CN110765617B - 基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法 - Google Patents

基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法 Download PDF

Info

Publication number
CN110765617B
CN110765617B CN201911024762.4A CN201911024762A CN110765617B CN 110765617 B CN110765617 B CN 110765617B CN 201911024762 A CN201911024762 A CN 201911024762A CN 110765617 B CN110765617 B CN 110765617B
Authority
CN
China
Prior art keywords
roller
oil film
lubrication
load
design method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911024762.4A
Other languages
English (en)
Other versions
CN110765617A (zh
Inventor
王志坚
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Qianjing Bearing Technology Co ltd
Original Assignee
Changzhou Qianjing Bearing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Qianjing Bearing Technology Co ltd filed Critical Changzhou Qianjing Bearing Technology Co ltd
Priority to CN201911024762.4A priority Critical patent/CN110765617B/zh
Publication of CN110765617A publication Critical patent/CN110765617A/zh
Application granted granted Critical
Publication of CN110765617B publication Critical patent/CN110765617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

本发明提供了一种基于润滑理论圆柱滚子轴承滚子对数修形的设计方法,根据静力学模型计算圆柱滚子轴承内部的载荷分布;然后基于最恶劣滚子摩擦副的工况条件利用弹流润滑理论评估润滑状态,弹流润滑理论主要是求解包含雷诺方程、几何间隙方程、粘压密压方程以及载荷平衡方程等一组非线性方程组;最后通过修形系数优化滚子的对数轮廓以达到最佳的润滑及接触状态,与现有技术相比,根据本发明提供的设计方法以及三个优化标准获得的滚子对数轮廓曲线,不仅能够有效的地降低轴承的振动噪声,还能显著提高圆柱滚子轴承的承载能力和使用寿命。

Description

基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法
技术领域
本发明属于滚动轴承技术领域,具体为圆柱滚子轴承滚子轮廓设计方法。
背景技术
圆柱滚子轴承由于高刚度、重载等特点被广泛应用于机车车辆、高速机床以及航空航天等领域。圆柱滚子作为滚子轴承五大件之一,其精度与一致性直接影响着轴承的性能与使用寿命。
圆柱滚子的合理修形不仅可以提高轴承的承载能力、使用寿命,还能降低轴承的振动噪声。因此,圆柱滚子的表面轮廓是滚子轴承设计的重要参数。目前,对数修形被认为是最优的修形方式之一。然而,传统的Lundberg对数曲线是基于干接触理论推导而出的,并未考虑润滑的影响,在轴承使用应用中,润滑因素必不可少,并且润滑因素不仅影响着滚子的接触应力分布,而且如果滚子接触副间不能形成有效的润滑油膜,滚子接触副的使用寿命将急剧下降。因此,有必要结合润滑因素设计滚子表面轮廓。到目前为止,尽管已有一些关于滚子接触副的弹流研究,但是如何和滚子轴承相结合,并且定量的将润滑因素考虑进去,至今尚未出现。
发明内容
本发明的目的是提供一种基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法,能大大提高滚子轴承的使用性能。
本发明是通过如下技术方案实现的:一种基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法,该方法包含以下步骤:
S1:根据静力学模型计算圆柱滚子轴承内部各滚子承受的法向载荷QΨj,
S2:根据已知的工况条件,包括载荷、速度以及润滑油参数等,利用混合润滑下有限长线接触副中心油膜厚度经验公式计算最恶劣滚子摩擦副的中心油膜厚度值hcen,判断hcen/σ是否大于3,其中σ为综合表面粗糙度,如果hcen/σ大于 3,继续下一步操作,如果小于3,修正工况条件。
S3:利用混合润滑下有限长线接触副弹流理论模型评估最恶劣滚子摩擦副的润滑状态,即油膜参数λ,其表达式为hmin/σ,hmin为最小油膜厚度值,判断λ是否大于2,如果小于2,增加修形系数K值,重新计算润滑状态,直至油膜参数λ大于2;
S4:在保证油膜参数大于2的基础上,判断是否有边缘应力存在,如果存在边缘应力,继续增加修形系数,直至无边缘应力存在;
S5:在满足上述两个条件的基础上,判断最恶劣滚子的实际接触长度是否大于有效长度的90%,如果满足条件,设计完成,输出对数滚子的轮廓,如果不满足,需要进一步调整工况参数,重复步骤S2-S4,直至满足滚子的实际接触长度大于有效长度的90%。
在上述技术方案中,所述步骤S2中的中心油膜厚度的具体表达式为其中Hc为无量纲中心油膜厚度值,W为载荷参数、U为速度参数、G为材料参数、K为修形系数,取为1、/>为粗糙度参数。
在上述技术方案中,所述步骤S3中的有限长线接触混合润滑模型具体为:
S’1:给出油膜压力、温度、趋近量、粗糙峰接触摩擦系数初值以及工况几何参数,计算弹性变形、油膜厚度以及润滑剂的粘度和密度,其中弹性变形利用离散卷积—快速傅里叶变换(DC-FFT)求解;
S’2:计算粗糙峰接触应力以及油膜压力,判断压力是否收敛以及载荷是否平衡,如果均收敛,进行下一步骤,其中压力求解使用松弛迭代法;
S’3:计算油膜温度,判定温度是否收敛,如果收敛,进行下一步骤,如果不收敛,重复步骤S’1-S’2,直至收敛,其中温度求解使用逐列扫描法;
S’4:根据油膜温度以及粗糙峰接触闪温,计算粗糙峰接触摩擦系数的大小,判断粗糙峰接触摩擦系数是否收敛,如果收敛,输出最小油膜厚度,反之,修正摩擦系数,返回步骤S’3,直至收敛。
在上述技术方案中,求解公式中考虑了滚子表面轮廓的影响,即添加了修形系数K,滚子对数修形曲线的具体表达式为:
上述式中,Q为作用载荷,K为修形系数,通过改变修形系数K值,可以改变滚子表面轮廓。
在上述技术方案中,所述步骤S1中输出载荷Q(k)的步骤为:
S”1计算最大受载滚子载荷初值Q(0)=4.08×W/z,计算各个滚子的方位角,Ψ(k)=2k×π/z;
S”2根据Palmgren经验公式求δ=3.84×10-5×Q0.9/Lw 0.8
S”3计算受载区域,根据公式Ψ=cos-1(Pd/(2×δ0+Pd));计算接触个数,根据公式num=INT(Ψ/(2×π/z));计算其他位置的位移,根据公式δ(k)=(δ0+Pd/2) ×cos(Ψ(k))-Pd/2;
S”4计算各个位置作用载荷,根据公式Q(k)=(δ(k)/δ0)1.11×Q(0);
S”5计算轴承载荷,根据公式W0=Q(0)+2∑Q(k)×cos(Ψ(k));
S”6比较轴承载荷,若满足∣W0-W∣≤ε则输出载荷为Q(k),若不满足则重复步骤S”2-S”6,且更新Q(0)=(W0/W)×Q(0);
上述式中R0为轴承内滚道半径,Ri为轴承外滚道半径,滚子径向游隙Pd,轴承载荷W,滚子数目z,内圈转速ni
在上述技术方案中,S2中修正工况条件为适当提高润滑油的粘度。
本发明的有益效果是:首先根据静力学模型计算圆柱滚子轴承内部的载荷分布;然后基于最恶劣滚子摩擦副的工况条件利用弹流润滑理论评估润滑状态,弹流润滑理论主要是求解包含雷诺方程、几何间隙方程、粘压密压方程以及载荷平衡方程等一组非线性方程组;最后通过修形系数优化滚子的对数轮廓以达到最佳的润滑及接触状态,本方法提出的滚子轮廓优化设计方法通过三个优化标准,包括(1)油膜参数大于2,(2)无边缘应力存在,(3)滚子的实际接触长度超过有效长度的90%,不仅可以使得滚子接触副上压力分布均匀,并且充分利用了滚子的有效接触长度,从而使得滚子接触副的使用寿命增强、滚子轴承的承载能力得到提高;另外,通过本方法还可以指导滚子轴承的润滑设计,比如合理地选择润滑油的粘度,因此,本发明对于滚子轴承行业具有很大的工程指导意义,不仅能够有效的地降低轴承的振动噪声,还能显著提高圆柱滚子轴承的承载能力和使用寿命,大大提高滚子轴承的使用性能。
附图说明
图1为圆柱滚子轴承静力学模型流程图;
图2为图1中输出载荷的计算流程图;
图3为有限长线接触混合润滑模型流程图;
图4为最小油膜厚度随修形系数的变化;
图5为压力分布随修形系数的变化;
图6为修形系数较大时压力分布随修形系数的变化;
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易被本领域人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
如图1所示,一种基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法,该方法包含以下步骤:
S1:根据静力学模型计算圆柱滚子轴承内部各滚子承受的法向载荷QΨj,
S2:根据已知的工况条件,包括载荷、速度以及润滑油参数等,利用混合润滑下有限长线接触副中心油膜厚度经验公式计算最恶劣滚子摩擦副的中心油膜厚度值hcen,判断hcen/σ是否大于3,其中σ为综合表面粗糙度,如果hcen/σ大于 3,继续下一步操作,如果小于3,修正工况条件。
S3:利用混合润滑下有限长线接触副弹流理论模型评估最恶劣滚子摩擦副的润滑状态,即油膜参数λ,其表达式为hmin/σ,hmin为最小油膜厚度值,判断λ是否大于2,如果小于2,增加修形系数K值,重新计算润滑状态,直至油膜参数λ大于2;
S4:在保证油膜参数大于2的基础上,判断是否有边缘应力存在,如果存在边缘应力,继续增加修形系数,直至无边缘应力存在;
S5:在满足上述两个条件的基础上,判断最恶劣滚子的实际接触长度是否大于有效长度的90%,如果满足条件,设计完成,输出对数滚子的轮廓,如果不满足,需要进一步调整工况参数,重复步骤S1-S4,直至满足滚子的实际接触长度大于有效长度的90%。
所述步骤S2中的中心油膜厚度的具体表达式为其中Hc为无量纲中心油膜厚度值,W为载荷参数、U为速度参数、G为材料参数、K为修形系数,取为1、/>为粗糙度参数。所述步骤S3中的有限长线接触混合润滑模型具体为:
S’1:给出油膜压力、温度、趋近量、粗糙峰接触摩擦系数初值以及工况几何参数,计算弹性变形、油膜厚度以及润滑剂的粘度和密度,其中弹性变形利用离散卷积—快速傅里叶变换(DC-FFT)求解;
S’2:计算粗糙峰接触应力以及油膜压力,判断压力是否收敛以及载荷是否平衡,如果均收敛,进行下一步骤,其中压力求解使用松弛迭代法;
S’3:计算油膜温度,判定温度是否收敛,如果收敛,进行下一步骤,如果不收敛,重复步骤S’1-S’2,直至收敛,其中温度求解使用逐列扫描法;
S’4:根据油膜温度以及粗糙峰接触闪温,计算粗糙峰接触摩擦系数的大小,判断粗糙峰接触摩擦系数是否收敛,如果收敛,输出最小油膜厚度,反之,修正摩擦系数,返回步骤S’3,直至收敛。
求解公式中考虑了滚子表面轮廓的影响,即添加了修形系数K,滚子对数修形曲线的具体表达式为:
上述式中,Q为作用载荷,K为修形系数,通过改变修形系数K值,可以改变滚子表面轮廓。
所述步骤S1中输出载荷Q(k)的步骤为:
S”1计算最大受载滚子载荷初值Q(0)=4.08×W/z,计算各个滚子的方位角,Ψ(k)=2k×π/z;
S”2根据Palmgren经验公式求δ=3.84×10-5×Q0.9/Lw 0.8
S”3计算受载区域,根据公式Ψ=cos-1(Pd/(2×δ0+Pd));计算接触个数,根据公式num=INT(Ψ/(2×π/z));计算其他位置的位移,根据公式δ(k)=(δ0+Pd/2) ×cos(Ψ(k))-Pd/2;
S”4计算各个位置作用载荷,根据公式Q(k)=(δ(k)/δ0)1.11×Q(0);
S”5计算轴承载荷,根据公式W0=Q(0)+2∑Q(k)×cos(Ψ(k));
S”6比较轴承载荷,若满足∣W0-W∣≤ε则输出载荷为Q(k),若不满足则重复步骤S”2-S”6,且更新Q(0)=(W0/W)×Q(0);
上述式中R0为轴承内滚道半径,Ri为轴承外滚道半径,滚子径向游隙Pd,轴承载荷W,滚子数目z,内圈转速ni
S2中修正工况条件为适当提高润滑油的粘度。
最后应说明的是:以上上述的实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应上述的以权利要求的保护范围为准。

Claims (4)

1.一种基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法,其特征在于:该方法包含以下步骤:
S1:根据静力学模型计算圆柱滚子轴承内部各滚子承受的法向载荷QΨj
S2:根据已知的工况条件,包括载荷、速度以及润滑油参数,利用混合润滑下有限长线接触副中心油膜厚度经验公式计算最恶劣滚子摩擦副的中心油膜厚度值hcen,判断hcen/σ是否大于3,其中σ为综合表面粗糙度,如果hcen/σ大于3,继续下一步操作,如果小于3,修正工况条件,所述中心油膜厚度的具体表达式为其中Hc为无量纲中心油膜厚度值,W为轴承载荷、U为速度参数、G为材料参数、K为修形系数,取为1、为粗糙度参数;
S3:利用混合润滑下有限长线接触副弹流理论模型评估最恶劣滚子摩擦副的润滑状态,即油膜参数λ,其表达式为hmin/σ,hmin为最小油膜厚度值,判断λ是否大于2,如果小于2,增加修形系数K值,重新计算润滑状态,直至油膜参数λ大于2;
所述有限长线接触混合润滑模型具体为:
S’1:给出油膜压力、温度、趋近量、粗糙峰接触摩擦系数初值以及工况几何参数,计算弹性变形、油膜厚度以及润滑剂的粘度和密度,其中弹性变形利用离散卷积—快速傅里叶变换求解;
S’2:计算粗糙峰接触应力以及油膜压力,判断压力是否收敛以及载荷是否平衡,如果均收敛,进行下一步骤,其中压力求解使用松弛迭代法;
S’3:计算油膜温度,判定温度是否收敛,如果收敛,进行下一步骤,如果不收敛,重复步骤S’1-S’2,直至收敛,其中温度求解使用逐列扫描法;
S’4:根据油膜温度以及粗糙峰接触闪温,计算粗糙峰接触摩擦系数的大小,判断粗糙峰接触摩擦系数是否收敛,如果收敛,输出最小油膜厚度,反之,修正摩擦系数,返回步骤S’3,直至收敛;
S4:在保证油膜参数大于2的基础上,判断是否有边缘应力存在,如果存在边缘应力,继续增加修形系数,直至无边缘应力存在;
S5:在满足hcen/σ大于3、油膜参数λ大于2、无边缘应力存在的基础上,判断最恶劣滚子的实际接触长度是否大于有效长度的90%,如果满足条件,设计完成,输出对数滚子的轮廓,如果不满足,需要进一步调整工况参数,重复步骤S2-S4,直至满足滚子的实际接触长度大于有效长度的90%。
2.根据权利1所述的基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法,其特征在于:求解公式中考虑了滚子表面轮廓的影响,即添加了修形系数K,滚子对数修形曲线的具体表达式为:
上述式中,Q为作用载荷,K为修形系数,通过改变修形系数K值,可以改变滚子表面轮廓。
3.根据权利1所述的基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法,其特征在于:所述步骤S1中输出载荷Q(k)的步骤为:
S”1计算最大受载滚子载荷初值Q(0)=4.08×W/z,计算各个滚子的方位角,Ψ(k)=2k×π/z;
S”2根据Palmgren经验公式求δ=3.84×10-5×Q0.9/Lw 0.8
S”3计算受载区域,根据公式Ψ=cos-1(Pd/(2×δ0+Pd));计算接触个数,根据公式num=INT(Ψ/(2×π/z));计算其他位置的位移,根据公式δ(k)=(δ0+Pd/2)×cos(Ψ(k))-Pd/2;
S”4计算各个位置作用载荷,根据公式Q(k)=(δ(k)/δ0)1.11×Q(0);
S”5计算轴承载荷,根据公式W0=Q(0)+2∑Q(k)×cos(Ψ(k));
S”6比较轴承载荷,若满足∣W0-W∣≤ε则输出载荷为Q(k),若不满足则重复步骤S”2-S”6,且更新Q(0)=(W0/W)×Q(0);
上述式中,Pd为滚子径向游隙,z为滚子数目。
4.根据权利1所述的基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法,其特征在于:S2中修正工况条件为适当提高润滑油的粘度。
CN201911024762.4A 2019-10-25 2019-10-25 基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法 Active CN110765617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911024762.4A CN110765617B (zh) 2019-10-25 2019-10-25 基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911024762.4A CN110765617B (zh) 2019-10-25 2019-10-25 基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法

Publications (2)

Publication Number Publication Date
CN110765617A CN110765617A (zh) 2020-02-07
CN110765617B true CN110765617B (zh) 2023-07-25

Family

ID=69333847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911024762.4A Active CN110765617B (zh) 2019-10-25 2019-10-25 基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法

Country Status (1)

Country Link
CN (1) CN110765617B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291455B (zh) * 2020-03-10 2024-04-26 洛阳轴承集团股份有限公司 一种风电设备用调心轴承滚子的修形设计方法
CN111475895B (zh) * 2020-04-10 2023-03-24 洛阳Lyc轴承有限公司 一种球面滚子的端部圆弧修形方法
CN111709098B (zh) * 2020-06-17 2022-04-05 青岛理工大学 一种变载荷下通过变换润滑油减小轴承摩擦系数的方法
CN112307571B (zh) * 2020-07-08 2021-06-29 重庆大学 径向推力一体式水润滑轴承及其自适应混合润滑分析方法
CN112580218A (zh) * 2020-12-25 2021-03-30 中国航发哈尔滨轴承有限公司 一种圆柱滚子轴承母线凸度优化设计方法
CN113591253B (zh) * 2021-08-26 2024-06-11 西安工业大学 一种乏油工况下纳米润滑高速滚动轴承抗磨延寿方法
CN115139158B (zh) * 2022-06-22 2023-10-10 洛阳理工学院 一种用于双列调心球面滚子轴承的滚子修型方法
CN116484755B (zh) * 2023-01-18 2023-10-24 浙江大学 一种基于弹流润滑的内曲线液压马达滚子优化设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1702341A (zh) * 2001-11-06 2005-11-30 日本精工株式会社 径向滚子轴承
CN101592183A (zh) * 2009-06-30 2009-12-02 郭溪泉 风电机增速器圆锥滚子轴承滑动副的设计方法
CN108984933A (zh) * 2018-07-25 2018-12-11 太原科技大学 弹流润滑条件下计算滚动轴承载荷和压力的边界元法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1702341A (zh) * 2001-11-06 2005-11-30 日本精工株式会社 径向滚子轴承
CN101592183A (zh) * 2009-06-30 2009-12-02 郭溪泉 风电机增速器圆锥滚子轴承滑动副的设计方法
CN108984933A (zh) * 2018-07-25 2018-12-11 太原科技大学 弹流润滑条件下计算滚动轴承载荷和压力的边界元法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李铎.高铁轴箱轴承摩擦性能及温度分布研究.《中国优秀硕士学位论文全文数据库》.2018,第7-93页. *

Also Published As

Publication number Publication date
CN110765617A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN110765617B (zh) 基于润滑理论的圆柱滚子轴承滚子对数修形的设计方法
CN107563082B (zh) 基于圆柱滚子轴承接触变形量和载荷分布的轴承参数优化方法
CN109753723A (zh) 一种向心滚动轴承疲劳寿命计算方法
EP2456991A1 (en) Radial bearings of increased load capacity and stability with one axially asymmetric bearing component
CN106536951B (zh) 用于涡轮增压器的球轴承
WO2013080824A1 (ja) ころ軸受
CN111291455A (zh) 一种风电设备用调心轴承滚子的修形设计方法
CN110502765B (zh) 一种圆锥滚子轴承的修形方法及滚子轴承
CN112001043B (zh) 基于单位灵敏度提高滚珠丝杠副耐磨损可靠性的方法
CN110848137A (zh) 一种零间隙螺杆转子及其制备方法
CN111140598A (zh) 一种风电设备用调心轴承的修形滚子
CN207961267U (zh) 一种高耐磨性调心滚子轴承
US10060479B2 (en) Bearing and method of forming a bearing
CN111222207A (zh) 一种圆锥滚子轴承内圈大挡边最优锥角的设计方法
CN211314549U (zh) 一种零间隙螺杆转子
CN212155476U (zh) 一种风电设备用调心轴承的修形滚子
CN110753799A (zh) 噪音和磨损被优化的用于支承轴的滚动轴承
CN108571514B (zh) 一种用于径向滑动轴承的半椭圆形分布织构化表面
CN105008733A (zh) 滑动轴承
Creţu Cylindrical roller bearings with profiled contacting surfaces
CN109253167B (zh) 一种基于弹流润滑的多孔金属基复合材料轴承
JP2012107702A (ja) ころ軸受
CN116484755B (zh) 一种基于弹流润滑的内曲线液压马达滚子优化设计方法
CN207111258U (zh) 活塞连杆的连接结构
CN109764056A (zh) 一种装配简便的杆端关节轴承及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant