CN110751723A - A Sequence Coding Method for Grid Calculation of Channels in the Same Subbasin - Google Patents
A Sequence Coding Method for Grid Calculation of Channels in the Same Subbasin Download PDFInfo
- Publication number
- CN110751723A CN110751723A CN201910948697.8A CN201910948697A CN110751723A CN 110751723 A CN110751723 A CN 110751723A CN 201910948697 A CN201910948697 A CN 201910948697A CN 110751723 A CN110751723 A CN 110751723A
- Authority
- CN
- China
- Prior art keywords
- grid
- sub
- basin
- code
- river
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000004364 calculation method Methods 0.000 title claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000004458 analytical method Methods 0.000 claims description 14
- 108091026890 Coding region Proteins 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
- G06T17/205—Re-meshing
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Remote Sensing (AREA)
- Alarm Systems (AREA)
Abstract
Description
技术领域technical field
本发明申请为申请日2018年07月25日,申请号为:2018108299607,名称为“一种基于DEM的网格型水文模型网格演算次序编码方法”的发明专利申请的分案申请。本发明涉及一种水文模型的构建方法,尤其是一种相同子流域河道网格演算次序编码方法。The application of the present invention is the application date of July 25, 2018, the application number is: 2018108299607, and the divisional application of the invention patent application entitled "A DEM-based grid-type hydrological model grid calculation order coding method". The invention relates to a method for constructing a hydrological model, in particular to a method for coding the order of grid calculation of river channels in the same sub-basin.
背景技术Background technique
自然界中的水文现象错综复杂,不仅包含相互关联又彼此独立的不同过程,更是受到许多外界条件的影响。为了实现对现实世界中复杂水文过程的模拟与研究,在水文学科先驱的不断探索下,水文模型的概念应运而生。可以说水文模型的出现打开了水文学领域研究的一扇新的大门,成为研究和探索一切与水文有关的过程或分析一切水文现象的基础。Hydrological phenomena in nature are intricate and complex, not only including different processes that are interrelated and independent of each other, but also affected by many external conditions. In order to realize the simulation and study of complex hydrological processes in the real world, the concept of hydrological model came into being under the continuous exploration of the pioneers of hydrology. It can be said that the emergence of hydrological models has opened a new door in the field of hydrology, and has become the basis for studying and exploring all processes related to hydrology or analyzing all hydrological phenomena.
总的来说,可以把水文模型分为两大类:分布式模型和集总式模型。集总式水文模型将流域看作一个均一化的整体,不考虑流域模拟中各参数、各水文过程的空间非一致性。分布式模型把水文循环过程在空间尺度上分为若干个计算单元,各个计算单元的参数和变量一般不同,有些甚至不同单元之间的水文模拟方式也不相同。In general, hydrological models can be divided into two categories: distributed models and lumped models. The lumped hydrological model regards the watershed as a homogeneous whole, and does not consider the spatial inconsistency of each parameter and each hydrological process in the watershed simulation. The distributed model divides the hydrological cycle process into several computing units on the spatial scale. The parameters and variables of each computing unit are generally different, and some even have different hydrological simulation methods between different units.
根据分布式水文模型中各个计算单元的径流过程形成流域出口流量过程的方法,可将水文模型分为耦合型和松散型。耦合型分布式水文模型需要考虑各个计算单元之间的相互作用,通过联立微分方程,并确定边界条件进行求解。而松散型水文模型中各个计算单元之间是相互独立的,在计算过程中可分别计算不同计算单元内的水文过程,各单元之间无相互作用,完成对计算单元的处理后可通过一定的倍比或叠加原则求得最终的流域流量过程。According to the method that the runoff process of each computing unit in the distributed hydrological model forms the flow process at the outlet of the basin, the hydrological model can be divided into a coupled type and a loose type. The coupled distributed hydrological model needs to consider the interaction between each computing unit, and solve it through simultaneous differential equations and determination of boundary conditions. In the loose hydrological model, each calculation unit is independent of each other. During the calculation process, the hydrological process in different calculation units can be calculated separately. There is no interaction between the units. The multiplication or superposition principle is used to obtain the final watershed flow process.
集总式水文模型由于未考虑水文过程在流域中的变化,忽略了水文要素时空分布的不均性。耦合型分布式水文模型要求具有严格的物理基础,同时参数是分布的,这不仅要求模型中水文过程描述方程能够真实的反应流域中实际发生的水文响应过程,并且具有空间的变异性,对计算机运算和资料的要求比较高。基于网格的水文模型是松散型模型的一种,可以灵活的调整网格的大小,实现流域内下垫面条件的离散化,是一种应用较为广泛的水文模型。The lumped hydrological model ignores the heterogeneity of the temporal and spatial distribution of hydrological elements because it does not consider the changes of hydrological processes in the basin. The coupled distributed hydrological model requires a strict physical basis, and the parameters are distributed, which not only requires that the hydrological process description equation in the model can truly reflect the actual hydrological response process in the basin, but also has spatial variability. The requirements for calculation and data are relatively high. The grid-based hydrological model is a kind of loose model, which can flexibly adjust the size of the grid and realize the discretization of the underlying surface conditions in the watershed. It is a widely used hydrological model.
基于DEM的网格型水文模型在每一个网格上分别进行产流计算,再进行网格之间的汇流演算,计算过程中需要严格按照汇流网络之间的拓扑关系结构,区分不同网格的计算顺序,以满足水流往流域出口汇集的路径。通过DEM数据提取数字流域进行汇流计算时,由于流域汇流的非线性特征,流域中各个网格之间的汇流过程具有顺序性,所以在进行产汇流模拟之前的一项重要工作是确定各个网格的汇流演算顺序。各个计算单元演算顺序建立在确定各个网格水流方向的基础上,通过水流方向描述各个网格之间的拓扑关系。在产汇流模拟中,为了使计算机可以识别水流方向所表示的网格之间的拓扑关系,需建各个网格的编码,通过编码的规则,反映各个网格的计算顺序,方便计算机识别和演算。The grid-type hydrological model based on DEM performs runoff calculation on each grid separately, and then performs confluence calculation between grids. During the calculation process, it is necessary to distinguish the Calculate the order to meet the path of water flow towards the catchment outlet of the watershed. When extracting a digital watershed from DEM data for confluence calculation, due to the nonlinear characteristics of watershed confluence, the confluence process between grids in the watershed is sequential. the order of confluence calculus. The calculation sequence of each computing unit is established on the basis of determining the water flow direction of each grid, and the topological relationship between each grid is described by the water flow direction. In the simulation of production and confluence, in order to allow the computer to identify the topological relationship between the grids represented by the direction of the water flow, it is necessary to build the coding of each grid, and through the coding rules, the calculation sequence of each grid is reflected, which is convenient for the computer to identify and calculate. .
发明内容SUMMARY OF THE INVENTION
本发明设计了一种基于DEM的网格型水文模型网格演算次序编码方法,其解决的问题是编码过程中无法区分河道网格和非河道网格,且网格之间的水力联系仅发生在相邻层之间,在计算过程不能通过编码规则按照拓扑关系查找计算过程中出现的问题。The present invention designs a grid calculus order coding method for grid hydrological model based on DEM, which solves the problem that river grids and non-river grids cannot be distinguished in the coding process, and the hydraulic connection between grids only occurs. Between adjacent layers, in the calculation process, the problem that occurs in the calculation process cannot be found according to the topological relationship through the coding rules.
为了解决上述存在的技术问题,本发明采用了以下方案:In order to solve the above-mentioned technical problem, the present invention adopts the following scheme:
一种基于DEM的网格型水文模型网格演算次序编码方法,包括以下步骤:步骤1、确定网格尺寸;步骤2、得到网格水流方向;步骤3、进行河道网格和子流域划分;步骤4、对每个网格进行编码。A DEM-based grid-type hydrological model grid calculation sequence coding method, comprising the following steps:
进一步,步骤4:为每个网格生成一个5位数数组,用于存放网格的编码,编码形式为(ID1,ID2,ID3,ID4,ID5),初始值为(0,0,0,0,0);ID1为子流域编码;ID2为汇流层编码;ID3为层内顺序编码;ID4为流入网格编码;ID5为河道编码。Further, step 4: generate a 5-digit array for each grid, which is used to store the code of the grid. The coding format is (ID1, ID2, ID3, ID4, ID5), and the initial value is (0,0,0, 0,0); ID1 is the sub-watershed code; ID2 is the confluence layer code; ID3 is the intra-layer sequence code; ID4 is the inflow grid code; ID5 is the river channel code.
进一步,所述步骤4中包括步骤41:从步骤3所得到的子流域划分中读取子流域编码,将子流域编码赋值给ID1。Further, the step 4 includes step 41: reading the sub-watershed code from the sub-watershed division obtained in step 3, and assigning the sub-watershed code to ID1.
进一步,所述步骤4中包括步骤42:找寻每一个子流域最下游的出口网格,将该网格ID2赋值为1。Further, the step 4 includes step 42: searching for the most downstream outlet grid of each sub-basin, and assigning the grid ID2 as 1.
进一步,所述步骤4中包括步骤43:针对每一个子流域,从最下游子流域出口网格开始搜索,顺时针方向搜索出口网格周围的8个网格中ID1编码和该网格ID1编码相同的网格,若某一网格的水流方向流入该网格,则将此网格的ID2赋值2,ID3从1开始赋值,逐个增加,ID4赋值1,完成对河道出口网格周围所有符合条件网格的编码。Further, the step 4 includes step 43: for each sub-basin, start the search from the outlet grid of the most downstream sub-basin, and clockwise search for the ID1 code and the ID1 code of the grid in the 8 grids around the outlet grid For the same grid, if the water flow direction of a grid flows into this grid, the ID2 of this grid will be assigned a value of 2, ID3 will be assigned from 1, and increase one by one, and ID4 will be assigned a value of 1. Coding of conditional grids.
进一步,所述步骤4中包括步骤44:针对不同的子流域,搜索ID2为B(B≥2)的所有网格,按照ID3的顺序依次进行编码,假设某一网格为(A,B,C,D,E),顺时针方向搜索(A,B,C,D,E)网格周围的8个网格中ID1编码和该网格ID1编码相同的网格,若某一网格的水流方向流入该网格,则将此网格的ID2赋值B+1,ID3从1开始赋值,逐个增加,ID4赋值D,直到将所有符合要求的网格都编码完成。Further, the step 4 includes step 44: for different sub-basins, search for all grids whose ID2 is B (B≥2), and encode them in the order of ID3, assuming that a grid is (A, B, C, D, E), clockwise search (A, B, C, D, E) in the 8 grids around the grid with the same ID1 code as the grid ID1. When the direction of water flow flows into the grid, the ID2 of this grid is assigned B+1, ID3 starts from 1 and increases one by one, and ID4 is assigned D, until all the grids that meet the requirements are coded.
进一步,所述步骤4中包括步骤45:导入河道网格信息,按照从河源往河口处逐渐增大的顺序依次累加,对ID5进行编码。Further, the step 4 includes step 45 : importing the grid information of the river channel, and sequentially accumulating in the order of gradually increasing from the source of the river to the mouth of the river, and encoding the ID5.
进一步,所述步骤1根据研究区域的范围和研究需要确定所建立网格型水文模型的网格大小,一次建模过程中各网格的大小应保持一致;或/和,所述网格大小为1km×1km、3km×3km或9km×9km。Further, the
进一步,所述步骤2中借助水文分析工具,通过单流向法得到各个网格的水流方向。Further, in the step 2, with the aid of a hydrological analysis tool, the water flow direction of each grid is obtained by a single flow direction method.
进一步,所述步骤3根据步骤2所得到的各个网格水的流向信息,借助水文分析工具,设定汇水面积阈值,得到研究区域的河道数字信息,并借助水文分析工具,对研究区进行子流域划分。Further, in step 3, according to the flow direction information of each grid water obtained in step 2, with the help of hydrological analysis tools, set the threshold value of the catchment area, obtain the digital information of the river channel in the study area, and use the hydrological analysis tool to carry out the analysis of the study area. Sub-basin division.
进一步,所述步骤2和所述步骤3中的所述水文分析工具为ArcGIS 10.2中的水文分析工具。Further, the hydrological analysis tools in the step 2 and the step 3 are the hydrological analysis tools in ArcGIS 10.2.
该基于DEM的网格型水文模型网格演算次序编码方法具有以下有益效果:This DEM-based grid hydrological model grid calculus order coding method has the following beneficial effects:
(1)本发明编码方法将流域各个子流域赋以不同的标识值,方便并行计算;(1) The coding method of the present invention assigns different identification values to each sub-watershed of the watershed to facilitate parallel computing;
(2)本发明基于网格的水文模型在计算过程中往往需要区分河道单元和非河道单元,该编码方法可以有效的区分河道单元和非河道单元,方便在汇流计算时针对不同类型的网格使用不同的汇流方法。(2) The grid-based hydrological model of the present invention often needs to distinguish between river units and non-river units in the calculation process. This coding method can effectively distinguish river units and non-river units, which is convenient for different types of grids during confluence calculation. Use different confluence methods.
(3)本发明汇流仅发生在相邻层之间,在计算过程中若某一网格出现异常值,可以通过编码规则按照拓扑关系查找原因。(3) The confluence of the present invention only occurs between adjacent layers. If an abnormal value occurs in a grid during the calculation process, the reason can be found according to the topological relationship through coding rules.
附图说明Description of drawings
图1是本发明基于DEM的网格型水文模型网格演算次序编码方法的流程图。FIG. 1 is a flow chart of the grid calculus order coding method of the grid type hydrological model based on the DEM of the present invention.
图2是本发明完成编码后的示意图。FIG. 2 is a schematic diagram of the present invention after encoding is completed.
具体实施方式Detailed ways
下面结合图1和图2,对本发明做进一步说明:Below in conjunction with Fig. 1 and Fig. 2, the present invention is further described:
如图1所示,本实施例是一种基于DEM的网格型水文模型网格演算次序编码方法,流程如图1所示。本实施例所述方法的步骤如下:As shown in FIG. 1 , this embodiment is a DEM-based grid-type hydrological model grid operation order coding method, and the process is shown in FIG. 1 . The steps of the method described in this embodiment are as follows:
步骤1:根据研究区域的范围和研究需要确定所建立网格型水文模型的网格大小,例如1km×1km、3km×3km或9km×9km,一次建模过程中各网格的大小应保持一致。Step 1: Determine the grid size of the established grid-type hydrological model according to the scope of the study area and research needs, such as 1km×1km, 3km×3km or 9km×9km, and the size of each grid should be consistent in one modeling process .
步骤2:借助ArcGIS 10.2中的水文分析工具,通过单流向法得到各个网格的水流方向。Step 2: With the help of the hydrological analysis tool in ArcGIS 10.2, the water flow direction of each grid is obtained by the single flow direction method.
步骤3:根据步骤2所得到的各个网格的流向信息,借助ArcGIS 10.2中的水文分析工具,设定汇水面积阈值,得到研究区域的河道数字信息,并借助ArcGIS 10.2中的水文分析工具,对研究区进行子流域划分。Step 3: According to the flow direction information of each grid obtained in Step 2, with the help of the hydrological analysis tool in ArcGIS 10.2, set the threshold of the catchment area to obtain the digital information of the river channel in the study area, and with the help of the hydrological analysis tool in ArcGIS 10.2, Divide the study area into sub-watersheds.
步骤4:为每个网格生成一个5位数数组,用于存放网格的编码,编码形式为(ID1,ID2,ID3,ID4,ID5),初始值为(0,0,0,0,0)。Step 4: Generate a 5-digit array for each grid, which is used to store the grid code. The code format is (ID1, ID2, ID3, ID4, ID5), and the initial value is (0,0,0,0, 0).
步骤41:从步骤3所得到的子流域划分中读取子流域编码,将子流域编码赋值给ID1。Step 41: Read the sub-watershed code from the sub-watershed division obtained in step 3, and assign the sub-watershed code to ID1.
步骤42:找寻每一个子流域最下游的出口网格,读取子流域出口网格信息,将该网格ID2赋值为1。Step 42: Find the most downstream outlet grid of each sub-basin, read the information of the outlet grid of the sub-basin, and assign the grid ID2 to 1.
步骤43:针对每一个子流域,从最下游子流域出口网格开始搜索,顺时针方向搜索出口网格周围的8个网格中ID1编码和该网格ID1编码相同的网格,若某一网格的水流方向流入该网格,则将此网格的ID2赋值2,ID3从1开始赋值,逐个增加,ID4赋值1,完成对河道出口网格周围所有符合条件网格的编码。Step 43: For each sub-basin, start the search from the outlet grid of the most downstream sub-basin, and search clockwise in the 8 grids around the outlet grid for grids with the same ID1 code as the grid ID1. When the flow direction of the grid flows into the grid, the ID2 of this grid is assigned a value of 2, ID3 is assigned from 1, and increases one by one, and ID4 is assigned a value of 1 to complete the encoding of all eligible grids around the river outlet grid.
步骤44:针对不同的子流域,搜索ID2为B(B≥2)的所有网格,按照ID3的顺序依次进行编码,假设某一网格为(A,B,C,D,E),顺时针方向搜索(A,B,C,D,E)网格周围的8个网格中ID1编码和该网格ID1编码相同的网格,若某一网格的水流方向流入该网格,则将此网格的ID2赋值B+1,ID3从1开始赋值,逐个增加,ID4赋值D,直到将所有符合要求的网格都编码完成。Step 44: For different sub-basins, search for all grids whose ID2 is B (B≥2), and encode them in the order of ID3. Assuming that a grid is (A, B, C, D, E), the order Clockwise search (A, B, C, D, E) grids with the same ID1 code as the grid ID1 code in the 8 grids around the grid. If the water flow direction of a grid flows into the grid, then The ID2 of this grid is assigned B+1, ID3 starts from 1 and increases one by one, and ID4 is assigned D, until all the grids that meet the requirements are coded.
步骤45:导入河道网格信息,按照从河源往河口处逐渐增大的顺序依次累加,对ID5进行编码。Step 45: Import the grid information of the river channel, accumulate it in order from the source of the river to the mouth of the river, and encode ID5.
如图2所示,如上图所示,通过一组五位数的数组对各个网格进行编码,编码结构为(ID1,ID2,ID3,ID4,ID5),其中:As shown in Figure 2, as shown in the above figure, each grid is encoded by a set of five-digit arrays, and the encoding structure is (ID1, ID2, ID3, ID4, ID5), where:
ID1:子流域编码;不同的子流域有不同的编码值,标识不同网格所处于的子流域位置;ID1: Sub-watershed code; different sub-watersheds have different coding values, identifying the sub-watershed positions where different grids are located;
ID2:汇流层编码;该网格在某一子流域中的层数,如该子流域出口网格的层数为1,流入出口网格的网格层数为2,以此类推;ID2: Convergence layer code; the layer number of the grid in a sub-basin, such as the sub-basin outlet grid layer number is 1, the inflow outlet grid layer number is 2, and so on;
ID3:层内顺序编码;位于相同层中的网格序号,在某一子流域中,随着层号的增加,位于相同层中的网格数也随着增加,为了区分位于同一层中的网格,给这些网格进行编号,方便锁定相同层中的网格;ID3: In-layer sequence coding; the grid number in the same layer. In a sub-watershed, as the layer number increases, the number of grids in the same layer also increases. In order to distinguish the grids in the same layer Grids, number these grids to facilitate locking grids in the same layer;
ID4:流入网格编码;流入下游层中特定网格的编号。由于只有相邻层之间才会发生水力联系,为定位汇流层数值较大层中某一网格的汇流目标,通过流入网格编码搜寻该网格汇入下游层中的某个网格;ID4: Inflow grid code; the number of a specific grid in the inflow downstream layer. Since only the hydraulic connection occurs between adjacent layers, in order to locate the confluence target of a grid in the layer with the larger value of the confluence layer, the inflow grid code is used to search for the grid that merges into a grid in the downstream layer;
ID5:河道编码;非河道网格该编码为0,河道网格编码从河源往河口处逐渐增大。ID5: river channel code; the code for non-river grid grid is 0, and the channel grid code gradually increases from the river source to the estuary.
编码规则首先确定所在同一子流域的所有网格,为网格ID1统一赋值,图2中网格均位于子流域1中,故编码ID1均为1;根据各网格的流向和流向网络将该子流域分层,层号即为ID2的编码号,流域出口网格为该流域的第1层网格,故ID2编码为1,流入流域出口的网格为第2层网格,ID2编码为2,图中子流域共有5层,ID2的最大编码值为5;ID3编码为层内顺序编码,以第3层为例,改成共有3个网格,ID3的编码依次为1,2,3;ID4编码决定了网格水流流入的网格,由于该编码规则下只有相应的层之间会发生水力联系,且水流仅会从层数大的网格流入层数小的网格,所以仅需要在网格编码中明确某一网格流入的网格编码,其层数信息实为已知。以第4层,层内编码2的网格为例,该网格仅会流入第3层网格中的某一个网格,由汇流网络可知该网格流入编码为(1,3,2,1,3)的网格,故对该网格的ID4编码2,即将该网格指向第3层网格中顺序为2的网格,赋予其水流方向的含义;ID5为河道编码,图中深色方框表示河道网格,可知该汇流网络中共有5个河道网格,河道网格的ID5编码依次为5,4,3,2,1。The coding rule first determines all the grids in the same sub-basin, and assigns a uniform value to grid ID1. The grids in Figure 2 are all located in
上面结合附图对本发明进行了示例性的描述,显然本发明的实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。The present invention has been exemplarily described above in conjunction with the accompanying drawings. Obviously, the implementation of the present invention is not limited by the above-mentioned manner, as long as various improvements made by the method concept and technical solutions of the present invention are adopted, or the present invention is not modified without improvement. It is within the protection scope of the present invention that the ideas and technical solutions of the invention are directly applied to other occasions.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910948697.8A CN110751723B (en) | 2018-07-25 | 2018-07-25 | A Sequence Coding Method for Grid Calculation of Channels in the Same Subbasin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810829960.7A CN109285219B (en) | 2018-07-25 | 2018-07-25 | A kind of grid type hydrological model grid calculation order encoding method based on DEM |
CN201910948697.8A CN110751723B (en) | 2018-07-25 | 2018-07-25 | A Sequence Coding Method for Grid Calculation of Channels in the Same Subbasin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810829960.7A Division CN109285219B (en) | 2018-07-25 | 2018-07-25 | A kind of grid type hydrological model grid calculation order encoding method based on DEM |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110751723A true CN110751723A (en) | 2020-02-04 |
CN110751723B CN110751723B (en) | 2021-03-12 |
Family
ID=65183252
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910948512.3A Active CN110766792B (en) | 2018-07-25 | 2018-07-25 | Grid Calculation Order Coding Method Based on ArcGIS Hydrological Analysis Tool |
CN201910948489.8A Active CN110782526B (en) | 2018-07-25 | 2018-07-25 | Different sub-basin river channel grid calculation order coding method |
CN201810829960.7A Active CN109285219B (en) | 2018-07-25 | 2018-07-25 | A kind of grid type hydrological model grid calculation order encoding method based on DEM |
CN201910948517.6A Active CN110796731B (en) | 2018-07-25 | 2018-07-25 | River channel grid calculation order coding method |
CN201910948697.8A Active CN110751723B (en) | 2018-07-25 | 2018-07-25 | A Sequence Coding Method for Grid Calculation of Channels in the Same Subbasin |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910948512.3A Active CN110766792B (en) | 2018-07-25 | 2018-07-25 | Grid Calculation Order Coding Method Based on ArcGIS Hydrological Analysis Tool |
CN201910948489.8A Active CN110782526B (en) | 2018-07-25 | 2018-07-25 | Different sub-basin river channel grid calculation order coding method |
CN201810829960.7A Active CN109285219B (en) | 2018-07-25 | 2018-07-25 | A kind of grid type hydrological model grid calculation order encoding method based on DEM |
CN201910948517.6A Active CN110796731B (en) | 2018-07-25 | 2018-07-25 | River channel grid calculation order coding method |
Country Status (1)
Country | Link |
---|---|
CN (5) | CN110766792B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110766792B (en) * | 2018-07-25 | 2021-03-12 | 中国水利水电科学研究院 | Grid Calculation Order Coding Method Based on ArcGIS Hydrological Analysis Tool |
CN110717251B (en) * | 2019-09-19 | 2020-11-24 | 中国水利水电科学研究院 | A sub-basin division method of distributed hydrological model considering multiple elements |
CN113128008B (en) * | 2021-04-27 | 2021-12-07 | 中国水利水电科学研究院 | Sub-basin dividing and coding method reflecting subsurface bedding surface type characteristics |
CN113449404B (en) * | 2021-06-29 | 2024-06-07 | 中国水利水电科学研究院 | River network converging and water diversion parallel computing method based on layer-by-layer blade unit identification |
CN113946551B (en) * | 2021-10-26 | 2024-12-24 | 时空慧智(北京)科技有限公司 | A distributed publishing and sharing method of spatial data based on grid division |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1450499A (en) * | 2003-04-29 | 2003-10-22 | 上海城市发展信息研究中心 | Geography information system based city basic entity coding method and automation algorithm |
JP2011139333A (en) * | 2009-12-28 | 2011-07-14 | Toshiba Corp | System for controlling disaster prevention information display |
CN102289464A (en) * | 2011-07-18 | 2011-12-21 | 南京师范大学 | Encoding method based on spatial features of vector data |
CN106202265A (en) * | 2016-06-29 | 2016-12-07 | 武汉大学 | The basin large scale fine regular grid of Complex River magnanimity paint volume method |
CN107871048A (en) * | 2017-11-22 | 2018-04-03 | 武汉大学 | Blocking Method of Large-Scale Watershed Grid |
CN108090164A (en) * | 2017-12-13 | 2018-05-29 | 武汉大学 | A kind of basin large scale calculates the coding method of magnanimity grid |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734254B2 (en) * | 2006-04-25 | 2014-05-27 | International Business Machines Corporation | Virtual world event notifications from within a persistent world game |
KR20100043489A (en) * | 2008-10-20 | 2010-04-29 | 한국건설기술연구원 | River network making method using the digital elevation model |
CN103092572B (en) * | 2013-01-11 | 2015-07-29 | 中国科学院地理科学与资源研究所 | The parallel method of distributing numerical control under a kind of cluster environment |
CN103677826B (en) * | 2013-12-09 | 2017-01-04 | 河海大学 | Watershed partitioning based on IDL and Mapinfo and information extracting method |
CN105138722A (en) * | 2015-07-14 | 2015-12-09 | 南京师范大学 | Digital river-lake network based method for dividing water collection unit of river basin of plain river network region |
CN104978451B (en) * | 2015-08-12 | 2016-06-22 | 河海大学 | A kind of complicated river network in plain areas hydrological model processing method based on ArcGIS |
CN106897529B (en) * | 2017-03-02 | 2020-03-31 | 中国水利水电科学研究院 | Sub-basin confluence operation sequence calculation method based on sewage pipe network topological relation |
CN107944102B (en) * | 2017-11-13 | 2019-07-09 | 武汉大学 | Grid splicing method for large-scale and complex river network in the basin |
CN108304511B (en) * | 2018-01-19 | 2021-03-30 | 福建师范大学 | XML data format-based river network water system storage expression method |
CN110766792B (en) * | 2018-07-25 | 2021-03-12 | 中国水利水电科学研究院 | Grid Calculation Order Coding Method Based on ArcGIS Hydrological Analysis Tool |
-
2018
- 2018-07-25 CN CN201910948512.3A patent/CN110766792B/en active Active
- 2018-07-25 CN CN201910948489.8A patent/CN110782526B/en active Active
- 2018-07-25 CN CN201810829960.7A patent/CN109285219B/en active Active
- 2018-07-25 CN CN201910948517.6A patent/CN110796731B/en active Active
- 2018-07-25 CN CN201910948697.8A patent/CN110751723B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1450499A (en) * | 2003-04-29 | 2003-10-22 | 上海城市发展信息研究中心 | Geography information system based city basic entity coding method and automation algorithm |
JP2011139333A (en) * | 2009-12-28 | 2011-07-14 | Toshiba Corp | System for controlling disaster prevention information display |
CN102289464A (en) * | 2011-07-18 | 2011-12-21 | 南京师范大学 | Encoding method based on spatial features of vector data |
CN106202265A (en) * | 2016-06-29 | 2016-12-07 | 武汉大学 | The basin large scale fine regular grid of Complex River magnanimity paint volume method |
CN107871048A (en) * | 2017-11-22 | 2018-04-03 | 武汉大学 | Blocking Method of Large-Scale Watershed Grid |
CN108090164A (en) * | 2017-12-13 | 2018-05-29 | 武汉大学 | A kind of basin large scale calculates the coding method of magnanimity grid |
Also Published As
Publication number | Publication date |
---|---|
CN110796731B (en) | 2021-03-12 |
CN110796731A (en) | 2020-02-14 |
CN109285219B (en) | 2019-11-05 |
CN110782526B (en) | 2021-04-13 |
CN110751723B (en) | 2021-03-12 |
CN110766792B (en) | 2021-03-12 |
CN109285219A (en) | 2019-01-29 |
CN110782526A (en) | 2020-02-11 |
CN110766792A (en) | 2020-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109285219B (en) | A kind of grid type hydrological model grid calculation order encoding method based on DEM | |
Pollock | User guide for MODPATH Version 7—A particle-tracking model for MODFLOW | |
CN111160621B (en) | A short-term wind power prediction method integrating multi-source information | |
CN106022518B (en) | A Prediction Method of Pipeline Damage Probability Based on BP Neural Network | |
CN108021773B (en) | DSS database-based distributed hydrological model multi-field secondary flood parameter calibration method | |
CN105893669A (en) | Global simulation performance predication method based on data digging | |
CN108614915A (en) | Hydrological model based on scene driving freely sets up strategy process | |
CN114462254A (en) | Parallel computing method of distributed hydrological model based on flow direction | |
CN107944102A (en) | The grid joining method of basin large scale Complex River | |
CN117473890A (en) | Micro turbine flow field prediction method and device based on mechanical learning | |
CN111444614B (en) | Flow field reconstruction method based on graph convolution | |
CN107315847A (en) | A kind of river and the generation method and device of underground water coupled simulation parameter | |
CN113641733B (en) | A real-time intelligent estimation method for river cross-section flow | |
CN114022008A (en) | A method for assessing suitable ecological flow in estuaries based on water ecological zoning theory | |
CN113780356A (en) | Water quality prediction method and system based on ensemble learning model | |
Chau et al. | An expert system for flow routing in a river network | |
CN113656852A (en) | Rapid generation method for refined river terrain | |
CN117787502A (en) | Artificial intelligence-based prediction method for mid- to deep-seated geothermal energy | |
CN113792919B (en) | Wind power prediction method based on combination of transfer learning and deep learning | |
CN108717444A (en) | A kind of big data clustering method and device based on distributed frame | |
CN111210522B (en) | Method for tracking streamline distribution in three-dimensional unstructured grid flow field by using FEM (finite element modeling) | |
CN109639319A (en) | A kind of multi-source end noise modeling method under the line topological environmental based on Complex Power | |
CN114493234A (en) | A method for identifying key pressure control points in water supply network | |
CN114595591A (en) | Load decomposition method and device for industrial facilities based on mixed integer programming | |
García et al. | Meshless methods with application to liquid composite molding simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |