CN110759639A - 近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法 - Google Patents

近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法 Download PDF

Info

Publication number
CN110759639A
CN110759639A CN201911028044.4A CN201911028044A CN110759639A CN 110759639 A CN110759639 A CN 110759639A CN 201911028044 A CN201911028044 A CN 201911028044A CN 110759639 A CN110759639 A CN 110759639A
Authority
CN
China
Prior art keywords
rare earth
glass
doped glass
earth doped
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911028044.4A
Other languages
English (en)
Other versions
CN110759639B (zh
Inventor
周亚训
沈欣杰
张雨
夏礼章
朱雅瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201911028044.4A priority Critical patent/CN110759639B/zh
Publication of CN110759639A publication Critical patent/CN110759639A/zh
Application granted granted Critical
Publication of CN110759639B publication Critical patent/CN110759639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

本发明公开了一种近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法,该稀土掺杂玻璃包括摩尔百分比为74~74.9mol%的TeO2、14.5~15mol%的ZnO、4.5~5mol%的WO3、4.5~5mol%的Bi2O3、0.01~0.5mol%的Pr6O11、0.01~0.1mol%的Nd2O3、0.01~0.4mol%的Er2O3;优点是其能够同时实现800~1100nm和1250~1650nm波长范围的两个近红外波段超宽带且相对平坦的光发射,所制备玻璃稳定、物化性能优良。

Description

近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法
技术领域
本发明涉及一种用于医学成像和光纤通信等领域的稀土掺杂玻璃及其制备技术,尤其是涉及一种近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法,该稀土掺杂玻璃为稀土Pr3+-Nd3+-Er3+离子掺杂碲酸盐玻璃。
背景技术
近红外波段光源在医学成像、激光手术、光伏电池、成份分析、大气遥感和光纤通信等众多领域具有十分重要的应用。例如,在医学成像方面,1.0μm近红外波段经常被称之为人体组织的“生物窗口”,因为与紫外波段和可见光波段相比,在这个波长范围内的激光能够穿透更深的生物组织。而1.53μm近红外波段则被称之为第三通信窗口,位于石英传输光纤的最低损耗区,是当前波分复用(WDM)通信系统的主要光载波通道。
归因于三价稀土离子丰富的能级结构,稀土掺杂玻璃和晶体材料是当前获得近红外波段光源最有发展前景的技术方案。因此,近几十年来,众多研究人员通过诸如稀土Er3+、Tm3+、Nd3+、Yb3+、Ho3+和Pr3+离子单掺、双掺或三掺形式,在不同基质材料上开发出了不同波长范围的近红外波段光源。然而,对于给定的掺杂玻璃材料,在单一泵浦光激励下,目前所能获得的近红外波段光谱存在着带宽范围不够理想或者是获得的宽带近红外波段光谱只有一个的局限性。宽带近红外波段光谱在许多应用场合是十分需要的。例如,在光学相干断层扫描(OCT)的操作中,1.0μm近红外波段光谱越宽,越能获得更高轴向分辨率的OCT图像。同样,在WDM通信系统中,1.53μm近红外波段光谱越宽,越能提供更多的光载波通道来承载日益增长的通信容量。而近红外波段光谱带宽范围较窄和单一的宽带近红外波段光谱,都制约了稀土掺杂玻璃和晶体材料的应用范围。
发明内容
本发明所要解决的技术问题是提供一种近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法,该稀土掺杂玻璃能够同时实现800~1100nm和1250~1650nm波长范围的两个近红外波段超宽带光发射,且玻璃稳定、物化性能优良。
本发明解决上述技术问题所采用的技术方案为:一种近红外双波段超宽带发射的稀土掺杂玻璃,其特征在于该稀土掺杂玻璃的基质为碲酸盐玻璃,该稀土掺杂玻璃包括以下摩尔百分比的组分:
Figure BDA0002249245000000021
所述的组分TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
该稀土掺杂玻璃的各组分的摩尔百分比为:
该稀土掺杂玻璃的各组分的摩尔百分比为:
Figure BDA0002249245000000023
Figure BDA0002249245000000031
一种近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其特征在于包括以下步骤:
步骤一:按照以下摩尔百分比的组分选定原料配方,然后根据所需制备的稀土掺杂玻璃的总量计算出各粉末状原料的重量百分比,并称量各粉末状原料;
步骤二:将称量的所有粉末状原料均匀混合后倒入刚玉坩埚中;然后将装有原料混合物的刚玉坩埚移至精密温控马弗炉中,并将精密温控马弗炉的炉温由室温升至240℃~260℃,进行除湿烘干0.8~1.2小时;
步骤三:从精密温控马弗炉中取出除湿后装有原料混合物的刚玉坩埚,并置于温度为880℃~920℃的硅碳棒电炉中,对原料混合物进行熔制,待原料混合物完全熔化后再静置8~12分钟后进行搅拌,搅拌14~16分钟后再继续在880℃~920℃的温度下熔制4~6分钟,等澄清后得到玻璃熔液;
步骤四:从硅碳棒电炉中取出装有玻璃熔液的刚玉坩埚;然后将玻璃熔液浇注在预热过的铜板模具上;
步骤五:迅速将浇注有玻璃熔液的铜板模具移至已升温至350℃~390℃下的精密温控马弗炉中进行退火,退火结束后关闭精密温控马弗炉,得到碲酸盐玻璃样品;
步骤六:从精密温控马弗炉中取出容纳有碲酸盐玻璃样品的铜板模具;然后将碲酸盐玻璃样品加工成双面抛光的玻璃样品。
所述的步骤四中,预热过的铜板模具的温度为280℃~320℃。
所述的步骤五中退火过程为:在浇注有玻璃熔液的铜板模具移至已升温至350℃~390℃下的精密温控马弗炉中后,先保温1.5~2.5小时,然后以9℃~11℃/小时的速率使精密温控马弗炉中的温度冷却至室温。
所述的步骤一中,TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
所述的步骤一中,各组分的摩尔百分比为:
所述的步骤一中,各组分的摩尔百分比为:
Figure BDA0002249245000000042
与现有技术相比,本发明的优点在于:
1)本发明在碲酸盐玻璃中引入稀土Pr3+离子、稀土Nd3+离子以及稀土Er3+离子,通过三种稀土离子共掺和浓度优化,该稀土掺杂玻璃在488nm波长的泵浦光激励下同时实现了800~1100nm和1250~1650nm波长范围的两个近红外波段超宽带光发射,该稀土掺杂玻璃的荧光半高宽(FWHM)分别达到了225nm和296nm,光谱相对平坦。
2)本发明的稀土掺杂碲酸盐玻璃稳定、物化性能优良。
3)本发明采用普通的温控马弗炉和硅碳棒电炉来制备稀土掺杂碲酸盐玻璃,所需设备少且工艺简单,非常适合于实际生产中的应用。
附图说明
图1a为实施例一和实施例二的玻璃样品在488nm波长的泵浦光激励下测量到的在800~1100nm波长范围的近红外波段的荧光发射光谱;
图1b为实施例一和实施例二的玻璃样品在488nm波长的泵浦光激励下测量到的在1250~1650nm波长范围的近红外波段的荧光发射光谱;
图2a为对比的三种稀土掺杂玻璃在488nm波长的泵浦光激励下测量到的在800~1100nm波长范围的近红外波段的荧光发射光谱;
图2b为对比的三种稀土掺杂玻璃在488nm波长的泵浦光激励下测量到的在1250~1650nm波长范围的近红外波段的荧光发射光谱。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例一:
本实施例提出的一种近红外双波段超宽带发射的稀土掺杂玻璃,其基质为碲酸盐玻璃,其包括以下摩尔百分比的组分:
Figure BDA0002249245000000051
在此具体实施例中,组分TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
本实施例的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其包括以下步骤:
步骤一:按照以下摩尔百分比的组分选定原料配方,然后根据所需制备的稀土掺杂玻璃的总量计算出各粉末状原料的重量百分比,并称量各粉末状原料;
Figure BDA0002249245000000061
步骤二:将称量的所有粉末状原料均匀混合后倒入刚玉坩埚中;然后将装有原料混合物的刚玉坩埚移至精密温控马弗炉中,并将精密温控马弗炉的炉温由室温升至250℃,进行除湿烘干1小时。
步骤三:从精密温控马弗炉中取出除湿后装有原料混合物的刚玉坩埚,并置于温度为900℃的硅碳棒电炉中,对原料混合物进行熔制,待原料混合物完全熔化后再静置10分钟后进行搅拌,搅拌15分钟后再继续在900℃的温度下熔制5分钟,等澄清后得到玻璃熔液。
步骤四:从硅碳棒电炉中取出装有玻璃熔液的刚玉坩埚;然后将玻璃熔液浇注在预热过的铜板模具上。
在此,预热过的铜板模具的温度为300℃。
步骤五:迅速将浇注有玻璃熔液的铜板模具移至已升温至370℃下的精密温控马弗炉中进行退火,退火结束后关闭精密温控马弗炉,得到碲酸盐玻璃样品。
在此,退火过程为:在浇注有玻璃熔液的铜板模具移至已升温至370℃下的精密温控马弗炉中后,先保温2小时,然后以10℃/小时的速率使精密温控马弗炉中的温度冷却至室温。
步骤六:从精密温控马弗炉中取出容纳有碲酸盐玻璃样品的铜板模具;然后将碲酸盐玻璃样品加工成尺寸为10mm×10mm×2.0mm的双面抛光的玻璃样品。
对上述制备得到的尺寸为10mm×10mm×2.0mm的双面抛光的玻璃样品进行测试,在488nm波长的泵浦光激励下测试玻璃样品近红外波段的荧光发射光谱,图1a中的实线曲线为本实施例的玻璃样品在488nm波长的泵浦光激励下测量到的在800~1100nm波长范围的近红外波段的荧光发射光谱;图1b中的实线曲线为本实施例的玻璃样品在488nm波长的泵浦光激励下测量到的在1250~1650nm波长范围的近红外波段的荧光发射光谱。
实施例二:
本实施例提出的一种近红外双波段超宽带发射的稀土掺杂玻璃,其基质为碲酸盐玻璃,其包括以下摩尔百分比的组分:
Figure BDA0002249245000000071
在此具体实施例中,组分TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
本实施例的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其包括以下步骤:
步骤一:按照以下摩尔百分比的组分选定原料配方,然后根据所需制备的稀土掺杂玻璃的总量计算出各粉末状原料的重量百分比,并称量各粉末状原料;
步骤二:将称量的所有粉末状原料均匀混合后倒入刚玉坩埚中;然后将装有原料混合物的刚玉坩埚移至精密温控马弗炉中,并将精密温控马弗炉的炉温由室温升至250℃,进行除湿烘干1小时。
步骤三:从精密温控马弗炉中取出除湿后装有原料混合物的刚玉坩埚,并置于温度为900℃的硅碳棒电炉中,对原料混合物进行熔制,待原料混合物完全熔化后再静置10分钟后进行搅拌,搅拌15分钟后再继续在900℃的温度下熔制5分钟,等澄清后得到玻璃熔液。
步骤四:从硅碳棒电炉中取出装有玻璃熔液的刚玉坩埚;然后将玻璃熔液浇注在预热过的铜板模具上。
在此,预热过的铜板模具的温度为300℃。
步骤五:迅速将浇注有玻璃熔液的铜板模具移至已升温至370℃下的精密温控马弗炉中进行退火,退火结束后关闭精密温控马弗炉,得到碲酸盐玻璃样品。
在此,退火过程为:在浇注有玻璃熔液的铜板模具移至已升温至370℃下的精密温控马弗炉中后,先保温2小时,然后以10℃/小时的速率使精密温控马弗炉中的温度冷却至室温。
步骤六:从精密温控马弗炉中取出容纳有碲酸盐玻璃样品的铜板模具;然后将碲酸盐玻璃样品加工成尺寸为10mm×10mm×2.0mm的双面抛光的玻璃样品。
对上述制备得到的尺寸为10mm×10mm×2.0mm的双面抛光的玻璃样品进行测试,在488nm波长的泵浦光激励下测试玻璃样品近红外波段的荧光发射光谱,图1a中的虚线曲线为本实施例的玻璃样品在488nm波长的泵浦光激励下测量到的在800~1100nm波长范围的近红外波段的荧光发射光谱;图1b中的虚线曲线为本实施例的玻璃样品在488nm波长的泵浦光激励下测量到的在1250~1650nm波长范围的近红外波段的荧光发射光谱。
实施例三:
本实施例提出的一种近红外双波段超宽带发射的稀土掺杂玻璃,其基质为碲酸盐玻璃,其包括以下摩尔百分比的组分:
Figure BDA0002249245000000081
Figure BDA0002249245000000091
在此具体实施例中,组分TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
本实施例的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其包括以下步骤:
步骤一:按照以下摩尔百分比的组分选定原料配方,然后根据所需制备的稀土掺杂玻璃的总量计算出各粉末状原料的重量百分比,并称量各粉末状原料;
Figure BDA0002249245000000092
步骤二:将称量的所有粉末状原料均匀混合后倒入刚玉坩埚中;然后将装有原料混合物的刚玉坩埚移至精密温控马弗炉中,并将精密温控马弗炉的炉温由室温升至255℃,进行除湿烘干1.1小时。
步骤三:从精密温控马弗炉中取出除湿后装有原料混合物的刚玉坩埚,并置于温度为895℃的硅碳棒电炉中,对原料混合物进行熔制,待原料混合物完全熔化后再静置12分钟后进行搅拌,搅拌14分钟后再继续在895℃的温度下熔制6分钟,等澄清后得到玻璃熔液。
步骤四:从硅碳棒电炉中取出装有玻璃熔液的刚玉坩埚;然后将玻璃熔液浇注在预热过的铜板模具上。
在此,预热过的铜板模具的温度为320℃。
步骤五:迅速将浇注有玻璃熔液的铜板模具移至已升温至380℃下的精密温控马弗炉中进行退火,退火结束后关闭精密温控马弗炉,得到碲酸盐玻璃样品。
在此,退火过程为:在浇注有玻璃熔液的铜板模具移至已升温至380℃下的精密温控马弗炉中后,先保温2.5小时,然后以11℃/小时的速率使精密温控马弗炉中的温度冷却至室温。
步骤六:从精密温控马弗炉中取出容纳有碲酸盐玻璃样品的铜板模具;然后将碲酸盐玻璃样品加工成尺寸为10mm×10mm×2.0mm的双面抛光的玻璃样品。
实施例四:
本实施例提出的一种近红外双波段超宽带发射的稀土掺杂玻璃,其基质为碲酸盐玻璃,其包括以下摩尔百分比的组分:
Figure BDA0002249245000000101
在此具体实施例中,组分TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
本实施例的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其包括以下步骤:
步骤一:按照以下摩尔百分比的组分选定原料配方,然后根据所需制备的稀土掺杂玻璃的总量计算出各粉末状原料的重量百分比,并称量各粉末状原料;
Figure BDA0002249245000000102
步骤二:将称量的所有粉末状原料均匀混合后倒入刚玉坩埚中;然后将装有原料混合物的刚玉坩埚移至精密温控马弗炉中,并将精密温控马弗炉的炉温由室温升至260℃,进行除湿烘干0.9小时。
步骤三:从精密温控马弗炉中取出除湿后装有原料混合物的刚玉坩埚,并置于温度为910℃的硅碳棒电炉中,对原料混合物进行熔制,待原料混合物完全熔化后再静置9分钟后进行搅拌,搅拌16分钟后再继续在910℃的温度下熔制4分钟,等澄清后得到玻璃熔液。
步骤四:从硅碳棒电炉中取出装有玻璃熔液的刚玉坩埚;然后将玻璃熔液浇注在预热过的铜板模具上。
在此,预热过的铜板模具的温度为290℃。
步骤五:迅速将浇注有玻璃熔液的铜板模具移至已升温至360℃下的精密温控马弗炉中进行退火,退火结束后关闭精密温控马弗炉,得到碲酸盐玻璃样品。
在此,退火过程为:在浇注有玻璃熔液的铜板模具移至已升温至360℃下的精密温控马弗炉中后,先保温1.5小时,然后以9℃/小时的速率使精密温控马弗炉中的温度冷却至室温。
步骤六:从精密温控马弗炉中取出容纳有碲酸盐玻璃样品的铜板模具;然后将碲酸盐玻璃样品加工成尺寸为10mm×10mm×2.0mm的双面抛光的玻璃样品。
本发明的稀土掺杂玻璃掺杂了三种稀土离子,为更好地说明本发明的稀土掺杂玻璃在488nm波长的泵浦光激励下同时实现了800~1100nm和1250~1650nm波长范围的两个近红外波段超宽带光发射,与在本发明的稀土掺杂玻璃的前提下改成掺杂一种或两种稀土离子得到的稀土掺杂玻璃进行对比实验。
第一种:仅掺杂Pr6O11,该稀土掺杂玻璃的各组分的摩尔百分比为:
Figure BDA0002249245000000111
制备该稀土掺杂玻璃的工艺参数同实施例一和实施例二。
第二种:掺杂Pr6O11和Er2O3,该稀土掺杂玻璃的各组分的摩尔百分比为:
Figure BDA0002249245000000121
制备该稀土掺杂玻璃的工艺参数同实施例一和实施例二。
第三种:掺杂Pr6O11和Nd2O3,该稀土掺杂玻璃的各组分的摩尔百分比为:
Figure BDA0002249245000000122
制备该稀土掺杂玻璃的工艺参数同实施例一和实施例二。
图2a给出了第一种、第二种、第三种稀土掺杂玻璃在488nm波长的泵浦光激励下测量到的在800~1100nm波长范围的近红外波段的荧光发射光谱;图2b给出了第一种、第二种、第三种稀土掺杂玻璃在488nm波长的泵浦光激励下测量到的在1250~1650nm波长范围的近红外波段的荧光发射光谱。分析图2a和图2b,可以发现:第一种稀土掺杂玻璃中引入了0.3mol%含量的Pr6O11,该稀土掺杂玻璃在800~1100nm波长范围内的光谱由Pr3+离子两个发射峰形成,由于发射峰之间重叠性不好,光谱中间存在较大凹陷;该稀土掺杂玻璃在1250~1650nm波长范围内的光谱来自于Pr3+离子多个发射峰的叠加,叠加后的光谱平坦性很差。第二种稀土掺杂玻璃中引入了0.3mol%含量的Pr6O11和0.1mol%含量的Er2O3,相比于第一种稀土掺杂玻璃,由于Er3+离子发射峰的贡献,第二种稀土掺杂玻璃在800~1100nm波长范围内的光谱在短波长处得到了一定增强和延伸,且光谱中间凹陷现象得到了明显改善;第二种稀土掺杂玻璃在1250~1650nm波长范围内的光谱在长波长处得到了一定增强和延伸,但光谱平坦性基本没有变化。第三种稀土掺杂玻璃中引入了0.3mol%含量的Pr6O11和0.05mol%含量的Nd2O3,相比于第一种稀土掺杂玻璃,由于Nd3+离子发射峰的贡献,第三种稀土掺杂玻璃在800~1100nm波长范围内的光谱在长波长处得到了一定增强和延伸,但光谱中间凹陷现象没有改变;第三种稀土掺杂玻璃在1250~1650nm波长范围内的光谱在短波长处得到了明显增强,但光谱平坦性仍然没有得到实质提高。
分析图1a和图1b,可以发现:实施例一的玻璃样品中引入了0.3mol%含量的Pr6O11、0.03mol%含量的Nd2O3和0.1mol%含量的Er2O3,相比于上述第一种、第二种和第三种稀土掺杂玻璃,由于Pr3+离子、Nd3+离子和Er3+离子发射峰的共同贡献以及稀土离子掺杂浓度的优化配比,实施例一的玻璃样品在800~1100nm波长范围内的光谱得到了明显扩展,且光谱中间凹陷现象得到了明显改善;同时,实施例一的玻璃样品在1250~1650nm波长范围内的光谱同样得到了一定扩展,且光谱平坦性得到了显著提高。实施例二的玻璃样品中引入了0.3mol%含量的Pr6O11、0.05mol%含量的Nd2O3和0.1mol%含量的Er2O3,相比于实施例一的玻璃样品,实施例二的玻璃样品在800~1100nm波长范围内的光谱变化不大,但因Nd3+离子在1340nm波段处发射强度的增强,其在1250~1650nm波长范围内的光谱平坦性出现了退化。
综合上述分析,本发明的稀土掺杂玻璃掺杂稀土Pr3+离子、稀土Nd3+离子以及稀土Er3+离子,可以同时实现两个近红外波段的超宽带光发射。尤其是在引入0.3mol%含量的Pr6O11、0.03mol%含量的Nd2O3和0.1mol%含量的Er2O3时,该稀土掺杂玻璃的荧光半高宽(FWHM)分别达到了225nm和296nm;同时,这两个超宽带发射光谱具有相对强烈的荧光发射强度和较好的平坦性。

Claims (10)

1.一种近红外双波段超宽带发射的稀土掺杂玻璃,其特征在于该稀土掺杂玻璃的基质为碲酸盐玻璃,该稀土掺杂玻璃包括以下摩尔百分比的组分:
Figure FDA0002249244990000011
2.根据权利要求1所述的近红外双波段超宽带发射的稀土掺杂玻璃,其特征在于所述的组分TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
3.根据权利要求1或2所述的近红外双波段超宽带发射的稀土掺杂玻璃,其特征在于该稀土掺杂玻璃的各组分的摩尔百分比为:
Figure FDA0002249244990000012
4.根据权利要求1或2所述的近红外双波段超宽带发射的稀土掺杂玻璃,其特征在于该稀土掺杂玻璃的各组分的摩尔百分比为:
Figure FDA0002249244990000013
Figure FDA0002249244990000021
5.一种近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其特征在于包括以下步骤:
步骤一:按照以下摩尔百分比的组分选定原料配方,然后根据所需制备的稀土掺杂玻璃的总量计算出各粉末状原料的重量百分比,并称量各粉末状原料;
Figure FDA0002249244990000022
步骤二:将称量的所有粉末状原料均匀混合后倒入刚玉坩埚中;然后将装有原料混合物的刚玉坩埚移至精密温控马弗炉中,并将精密温控马弗炉的炉温由室温升至240℃~260℃,进行除湿烘干0.8~1.2小时;
步骤三:从精密温控马弗炉中取出除湿后装有原料混合物的刚玉坩埚,并置于温度为880℃~920℃的硅碳棒电炉中,对原料混合物进行熔制,待原料混合物完全熔化后再静置8~12分钟后进行搅拌,搅拌14~16分钟后再继续在880℃~920℃的温度下熔制4~6分钟,等澄清后得到玻璃熔液;
步骤四:从硅碳棒电炉中取出装有玻璃熔液的刚玉坩埚;然后将玻璃熔液浇注在预热过的铜板模具上;
步骤五:迅速将浇注有玻璃熔液的铜板模具移至已升温至350℃~390℃下的精密温控马弗炉中进行退火,退火结束后关闭精密温控马弗炉,得到碲酸盐玻璃样品;
步骤六:从精密温控马弗炉中取出容纳有碲酸盐玻璃样品的铜板模具;然后将碲酸盐玻璃样品加工成双面抛光的玻璃样品。
6.根据权利要求5所述的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其特征在于所述的步骤四中,预热过的铜板模具的温度为280℃~320℃。
7.根据权利要求5或6所述的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其特征在于所述的步骤五中退火过程为:在浇注有玻璃熔液的铜板模具移至已升温至350℃~390℃下的精密温控马弗炉中后,先保温1.5~2.5小时,然后以9℃~11℃/小时的速率使精密温控马弗炉中的温度冷却至室温。
8.根据权利要求5所述的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其特征在于所述的步骤一中,TeO2、ZnO、WO3、Bi2O3、Pr6O11、Nd2O3和Er2O3的质量百分比纯度均为99.99%。
9.根据权利要求5或8所述的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其特征在于所述的步骤一中,各组分的摩尔百分比为:
Figure FDA0002249244990000031
10.根据权利要求5或8所述的近红外双波段超宽带发射的稀土掺杂玻璃的制备方法,其特征在于所述的步骤一中,各组分的摩尔百分比为:
Figure FDA0002249244990000032
CN201911028044.4A 2019-10-28 2019-10-28 近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法 Active CN110759639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911028044.4A CN110759639B (zh) 2019-10-28 2019-10-28 近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911028044.4A CN110759639B (zh) 2019-10-28 2019-10-28 近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法

Publications (2)

Publication Number Publication Date
CN110759639A true CN110759639A (zh) 2020-02-07
CN110759639B CN110759639B (zh) 2021-11-30

Family

ID=69334048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911028044.4A Active CN110759639B (zh) 2019-10-28 2019-10-28 近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法

Country Status (1)

Country Link
CN (1) CN110759639B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358180A (zh) * 2020-10-21 2021-02-12 宁波大学 具有宽带平坦双波段发射的稀土掺杂玻璃及其制备方法
CN112897878A (zh) * 2021-02-06 2021-06-04 威海长和光导科技有限公司 一种近红外波段超宽带发射Bi-Er-Tm共掺碲酸盐光纤玻璃及其制备方法
CN114180835A (zh) * 2021-11-08 2022-03-15 宁波大学 一种具有超宽带近红外荧光发射的稀土掺杂玻璃及其制备方法和应用
CN115212594A (zh) * 2022-07-15 2022-10-21 西安交通大学 一种基于太阳能光谱调制的喷雾干燥装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219857A (zh) * 2008-01-30 2008-07-16 中国科学院上海光学精密机械研究所 碲酸盐玻璃及其制备方法
CN101224947A (zh) * 2008-02-04 2008-07-23 中国科学院上海光学精密机械研究所 2μm波段发光的氧卤碲酸盐玻璃
CN101412581A (zh) * 2008-11-11 2009-04-22 上海应用技术学院 透红外多元氧卤碲酸盐玻璃及其制备方法
CN102557436A (zh) * 2010-12-16 2012-07-11 中国科学院西安光学精密机械研究所 中红外无水碲酸盐玻璃及其制备方法
CN105753315A (zh) * 2016-03-02 2016-07-13 宁波大学 一种含银纳米颗粒的 Er3+/Ce3+/Yb3+三掺的碲酸盐玻璃及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219857A (zh) * 2008-01-30 2008-07-16 中国科学院上海光学精密机械研究所 碲酸盐玻璃及其制备方法
CN101224947A (zh) * 2008-02-04 2008-07-23 中国科学院上海光学精密机械研究所 2μm波段发光的氧卤碲酸盐玻璃
CN101412581A (zh) * 2008-11-11 2009-04-22 上海应用技术学院 透红外多元氧卤碲酸盐玻璃及其制备方法
CN102557436A (zh) * 2010-12-16 2012-07-11 中国科学院西安光学精密机械研究所 中红外无水碲酸盐玻璃及其制备方法
CN105753315A (zh) * 2016-03-02 2016-07-13 宁波大学 一种含银纳米颗粒的 Er3+/Ce3+/Yb3+三掺的碲酸盐玻璃及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YARUI ZHU ET AL: "Er3+/Pr3+/Nd3+ tri-doped tellurite glass for ultra-broadband amplification applications", 《MATERIALS LETTERS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358180A (zh) * 2020-10-21 2021-02-12 宁波大学 具有宽带平坦双波段发射的稀土掺杂玻璃及其制备方法
CN112897878A (zh) * 2021-02-06 2021-06-04 威海长和光导科技有限公司 一种近红外波段超宽带发射Bi-Er-Tm共掺碲酸盐光纤玻璃及其制备方法
CN112897878B (zh) * 2021-02-06 2021-10-19 威海长和光导科技有限公司 一种近红外波段超宽带发射Bi-Er-Tm共掺碲酸盐光纤玻璃及其制备方法
CN114180835A (zh) * 2021-11-08 2022-03-15 宁波大学 一种具有超宽带近红外荧光发射的稀土掺杂玻璃及其制备方法和应用
CN115212594A (zh) * 2022-07-15 2022-10-21 西安交通大学 一种基于太阳能光谱调制的喷雾干燥装置及方法
CN115212594B (zh) * 2022-07-15 2023-12-19 西安交通大学 一种基于太阳能光谱调制的喷雾干燥装置及方法

Also Published As

Publication number Publication date
CN110759639B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN110759639B (zh) 近红外双波段超宽带发射的稀土掺杂玻璃及其制备方法
Wang et al. Fluoride-sulfophosphate glasses as hosts for broadband optical amplification through transition metal activators
Giri et al. Upconversion based tunable white-light generation in Ln: Y 2 O 3 nanocrystalline phosphor (Ln= Tm/Er/Yb)
CN102659313B (zh) 近红外宽带发光铒铥共掺铋酸盐激光玻璃及其制备方法
CN110407462B (zh) 一种稀土掺杂硅酸盐玻璃及其制备方法和应用
Dorosz et al. Structural and optical study on antimony-silicate glasses doped with thulium ions
Saeed et al. Novel Er3+ doped heavy metals-oxyfluorophosphate glass as a blue emitter
Shen et al. Dual super-broadband NIR emissions in Pr3+-Er3+-Nd3+ tri-doped tellurite glass
Marzouk et al. Correlation between luminescence and crystallization characteristics of Dy 3+ doped P 2 O 5–BaO–SeO 2 glasses for white LED applications
CN112358180B (zh) 具有宽带平坦双波段发射的稀土掺杂玻璃及其制备方法
Yu et al. Photoluminescence and energy transfer progress in Er-doped Bi2O3-GeO2 glasses
CN104692658A (zh) 一种在硼硅酸盐玻璃中固定CdS和Se的方法
Naresh et al. Emission features of Er3+ ions in an exotic SeO2 based glass system
Li et al. Adjustable multicolor up-energy conversion in light-luminesce in Tb3+/Tm3+/Yb3+ co-doped oxyfluorifFde glass-ceramics containing Ba2LaF7 nanocrystals
Raj et al. Concentration dependent Dy3+-doped lithium fluoro borotellurophosphate glasses’ structural and optical investigations for white light emission under UV excitation for solid-state lighting applications
Zhang et al. High hardnesses of Tm3+-doped La2O3-Al2O3 luminescent glasses fabricated by containerless solidification
Marzouk et al. Luminescent, semiconducting, thermal, and structural performance of Ho 3+-doped lithium borate glasses with CaF 2 or MgF 2
Yang Enhancement of near-infrared emissions of Nd3+: Al2O3 IR transparent ceramics co-doped with Zn2+
CN106588014A (zh) 一种发光增强的Tm3+掺杂氧化镥基透明陶瓷及制备方法
CN116119925A (zh) 一种掺铥氟碲酸盐玻璃、制备方法及其应用
Luewarasirikul et al. Erbium-doped calcium barium phosphate glasses for 1.54 µm broadband optical amplifier
CN112897878B (zh) 一种近红外波段超宽带发射Bi-Er-Tm共掺碲酸盐光纤玻璃及其制备方法
CN102674688B (zh) 掺镨硼磷酸盐基近红外超宽带发光玻璃及其制备方法
CN114180835B (zh) 一种具有超宽带近红外荧光发射的稀土掺杂玻璃及其制备方法和应用
Yang et al. Spectroscopic properties of Er3+-doped xGeO2–(80− x) TeO2–10ZnO–10BaO glasses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant