B (zh) | 2020-06-23 | 2020-06-23 | 一种基于深度学习的分子对接判别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010578183.0A CN111798933B (zh) | 2020-06-23 | 2020-06-23 | 一种基于深度学习的分子对接判别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111798933A true CN111798933A (zh) | 2020-10-20 |
CN111798933B CN111798933B (zh) | 2024-03-01 |
Family
ID=72803083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010578183.0A Active CN111798933B (zh) | 2020-06-23 | 2020-06-23 | 一种基于深度学习的分子对接判别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111798933B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190073433A1 (en) * | 2017-09-01 | 2019-03-07 | X Development Llc | Bipartite Graph Structure |
US20190228130A1 (en) * | 2018-01-22 | 2019-07-25 | X Development Llc | Method for analyzing and optimizing metabolic networks |
US20190354689A1 (en) * | 2018-05-18 | 2019-11-21 | Deepmind Technologies Limited | Deep neural network system for similarity-based graph representations |
US20200027528A1 (en) * | 2017-09-12 | 2020-01-23 | Massachusetts Institute Of Technology | Systems and methods for predicting chemical reactions |
CN110767266A (zh) * | 2019-11-04 | 2020-02-07 | 山东省计算中心(国家超级计算济南中心) | 基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 |
-
2020
- 2020-06-23 CN CN202010578183.0A patent/CN111798933B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190073433A1 (en) * | 2017-09-01 | 2019-03-07 | X Development Llc | Bipartite Graph Structure |
US20200027528A1 (en) * | 2017-09-12 | 2020-01-23 | Massachusetts Institute Of Technology | Systems and methods for predicting chemical reactions |
US20190228130A1 (en) * | 2018-01-22 | 2019-07-25 | X Development Llc | Method for analyzing and optimizing metabolic networks |
US20190354689A1 (en) * | 2018-05-18 | 2019-11-21 | Deepmind Technologies Limited | Deep neural network system for similarity-based graph representations |
CN110767266A (zh) * | 2019-11-04 | 2020-02-07 | 山东省计算中心(国家超级计算济南中心) | 基于图卷积的面向ErbB靶向蛋白家族的打分函数构建方法 |
Non-Patent Citations (1)
Title |
---|
MASASHI TSUBAKI ET AL.: "Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences", 《BIOINFORMATICS》, vol. 35, no. 2, pages 3 - 6 * |
Also Published As
Publication number | Publication date |
---|---|
CN111798933B (zh) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Deep convolutional computation model for feature learning on big data in internet of things | |
CN108520275A (zh) | 一种基于邻接矩阵的连接信息规整系统、图特征提取系统、图分类系统和方法 | |
CN110046671A (zh) | 一种基于胶囊网络的文本分类方法 | |
CN108062551A (zh) | 一种基于邻接矩阵的图特征提取系统、图分类系统和方法 | |
CN114999565B (zh) | 一种基于表示学习和图神经网络的药物靶标亲和力预测方法 | |
CN115862747B (zh) | 一种序列-结构-功能耦合的蛋白质预训练模型构建方法 | |
CN113780129B (zh) | 基于无监督图序列预测编码的动作识别方法及存储介质 | |
CN110516724A (zh) | 可视化作战场景的高性能多层字典学习特征图像处理方法 | |
CN117671666A (zh) | 一种基于自适应图卷积神经网络的目标识别方法 | |
Wu et al. | [Retracted] English Feature Recognition Based on GA‐BP Neural Network Algorithm and Data Mining | |
Zhang et al. | End‐to‐end generation of structural topology for complex architectural layouts with graph neural networks | |
Khan et al. | STT-Net: Simplified temporal transformer for emotion recognition | |
CN115457657A (zh) | 基于bert模型的通道特征交互时间建模行为识别方法 | |
CN113450870B (zh) | 一种药物与靶点蛋白的匹配方法及系统 | |
CN111160387A (zh) | 一种基于多视角字典学习的图模型 | |
CN111798933B (zh) | 一种基于深度学习的分子对接判别方法 | |
CN111798934A (zh) | 一种基于图神经网络的分子性质预测方法 | |
CN118038032A (zh) | 基于超点嵌入和聚类的点云语义分割模型及其训练方法 | |
CN113269235B (zh) | 一种基于无监督学习的装配体变化检测方法及设备 | |
Zhu et al. | Structural landmarking and interaction modelling: a “slim” network for graph classification | |
Zhang et al. | Using an ensemble of incrementally fine-tuned CNNs for cross-domain object category recognition | |
Wu et al. | Unsupervised anomaly detection in images using attentional normalizing flows | |
CN109472319B (zh) | 一种三维模型分类方法以及检索方法 | |
CN115631787B (zh) | 一种基于3d蛋白质结构卷积神经网络的虚拟筛选系统 | |
Wang et al. | Unsupervised cross-modal retrieval based on deep convolutional neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240601 Address after: Room 109, Building 1, No. 1, Qingshan Road, High-tech Zone, Suzhou, Jiangsu 215000 Patentee after: Suzhou Limaoda Pharmaceutical Technology Co.,Ltd. Country or region after: China Address before: R2010, Unit 201, Building B6, Biopharmaceutical Industrial Park Phase I Project, No. 218 Xinghu Street, Industrial Park, Suzhou City, Jiangsu Province, 215000 Patentee before: Suzhou Puyi Intelligent Medical Technology Co.,Ltd. Country or region before: China |