CN110739477B - 全氟磺酸/纳米氧化铝质子交换膜的制备方法 - Google Patents
全氟磺酸/纳米氧化铝质子交换膜的制备方法 Download PDFInfo
- Publication number
- CN110739477B CN110739477B CN201810807567.8A CN201810807567A CN110739477B CN 110739477 B CN110739477 B CN 110739477B CN 201810807567 A CN201810807567 A CN 201810807567A CN 110739477 B CN110739477 B CN 110739477B
- Authority
- CN
- China
- Prior art keywords
- nano
- alumina
- perfluorosulfonic acid
- proton exchange
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1051—Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0061—Electro-spinning characterised by the electro-spinning apparatus
- D01D5/0092—Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/16—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
Abstract
本发明公开了一种全氟磺酸/纳米氧化铝质子交换膜的制备方法。所述方法先将纳米氧化铝颗粒高度分散在乙醇和水的混合溶液中得到纳米氧化铝分散液,并将全氟磺酸树脂粉末溶解在乙醇和水的混合溶液中,并加入高分子量的聚氧化乙烯,然后将两种溶液混合均匀得到纺丝溶液,再通过静电纺丝技术,制备全氟磺酸/纳米氧化铝纳米纤维膜,最后将全氟磺酸/纳米氧化铝纳米纤维膜退火、稀硫酸处理质子化得到质子交换膜。本发明制备的复合膜比表面积大,具有较高的质子导电率,其质子导电率可达0.061s/cm,目前生产的质子交换膜提高约3~4倍。
Description
技术领域
本发明属于质子交换膜材料制备技术领域,涉及一种全氟磺酸/纳米氧化铝质子交换膜的制备方法。
背景技术
静电纺丝是一种制备有机和无机聚合物纳米纤维的有效手段,可以制备直径从微米级到纳米级的复合超细连续纤维。近十多年以来,利用静电纺丝技术制备导电聚合物纳米纤维受到持续关注,并成功应用于诸多领域,如多功能纺织品、传感器、有机太阳能电池、组织工程、导电基板表面功能化改性等。
质子交换膜是新型燃料电池中的核心组件,它所用的电解质是一种固体有机膜,在增湿的条件下,膜可以传导质子。质子交换膜有极高的化学稳定性,尤其是在强氧化还原的条件下。质子交换膜同时还充当着电极反应的介质。
目前使用的质子交换膜大部分多为浇铸膜,如杜邦公司生产的Nafion系列膜,nafion-115和nafion-117(Hou H,Sun G,Wu Z,et al.Zirconium phosphate/Nafion115composite membrane for high-concentration DMFC[J].InternationalJournal of Hydrogen Energy,2008,33(13):3402-3409.),其质子传导速率只有0.015s/cm。而质子交换膜作为燃料电池的核心部件,其性能对燃料电池产生重要影响,不仅要求其具备高的质子传导能力,同时也要保证其化学稳定性、尺寸稳定性。
发明内容
本发明目的在于提供一种具有高导电率的全氟磺酸/纳米氧化铝质子交换膜的制备方法,解决目前质子交换膜使用过程中面临的导电率低和化学稳定性差的问题。
实现本发明目的的技术方案如下:
全氟磺酸/纳米氧化铝质子交换膜的制备方法,具体步骤如下:
步骤1,以乙醇和水的混合溶液为溶剂,将全氟磺酸树脂溶于溶剂中,加入聚氧化乙烯,再加入纳米氧化铝的分散液,搅拌至混合均匀,除去气泡,得到静电纺丝溶液,其中,全氟磺酸树脂的浓度为0.1~0.12g/mL,聚氧化乙烯为全氟磺酸树脂质量的1%~3%,纳米氧化铝为全氟磺酸树脂质量的1%~5%;
步骤2,采用静电纺丝方法,设置电压8~10kV,接收距离5~8cm,溶液流速为0.1~0.4ml/h,得到全氟磺酸/纳米氧化铝纳米纤维膜;
步骤3,将纳米纤维膜在120~150℃下退火,再在浓度为0.1~0.5mol/L的稀硫酸处理质子化,水洗,干燥,得到全氟磺酸/纳米氧化铝质子交换膜。
优选地,步骤1中,所述的溶剂中,乙醇和水的体积比为3:1~4:1。
优选地,步骤1中,所述的纳米氧化铝的粒径为90±10nm。
优选地,步骤1中,所述的搅拌时间为2~3h,搅拌温度为50~60℃。
优选地,步骤1中,所述的全氟磺酸树脂的浓度为0.1g/mL,聚氧化乙烯为全氟磺酸树脂质量的2%,纳米氧化铝为全氟磺酸树脂质量的3%。
优选地,步骤2中,所述的针头的内径为0.47mm。
优选地,步骤3中,所述的干燥温度为70~80℃,干燥时间为12~24h。
与现有技术相比,本发明具有以下优势:
(1)本发明的工艺简单,原料易得;
(2)本发明制备的复合膜比表面积大,具有较高的质子导电率,其质子导电率可达0.061s/cm,目前生产的质子交换膜提高约3~4倍;
(3)所制得的复合膜吸水率高,化学稳定性好,效能利用率高。
附图说明
图1为本发明制得的纳米纤维复合膜扫描电镜图。
图2为本发明制得的纳米纤维膜的电化学阻抗图。
图3为本发明制得的纳米纤维质子交换膜的循环伏安图。
图4为本发明制得的纳米纤维复合膜的吸水率图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详述。
实施例1
将粒径为90±10nm的纳米氧化铝颗粒超声处理,高度分散在体积比为3:1的乙醇和水的混合溶液中。将0.3g全氟磺酸树脂(PFSA)研磨成粉末后溶解在3mL体积比为3:1的乙醇和水的混合溶液中再置于50℃恒温搅拌机上1000r/min高速搅拌2~3h,待其完全溶解,加入0.003g高分子量的聚氧化乙烯(PEO)。将两种溶液进行混合,继续恒温高速搅拌至溶液澄清透明。得到的混合溶液进行静电纺丝,设置电压10kV,接收距离8cm,溶液流速为0.4ml/h,得到全氟磺酸/纳米氧化铝纳米纤维膜。将全氟磺酸/纳米氧化铝纳米纤维膜在120℃下退火处理,然后置于0.1mol/L的稀硫酸中进行质子化处理,水洗,70℃烘干,得到全氟磺酸/纳米氧化铝质子交换膜。
实施例2
将粒径为90±10nm的纳米氧化铝颗粒超声处理,高度分散在体积比为4:1的乙醇和水的混合溶液中。将0.36g全氟磺酸树脂(PFSA)研磨成粉末后溶解在体积比为4:1的3mL乙醇和水的混合溶液中。再置于60℃恒温搅拌机上1000r/min高速搅拌2~3h,待其完全溶解,加入0.003g高分子量的聚氧化乙烯(PEO)。将两种溶液进行混合,继续恒温高速搅拌直至溶液澄清透明。得到的混合溶液进行静电纺丝,设置电压8kV,接收距离5cm,溶液流速为0.1ml/h,得到全氟磺酸/纳米氧化铝纳米纤维膜。将全氟磺酸/纳米氧化铝纳米纤维膜在150℃下退火处理,然后置于0.5mol/L的稀硫酸中进行质子化处理,水洗,80℃烘干,得到全氟磺酸/纳米氧化铝质子交换膜。
实施例3
将粒径为90±10nm的纳米氧化铝颗粒超声处理,高度分散在体积比为3:1的乙醇和水的混合溶液中。将0.36g全氟磺酸树脂(PFSA)研磨成粉末后溶解在3mL体积比为3:1的乙醇和水的混合溶液中。再置于50℃恒温搅拌机上1000r/min高速搅拌2~3h,待其完全溶解,加入0.009g高分子量的聚氧化乙烯(PEO)。将两种溶液进行混合,继续恒温高速搅拌直至溶液澄清透明。得到的混合溶液进行静电纺丝,设置电压10kV,接收距离8cm,溶液流速为0.1ml/h,得到全氟磺酸/纳米氧化铝纳米纤维膜。将全氟磺酸/纳米氧化铝纳米纤维膜在150℃下退火处理,然后置于0.5mol/L的稀硫酸中进行质子化处理,水洗,80℃烘干,得到全氟磺酸/纳米氧化铝质子交换膜。
图1为各实施例制得的全氟磺酸/纳米氧化铝质子交换膜的扫描电镜图代表图。从图中可以看出,通过静电纺丝所得到的纳米纤维状态良好,纤维光滑无串珠。
图2为实施例制得的全氟磺酸/纳米氧化铝质子交换膜的电化学阻抗图。从图中可以看出,其电化学阻抗值为2.2KΩ,通过质子导电率公式(σ=L/twR,L为电极的距离、t为膜的厚度、w为膜的宽度、R为膜的阻抗)换算可得到纳米纤维膜的质子导电率为:0.061s/cm。
图3为实施例制得的全氟磺酸/纳米氧化铝质子交换膜的循环伏安图。从图中可以看出,整个图形呈现闭合曲线,曲线中间无尖端突出,表明这种纳米纤维膜的电化学稳定性良好。
图4为实施例制得的全氟磺酸/纳米氧化铝质子交换膜的吸水率图。从图中可以看出,纳米纤维膜的吸水率极高,且随着温度的升高,其吸水率也在逐步升高,最高可达70%。
对比例1
本对比例与实施例1基本相同,唯一不同的是全氟磺酸树脂的浓度为0.08g/mL。在优选条件下静电纺丝,发现无法得到纳米纤维。
对比例2
本对比例与实施例1基本相同,唯一不同的是全氟磺酸树脂的浓度为0.13g/mL。在优选条件下静电纺丝,发现溶液的粘度过大,所得到纳米纤维含有较多的串珠,严重影响电学性能。
对比例3
本对比例与实施例1基本相同,唯一不同的是乙醇和水的体积比为1:1,在优选条件下静电纺丝,发现无法得到纳米纤维。
Claims (5)
1.全氟磺酸/纳米氧化铝质子交换膜的制备方法,其特征在于,具体步骤如下:
步骤1,以乙醇和水的混合溶液为溶剂,将全氟磺酸树脂溶于溶剂中,加入聚氧化乙烯,再加入纳米氧化铝的分散液,搅拌至混合均匀,除去气泡,得到静电纺丝溶液,其中,全氟磺酸树脂的浓度为0.1~0.12g/mL,聚氧化乙烯为全氟磺酸树脂质量的1%~3%,纳米氧化铝为全氟磺酸树脂质量的1%~5%,所述的溶剂中,乙醇和水的体积比为3:1~4:1;
步骤2,采用静电纺丝方法,设置电压8~10kV,接收距离5~8cm,溶液流速为0.1~0.4ml/h,得到全氟磺酸/纳米氧化铝纳米纤维膜;
步骤3,将纳米纤维膜在120~150℃下退火,再在浓度为0.1~0.5mol/L的稀硫酸处理质子化,水洗,干燥,得到全氟磺酸/纳米氧化铝质子交换膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的纳米氧化铝的粒径为90±10nm。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的搅拌时间为2~3h,搅拌温度为50~60℃。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的全氟磺酸树脂的浓度为0.1g/mL,聚氧化乙烯为全氟磺酸树脂质量的2%,纳米氧化铝为全氟磺酸树脂质量的3%。
5.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的干燥温度为70~80℃,干燥时间为12~24h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810807567.8A CN110739477B (zh) | 2018-07-21 | 2018-07-21 | 全氟磺酸/纳米氧化铝质子交换膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810807567.8A CN110739477B (zh) | 2018-07-21 | 2018-07-21 | 全氟磺酸/纳米氧化铝质子交换膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110739477A CN110739477A (zh) | 2020-01-31 |
CN110739477B true CN110739477B (zh) | 2022-04-01 |
Family
ID=69235454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810807567.8A Active CN110739477B (zh) | 2018-07-21 | 2018-07-21 | 全氟磺酸/纳米氧化铝质子交换膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110739477B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777659A (zh) * | 2009-12-07 | 2010-07-14 | 山东东岳神舟新材料有限公司 | 一种燃料电池用全氟磺酸复合质子交换膜 |
CN102153827A (zh) * | 2008-12-08 | 2011-08-17 | 于淑芳 | 一种纤维增强无机物掺杂全氟质子交换膜 |
CN103469352A (zh) * | 2012-06-06 | 2013-12-25 | 华东理工大学 | 一种含全氟磺酸的聚合物纳米纤维膜制备方法 |
CN105355949A (zh) * | 2015-10-16 | 2016-02-24 | 同济大学 | 一种纳米纤维复合质子交换膜的制备方法 |
-
2018
- 2018-07-21 CN CN201810807567.8A patent/CN110739477B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102153827A (zh) * | 2008-12-08 | 2011-08-17 | 于淑芳 | 一种纤维增强无机物掺杂全氟质子交换膜 |
CN101777659A (zh) * | 2009-12-07 | 2010-07-14 | 山东东岳神舟新材料有限公司 | 一种燃料电池用全氟磺酸复合质子交换膜 |
CN103469352A (zh) * | 2012-06-06 | 2013-12-25 | 华东理工大学 | 一种含全氟磺酸的聚合物纳米纤维膜制备方法 |
CN105355949A (zh) * | 2015-10-16 | 2016-02-24 | 同济大学 | 一种纳米纤维复合质子交换膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110739477A (zh) | 2020-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101781458B (zh) | 一种石墨烯-有机酸掺杂聚苯胺复合材料及其制备方法 | |
Wang et al. | Anatase titania coated CNTs and sodium lignin sulfonate doped chitosan proton exchange membrane for DMFC application | |
CN108315834A (zh) | 一种阵列式磁性还原氧化石墨烯-炭纳米纤维的制备方法 | |
CN109786740B (zh) | 锂电池正极浆料的制备方法 | |
CN105870426A (zh) | 一种用于储能器件电极的v2o5纳米线纸及制备方法 | |
CN103872282A (zh) | 一种聚合物锂离子电池隔膜及其制备方法 | |
CN106298254A (zh) | 聚苯胺/多孔金属薄膜材料、复合正极极片、制备方法及应用 | |
WO2021128770A1 (zh) | 一种精氨酸改性的质子交换膜及其制备方法 | |
CN110739477B (zh) | 全氟磺酸/纳米氧化铝质子交换膜的制备方法 | |
CN111395008B (zh) | 全氟磺酸树脂/聚偏氟乙烯复合电纺丝膜及其制备方法 | |
CN108660547B (zh) | 一种木质素基纳米碳纤维及其制备方法、碳纤维电极 | |
Zhang et al. | Preparation and characterization of nanofiber catalyst layer for proton exchange membrane fuel cells | |
JP2013229325A (ja) | 高分子電解質膜、膜電極接合体および燃料電池 | |
CN110491685B (zh) | 一种石墨烯超级电容器浆料的制备方法及应用 | |
CN108878937A (zh) | 一种Nafion/FCB复合隔膜的制备方法 | |
CN115207423A (zh) | 一种木质素磺酸钠改性凹凸棒土壳聚糖质子交换膜的制备方法 | |
CN111048813B (zh) | 一种铁铬液流电池用有机-无机复合膜及其制备方法 | |
CN109851828B (zh) | 一种电纺一维中空多孔无机纳米纤维掺杂改性的非氟质子交换膜及其制备方法 | |
CN113506950A (zh) | 一种致孔剂调控微纳米多孔结构芳纶纳米纤维基电池隔膜的制备方法 | |
CN101383421B (zh) | 一种用于高温燃料电池的复合质子交换膜及其制备方法 | |
CN103159960B (zh) | 一种全氟磺酸树脂溶液溶剂的转换方法 | |
CN110957514B (zh) | 强疏水性离子交换膜及其制备方法和应用 | |
CN111370741B (zh) | 一种全钒氧化还原液流电池用超薄膜及其制备方法 | |
CN117976853B (zh) | 一种锂离子电池负极材料及其制备方法与应用 | |
CN115312972B (zh) | 一种适用于有机锂液流电池的液晶改性Nafion隔膜及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |