CN110748383A - 用于涡轮叶片气膜孔的检测方法 - Google Patents

用于涡轮叶片气膜孔的检测方法 Download PDF

Info

Publication number
CN110748383A
CN110748383A CN201911035511.6A CN201911035511A CN110748383A CN 110748383 A CN110748383 A CN 110748383A CN 201911035511 A CN201911035511 A CN 201911035511A CN 110748383 A CN110748383 A CN 110748383A
Authority
CN
China
Prior art keywords
turbine blade
resin
film hole
air film
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911035511.6A
Other languages
English (en)
Inventor
康振亚
郑会龙
杨肖芳
张谭
赵世迁
张晓武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Engineering Thermophysics of CAS
Original Assignee
Institute of Engineering Thermophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Engineering Thermophysics of CAS filed Critical Institute of Engineering Thermophysics of CAS
Priority to CN201911035511.6A priority Critical patent/CN110748383A/zh
Publication of CN110748383A publication Critical patent/CN110748383A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种用于涡轮叶片气膜孔的检测方法,包括:将树脂涂在涡轮叶片表面及气膜孔内表面;对树脂进行固化,使得固化后的树脂贴合涡轮叶片表面及气膜孔内表面,形成与涡轮叶片结构相同的树脂固化体;将树脂固化体分割成多块,并从涡轮叶片上取下;分别测量分割后的每块树脂固化体的几何形貌;将每块树脂固化体的几何形貌进行拼接,获得涡轮叶片及气膜孔的整体结构模型,根据整体结构模型得到气膜孔相对于涡轮叶片表面的结构、位置及角度。该方法保留了气膜孔结构与叶片的相对位置特征,能够便于全面、系统检测气膜孔的结构形式及精度,且光固化效率高,能够满足现场实际需要。

Description

用于涡轮叶片气膜孔的检测方法
技术领域
本发明涉及动力装备技术领域,尤其涉及一种用于涡轮叶片气膜孔的检测方法。
背景技术
气膜冷却作为一种行之有效的方法已被广泛应用于动力装备叶片的冷却降温过程中。气膜冷却效率受很多因素影响,其中气膜孔结构是一个重要因素,目前已证明组合气膜孔结构能在很大程度上提高气膜冷却效果,组合气膜孔结构对于降低涡轮叶片表面温度具有巨大应用前景。然而,由于涡轮叶片气膜孔孔径小、数量多、大深径比,且处于叶片这一空间大曲率结构上,位于内侧,并在叶片空曲面不规则分布,而组合孔由直圆柱段和散开段组合构成,相比传统的直圆孔将更加复杂,使得气膜孔的检测技术难度极大。
目前国内尚无通用且成熟的气膜孔检测设备及方法来较好地完成气膜孔、特别是组合气膜孔的检测工作。相关技术中,有采用背向照明与前向照明相结合的照明方式,通过三个直线轴和两个回转轴之间的联动来改变被测结构与测头的空间相对位置,完成结构的测量,该方法不适合开展组合孔气膜结构的精密检测工作;有开展几何精度评定方法的研究,但不涉及微小孔原始坐标值的采集方法研究;有对涡轮叶片进行气边气膜孔X射线检测的工艺装置及方法,能够满足相对简单分布的气膜孔的检测需求,但不适使用于对于叶片上广泛分布的大量不规则排列、尺寸差异较大的组合孔;有采用投影放大与图像比对的方法来完成气膜孔的检测,但该方法无法全面反映组合气膜孔的结构形式,且检测效率较低;有采用CT的方法耗,但时较长,无法满足工业现场实际需求。
随着动力装备对于气膜孔检测需要的不断提升,提出一种适用于气膜孔,特别是组合气膜孔的检测方法迫在眉睫。
发明内容
(一)要解决的技术问题
针对于现有的技术问题,本发明提出一种用于涡轮叶片气膜孔的检测方法,用于至少部分解决上述技术问题之一。
(二)技术方案
本发明一方面提供一种用于涡轮叶片气膜孔的检测方法,包括:将树脂涂在涡轮叶片表面及上述气膜孔内表面;对上述树脂进行固化,使得固化后的树脂贴合上述涡轮叶片表面及上述气膜孔内表面,形成与上述涡轮叶片结构相同的树脂固化体;将上述树脂固化体分割成多块,并从上述涡轮叶片上取下;分别测量分割后的每块树脂固化体的几何形貌;将上述每块树脂固化体的几何形貌进行拼接,获得上述涡轮叶片及上述气膜孔的整体结构模型,根据整体结构模型得到上述气膜孔相对于上述涡轮叶片表面的结构、位置及角度。
可选地,上述树脂为光敏树脂。
可选地,上述将上述树脂固化体分割成多块,包括:按照上述气膜孔的朝向一致性将上述树脂固化体分割成多块。
可选地,采用光固化的方式对上述树脂进行固化。
可选地,采用非接触测量方法测量分割后的每块树脂固化体的几何形貌。
可选地,上述方法还包括:对上述气膜孔相对于上述涡轮叶片表面的结构、位置及角度进行误差计算与评估。
可选地,上述将上述每块树脂固化体的几何形貌进行拼接,获得上述涡轮叶片及上述气膜孔的整体结构模型,包括:对上述整体结构模型与真实涡轮叶片的叶型之间、叶身之间的精度误差进行计算。
可选地,上述将树脂涂在上述涡轮叶片表面及上述气膜孔内表面之前还包括:对上述涡轮叶片表面及上述气膜孔进行清洗,去除表面毛刺及杂物。
可选地,上述方法还包括:对取下树脂固化体之后的涡轮叶片进行清洗,去除上述涡轮叶片表面及气膜孔内的树脂。
(三)有益效果
本发明提出的一种用于涡轮叶片气膜孔的检测方法,有益效果为:
1、将树脂固化于涡轮叶片表面及气膜孔内表面形成树脂固化块,以将嵌于涡轮叶片内侧的组合气膜孔结构外显与于叶片结构外,并保留了气膜孔结构与叶片的相对位置特征,能够便于全面、系统检测气膜孔的结构形式及精度。
2、采用光敏树脂完成树脂固化块的制造成形,能够最大限度将树脂结构和叶片结构贴合成形,避免由于温度而影响两者的贴合精度,且光固化效率高,能够满足现场实际需要。
附图说明
图1示意性示出了本发明实施例提供的用于涡轮叶片组合气膜孔的检测方法流程图;
图2示意性示出了本发明实施例提供的涡轮叶片的结构图。
图3示意性示出了本发明实施例提供的涡轮叶片剖面图。
图4示意性示出了本发明实施例提供的组合气膜孔剖面图。
图5示意性示出了本发明实施例提供的涡轮叶片经树脂填充固化后的结构示意图。
【附图标记】
1-涡轮叶片
2-组合气膜孔
2a-组合气膜孔直孔段
2b-组合气膜孔扩散段
3-树脂固化体
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明经研究发现,随着树脂材料的快速发展,树脂的固化效率、结构刚度高均有显著提高,利用树脂材料在光(如紫外光)环境下的快速固化且释热较少的特点,并利用先进光固化树脂结构刚度较强的特点,将叶片的外表叶片型面、气膜孔结构全面反映出来,可为结构尺寸的准确表征提供基础。在形成树脂固化块的基础上,采用对结构变形影响较小的非接触测量方法(可以采用非接触激光扫描、光学影像测量等方法)来完成结构的准确测量,可准确评估涡轮叶片组合气膜孔的结构精度。
图1示意性示出了本发明实施例提供的用于涡轮叶片组合气膜孔的检测方法流程图。如图1所示,该方法例如可以包括操作S101~操作S107。
在操作S101,对涡轮叶片表面及气膜孔进行清洗,去除表面毛刺及杂物。
刚刚加工后的涡轮叶片表面存在许多杂物,且气膜孔加工结束后的孔口附近容易存留毛刺,为了保证组合孔结构测量的准确性,需要将该类结构进行清理,使得树脂固化体能够完全反应气膜结构的具体特征。
图2示意性示出了本发明实施例提供的涡轮叶片的结构图,图3示意性示出了本发明实施例提供的涡轮叶片剖面图,图4示意性示出了本发明实施例提供的组合气膜孔剖面图。本发明实施例对气膜孔均匀排列的涡轮叶片进行检测,其结构如图2-图4所示,该组合气膜孔位于涡轮叶片的背部且均匀排列。在涡轮叶片1表面分布着组合气膜孔2,组合气膜孔2包含组合气膜孔直孔段2a、组合气膜孔扩散段2b,其中,组合气膜孔直孔段2a可以为直孔、锥孔,而组合气膜孔扩散段2b可以为簸箕形、猫耳朵等开放式通孔。
本实施例所述的检测方法使用对象不限于图2、图3及图4所示的涡轮叶片,实际测量的涡轮叶片的气膜孔排列可以是不均匀、不连续,且组合气膜孔的位置可以是叶片的前缘、后缘、压力面或吸力面位置。
在操作S102,将树脂涂在涡轮叶片表面及气膜孔内表面。
将树脂喷涂在涡轮叶片表面并填充气膜孔,喷涂时树脂需要涂覆于涡轮叶片表面,不需要树脂严格均匀分布,且在气膜孔内适当浸入并填充树脂,如图5所示,树脂铺覆与涡轮叶片1表面,部分树脂填充了组合气膜孔直孔段2a和组合气膜孔扩散段2b内部。其中,树脂例如可以为光敏树脂。光明电阻对光敏感,对温度不敏感,因此,可避免由于温度而影响树脂与涡轮叶片表面及气膜孔内表面之间的贴合精度。
在操作S103,对树脂进行固化,使得固化后的树脂贴合涡轮叶片表面及气膜孔内表面,形成与涡轮叶片结构相同的树脂固化体。
固化的方式例如可以采用光固化。固化时应避免涡轮叶片局部过热而导致涡轮叶片金属部分发生热胀冷缩,使得树脂固化体能够充分反映出组合气膜孔相对于叶片叶型、叶身的相对位置关系。如图5所示,通过光线照射完成固化,由于发热量较小,固化后形成的树脂固化体3结构反映了组合气膜孔直孔段2a、组合气膜孔扩散段2b自身的结构形式,并反映了组合气膜孔直孔段2a、组合气膜孔扩散段2b相对于叶片型面的分布位置,通过测量树脂固化体3靠近涡轮叶片1的几何形貌,就能间接测量出涡轮叶片1实际的叶片形貌和组合气膜孔直孔段2a和组合气膜孔扩散段2b的结构形式,最终实现精确测量和模型质量评估。
在操作S104,将树脂固化体分割成多块,并从涡轮叶片上取下。
切割时需要充分考虑气膜孔的设计形式,应按照气膜孔朝向一致性原则划分切割块体。例如,分割时可以按照气膜孔相对叶片表面的倾角来确定块体的分割方法,使得块体在拆分并取出时气膜孔位置不发生移动干涉,便于分割后的树脂固化体取出。其中,树脂固化体分割数量例如可以不小于2块。
在操作S105,分别测量分割后的每块树脂固化体的几何形貌。
采用精密外观结构测量平台对分割后的树脂固化体按块进行几何精确测量,所采用的几何精确测量方法为非接触测量方法以避免接触式测量可能对结构造成的变形影响,非接触是测量方式可以是激光扫描测量,也可以是光学图像测量等其他结构外观精密测量方式。
在操作S106,将每块树脂固化体的几何形貌进行拼接,获得涡轮叶片及气膜孔的整体结构模型,根据整体结构模型得到气膜孔相对于涡轮叶片表面的结构、位置及角度。
将获得的涡轮叶片模型测量块结构(几何形貌)在计算机中拼接评估,最终获得涡轮叶片及组合气膜孔结构整体结构。涡轮叶片模型块体测量结果在计算机中拼接后,可以对拼接模型内表面与原始叶片外表面叶身模型评估,即对整体结构模型与真实涡轮叶片的叶型之间、叶身之间的精度误差进行计算,并可以基于拼接模型获得组合气膜孔的相对于拼接模型叶片外表面的结构、位置及角度,完成气膜孔结构误差的计算评估。
在操作S107,对取下树脂固化体之后的涡轮叶片进行清洗,去除涡轮叶片表面及气膜孔内的树脂。
将取下树脂固化体的涡轮叶片浸入清洗液中,待树脂充分浸润并溶解后再将涡轮叶片取出干燥,其中清洗叶片表面及气膜孔的液体包括水、酒精或其他有机溶剂。
综上所述,本发明提出了一种用于涡轮叶片气膜孔的检测方法,通过将树脂固化于涡轮叶片表面及气膜孔内表面形成树脂固化块,以将嵌于涡轮叶片内侧的组合气膜孔结构外显与于叶片结构外,并保留了气膜孔结构与叶片的相对位置特征,能够便于全面、系统检测气膜孔的结构形式及精度。并且,采用光敏树脂完成树脂固化块的制造成形,能够最大限度将树脂结构和叶片结构贴合成形,避免由于温度而影响两者的贴合精度,且光固化效率高,能够满足现场实际需要。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种用于涡轮叶片气膜孔的检测方法,包括:
将树脂涂在所述涡轮叶片表面及所述气膜孔内表面;
对所述树脂进行固化,使得固化后的树脂贴合所述涡轮叶片表面及所述气膜孔内表面,形成与所述涡轮叶片结构相同的树脂固化体;
将所述树脂固化体分割成多块,并从所述涡轮叶片上取下;
分别测量分割后的每块树脂固化体的几何形貌;
将所述每块树脂固化体的几何形貌进行拼接,获得所述涡轮叶片及所述气膜孔的整体结构模型,根据整体结构模型得到所述气膜孔相对于所述涡轮叶片表面的结构、位置及角度。
2.根据权利要求1所述的方法,其中,所述树脂为光敏树脂。
3.根据权利要求1所述的方法,其中,所述将所述树脂固化体分割成多块,包括:
按照所述气膜孔的朝向一致性将所述树脂固化体分割成多块。
4.根据权利要求1所述的方法,其中,采用光固化的方式对所述树脂进行固化。
5.根据权利要求1所述的方法,其中,采用非接触测量方法测量分割后的每块树脂固化体的几何形貌。
6.根据权利要求1所述的方法,其中,所述方法还包括:
对所述气膜孔相对于所述涡轮叶片表面的结构、位置及角度进行误差计算与评估。
7.根据权利要求1所述的方法,其中,所述将所述每块树脂固化体的几何形貌进行拼接,获得所述涡轮叶片及所述气膜孔的整体结构模型,包括:
对所述整体结构模型与真实涡轮叶片的叶型之间、叶身之间的精度误差进行计算。
8.根据权利要求1所述的方法,所述将树脂涂在所述涡轮叶片表面及所述气膜孔内表面之前还包括:
对所述涡轮叶片表面及所述气膜孔进行清洗,去除表面毛刺及杂物。
9.根据权利要求1所述的方法,所述方法还包括:
对取下树脂固化体之后的涡轮叶片进行清洗,去除所述涡轮叶片表面及气膜孔内的树脂。
CN201911035511.6A 2019-10-28 2019-10-28 用于涡轮叶片气膜孔的检测方法 Pending CN110748383A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911035511.6A CN110748383A (zh) 2019-10-28 2019-10-28 用于涡轮叶片气膜孔的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911035511.6A CN110748383A (zh) 2019-10-28 2019-10-28 用于涡轮叶片气膜孔的检测方法

Publications (1)

Publication Number Publication Date
CN110748383A true CN110748383A (zh) 2020-02-04

Family

ID=69280683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911035511.6A Pending CN110748383A (zh) 2019-10-28 2019-10-28 用于涡轮叶片气膜孔的检测方法

Country Status (1)

Country Link
CN (1) CN110748383A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111665806A (zh) * 2020-06-08 2020-09-15 松山湖材料实验室 基于管理系统的叶片气膜孔的加工方法、装置和管理系统
CN113042836A (zh) * 2021-03-25 2021-06-29 北京石油化工学院 一种航空叶片气膜孔的穿透检测工艺技术
CN113624134A (zh) * 2021-08-11 2021-11-09 苏州电加工机床研究所有限公司 一种发动机涡轮叶片顶端气膜孔的定位方法
CN115131334A (zh) * 2022-07-21 2022-09-30 北京汉飞航空科技有限公司 一种基于机器学习的航发小孔种类识别和自动排序方法
CN115406355A (zh) * 2022-10-31 2022-11-29 中国航发沈阳黎明航空发动机有限责任公司 一种外环块多空间角度气膜孔数字化检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099074A1 (en) * 2004-11-06 2006-05-11 Rolls-Royce Plc Component having a film cooling arrangement
US20100257733A1 (en) * 2006-07-20 2010-10-14 Honeywell International, Inc. High pressure single crystal turbine blade tip repair with laser cladding
CN103292691A (zh) * 2012-02-29 2013-09-11 西门子公司 一种用于检测燃气轮机叶片的冷却孔的方法
CN108267379A (zh) * 2018-01-16 2018-07-10 三峡大学 一种基于填充法测表面磨损的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099074A1 (en) * 2004-11-06 2006-05-11 Rolls-Royce Plc Component having a film cooling arrangement
US20100257733A1 (en) * 2006-07-20 2010-10-14 Honeywell International, Inc. High pressure single crystal turbine blade tip repair with laser cladding
CN103292691A (zh) * 2012-02-29 2013-09-11 西门子公司 一种用于检测燃气轮机叶片的冷却孔的方法
CN104145085A (zh) * 2012-02-29 2014-11-12 西门子公司 用于检测燃气轮机叶片的冷却孔的方法
CN108267379A (zh) * 2018-01-16 2018-07-10 三峡大学 一种基于填充法测表面磨损的方法和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111665806A (zh) * 2020-06-08 2020-09-15 松山湖材料实验室 基于管理系统的叶片气膜孔的加工方法、装置和管理系统
CN113042836A (zh) * 2021-03-25 2021-06-29 北京石油化工学院 一种航空叶片气膜孔的穿透检测工艺技术
CN113624134A (zh) * 2021-08-11 2021-11-09 苏州电加工机床研究所有限公司 一种发动机涡轮叶片顶端气膜孔的定位方法
CN113624134B (zh) * 2021-08-11 2023-12-26 苏州电加工机床研究所有限公司 一种发动机涡轮叶片顶端气膜孔的定位方法
CN115131334A (zh) * 2022-07-21 2022-09-30 北京汉飞航空科技有限公司 一种基于机器学习的航发小孔种类识别和自动排序方法
CN115131334B (zh) * 2022-07-21 2023-07-25 北京汉飞航空科技有限公司 一种基于机器学习的航发小孔种类识别和自动排序方法
CN115406355A (zh) * 2022-10-31 2022-11-29 中国航发沈阳黎明航空发动机有限责任公司 一种外环块多空间角度气膜孔数字化检测方法

Similar Documents

Publication Publication Date Title
CN110748383A (zh) 用于涡轮叶片气膜孔的检测方法
JP7309318B2 (ja) 部品歪みを評価するためのシステムおよび方法
CN103488832B (zh) 一种复杂曲面零件破损区域的几何修复方法
Chang et al. Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process
JP7455814B2 (ja) 冷却孔の自動識別及びツールパスの生成
CN100538261C (zh) 基于探路法的未知自由曲面自适应测量方法与测头装置
CN112045186B (zh) 铸造等轴晶高温合金涡轮转子叶片叶尖修复方法及工装
CN108507754B (zh) 抗眩光的风洞试验模型弹性变形视频测量方法
EP2800874B1 (en) Method for checking cooling holes of a gas turbine blade
CN108121291A (zh) 一种铸件机加工方法
WO2018082346A1 (zh) 一种变形叶片的激光喷丸校形方法及装置
JP6822822B2 (ja) 構成部品をモニタリングするための方法
He et al. A robust and accurate automated registration method for turbine blade precision metrology
CN102995019B (zh) 一种钛合金化铣刻型工艺
CN105935769A (zh) 一种用于3d打印成形件的激光熔覆刻蚀制备方法
CN108344372B (zh) 制作和监测具有一体式应变指示器的部件的方法
CN110940299B (zh) 一种混凝土表面三维粗糙度的测量方法
CN108274187A (zh) 一种复杂曲面零件缺陷修复系统及修复方法
CN110103071A (zh) 一种变形复杂零件的数字化寻位加工方法
KR102543861B1 (ko) 일체형 스트레인 인디케이터를 갖는 부품을 제조하는 방법
CN111540001A (zh) 航空发动机涡轮叶片气膜孔轴线方向检测方法
EP3363995A1 (en) Methods of making and monitoring components with integral strain indicators
CN113721233B (zh) 一种多联体涡轮导向叶片热障涂层厚度三维光学测量方法
Wang et al. Characteristics of tip leakage flow of the turbine blade with cutback squealer and coolant injection
Yu et al. Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200204

RJ01 Rejection of invention patent application after publication