CN110735121B - 一种基于磁控溅射的非常规折射率混合薄膜制备方法 - Google Patents

一种基于磁控溅射的非常规折射率混合薄膜制备方法 Download PDF

Info

Publication number
CN110735121B
CN110735121B CN201911147803.9A CN201911147803A CN110735121B CN 110735121 B CN110735121 B CN 110735121B CN 201911147803 A CN201911147803 A CN 201911147803A CN 110735121 B CN110735121 B CN 110735121B
Authority
CN
China
Prior art keywords
target
sputtering
film
refractive index
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911147803.9A
Other languages
English (en)
Other versions
CN110735121A (zh
Inventor
陆丹枫
唐乾隆
査家明
李斯成
汶韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU NORTH HUGUANG OPTICS ELECTRONICS CO Ltd
Original Assignee
JIANGSU NORTH HUGUANG OPTICS ELECTRONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU NORTH HUGUANG OPTICS ELECTRONICS CO Ltd filed Critical JIANGSU NORTH HUGUANG OPTICS ELECTRONICS CO Ltd
Priority to CN201911147803.9A priority Critical patent/CN110735121B/zh
Publication of CN110735121A publication Critical patent/CN110735121A/zh
Application granted granted Critical
Publication of CN110735121B publication Critical patent/CN110735121B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)

Abstract

本发明提供一种基于磁控溅射的非常规折射率混合薄膜制备方法,属于光学薄膜技术领域。本发明中非常规折射率混合材料使用脉冲直流磁控溅射沉积,具体为使用阴极共同溅射钽、硅靶材,在同一腔室中利用射频离子源离化氧气,使其共同在基底表面反应成膜。因磁控溅射技术制备的薄膜较热蒸发而言具有更加致密的结构,因此其耐久性与稳定性优于热蒸发沉积的膜层。

Description

一种基于磁控溅射的非常规折射率混合薄膜制备方法
技术领域
本发明涉及光学薄膜技术领域,具体涉及一种基于磁控溅射的非常规折射率混合薄膜制备方法。
背景技术
目前光学薄膜通常是按设计不同折射率的膜料、不同厚度和排列组合,以实现绝大多数符合具体技术要求的光学薄膜。由于可用的镀膜材料种类不多,因此可选择的折射率十分有限且为一常数,在一定程度上限制了光学薄膜的设计,在某些情况下不能得到所需的光谱性能。常见的局限性有:减反射膜中透射带的宽度、负滤光片中反射带的窄度,以及恶劣条件下的膜层耐久性等。
非常规折射率膜层,可以更好地匹配其他折射率膜层,或实现原先难以实现的光学性能,或简化原有的膜系设计,提高镀制的工艺性。
因此变折射率膜层,特别是高精度变折射率膜层工艺研究,对于突破高性能光学薄膜研制瓶颈,具有十分重要的意义。
关于变折射率膜层,目前常用的方法有:
(1)电子束共蒸发的方法:以瑞士BALZERS公司生产的镀膜设备为代表的利用电子束共蒸发的方法将高低折射率材料按不同比例混合,制备出非常规折射率材料。电子束共蒸发的方法由于混合膜料的熔点差异,蒸发速率难以控制,很难获得理想的变折射率薄膜。
(2)掠入射电子束蒸发方法:利用掠入射电子束蒸发方法制备出的多孔SiO2/TiO2渐变折射率薄膜(利用孔洞的多少可以调节薄膜的折射率)。掠入射电子束蒸发方法制备的材料由于多孔结构的先天不足,同时带来了稳定性、耐久性等问题,限制了其应用。
发明内容
本发明的目的在于提供一种基于磁控溅射的非常规折射率混合薄膜制备方法,以解决背景技术中出现的问题。
为解决上述技术问题,本发明提供一种基于磁控溅射的非常规折射率混合薄膜制备方法,包括如下步骤:
步骤一、预溅射靶材至无飞溅点子;
步骤二、溅射混合膜层:钽靶阴极功率2.5-4kw、氩气55-65sccm,硅靶阴极功率1-3kw、氩气65-75sccm,离子源功率2.5-4kw、氧气60-70sccm,沉积时间≤2min,关闭挡板,重复多次;
步骤三、镀制结束,冷却取件。
进一步的,在预溅射靶材之前,所述基于磁控溅射的非常规折射率混合薄膜制备方法还包括以下准备步骤:
清洁阴极靶材,依次装好所需靶材;
夹具处理:为防止零件边缘与夹具出现夹具印等疵病出现,夹具使用前需进行喷砂处理;
将洗净的待镀零件放入处理好的镀膜夹具,置于镀膜机的零件盘内,压紧真空室门,开始抽真空,至真空度P≤3.0×10-6torr。
进一步的,所述依次装好所需靶材具体为:依次装好钽靶和硅靶。
进一步的,抽真空至背景真空度P≤3.0×10-6torr。
进一步的,所述镀膜机为带RF源的磁控溅射镀膜机。
进一步的,步骤二中所述重复多次,重复次数为≥10次。
进一步的,所述步骤一中钽靶预溅射时间50-70s,硅靶预溅射时间100-160s。
进一步的,本发明还提供了一种混合薄膜,所述混合薄膜为使用以上方法制的。
在本发明中提供了一种基于磁控溅射的非常规折射率混合薄膜制备方法,用于设计和制备非常规折射率混合材料,作为常规折射率膜料的补充。因磁控溅射技术制备的薄膜较热蒸发而言具有更加致密的结构,因此其耐久性与稳定性优于热蒸发沉积的膜层。
本发明主要是用磁控溅射镀制方法,通过调节工转转动速率,阴极溅射功率,氩气、氧气等气体流量及比例,离子束流影响,控制薄膜的氧化程度,形成一种可控的高精度多成份混合薄膜的制备方法。另外,本发明针对单次长时间混合膜材料沉积无吸收,多层膜成膜结果存在吸收的问题,通过多频次、短时间沉积成单层膜以获取多层膜设计中混合薄膜沉积参数,形成了一种可控的、无吸收的薄膜制备方法。
附图说明
图1是本发明实施例的非常规折射率混合薄膜在可见、近红外区的实测光谱示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合附图及具体实施例,对本发明作进一步地详细说明。
本发明提供一种基于磁控溅射的非常规折射率混合薄膜制备方法,包括如下步骤:
步骤一:清洁阴极靶材,依次装好所需靶材。其中所需靶材按顺序为:2号靶材为钽靶、3号靶材为硅靶。
步骤二:夹具处理:为防止零件边缘与夹具出现夹具印等疵病出现,使用夹具需进行喷砂处理。
步骤三:将洗净的待镀零件放入处理好的镀膜夹具,置于镀膜机的零件盘内,压紧真空室门,开始抽真空。其中,本发明使用的镀膜机为带RF源的磁控溅射镀膜机。
步骤四:背景真空度P≤3.0×10-6torr时,启动镀膜程序。本步骤需要使用的设备为光学薄膜设计软件及计算机。
步骤五:预溅射靶材:预溅射靶材:钽靶预溅射时间50-70s,硅靶预溅射时间100-160s,直至无飞溅点子;
优选的,钽靶预溅射时间除长时间未使用情况,缩短预溅射时间,钽靶预溅射时间1分钟左右。硅靶由于其物理特性,预溅射时间适当延长,硅靶预溅射时间2分钟左右,直至无飞溅点子。
步骤六:溅射混合膜层:钽靶阴极功率3.2kw、氩气55-65sccm,硅靶阴极功率1.9kw、氩气65-75sccm,离子源功率3kw、氧气60-70sccm,沉积时间120s,关闭挡板,重复10次;
优选的,溅射混合膜层:钽靶阴极功率3.2kw、氩气60sccm,硅靶阴极功率1.9kw、氩气70sccm,离子源功率3kw、氧气65sccm,沉积时间120s,关闭挡板,重复10次。
步骤七:镀制结束,10分钟后取件。
在本发明中,步骤一至步骤七中,需要的条件为:环境要求:洁净;温度20~25℃;相对湿度30~50%。本发明制备的混合薄膜可采用紫外、可见、近红外分光光度计测试光谱。
计算机优化设计的膜系,常常折射率和厚度均为任意的。改变单种材料的氧化度、沉积速率虽然能在一定范围内调节折射率,但其调节范围窄,非常难以控制和重复,因此混合沉积是一个较好的解决方案。
本发明为气相混合方法。使用两个及以上的阴极溅射不同材料,通过同腔室内的离子源氧化氧气,在基底表面反应成膜,这就是本发明非常规折射率混合薄膜的制备原理。
混合膜的折射率可用洛伦茨-洛伦兹(Lorentz-Lorenz)色散理论给出。如果混合膜的体积等于各种成分的体积之和,则N种成分混合的折射率为:
Figure BDA0002282695110000031
其中,材料的极化率为α,ε0为材料真空介电常数,ε为材料相对于真空于真空的介电常数。
假设A和B材料混合,所占比例分别为fa和fb,两种材料介电常数分别为εa及εb,利用上述洛伦茨-洛伦兹(Lorentz-Lorenz)方程,可将此混合材料用一等效介电常数表示,其等效介电常数ε可用下式表示:
Figure BDA0002282695110000041
最终其折射率曲线如下图1所示,图中中间曲线代表本发明混合材料的折射率,另外两条曲线分别代表Ta2O5和SiO2两种氧化物的折射率,对比发现本发明通过调控两种混合材料的沉积混合比,并通过近似同时氧化以获取对应折射率的混合材料,混合材料的折射率介于多种单一氧化物组分的折射率之间。
本发明提出了一种非常规折射率混合材料沉积的方式及方法。本发明主要是用磁控溅射镀制方法,通过调节工转转动速率,阴极溅射功率,氩气、氧气等气体流量及比例,离子束流影响,控制薄膜的氧化程度,形成一种可控的高精度多成份混合薄膜的制备方法。
进一步来说,本发明中非常规折射率混合材料使用脉冲直流磁控溅射沉积,具体为使用阴极共同溅射钽、硅靶材,在同一腔室中利用射频离子源离化氧气,使其共同在基底表面反应成膜。其中的关键是可以通过调节阴极参数(阴极功率及氩气流量)精确地调控两种混合材料的沉积混合比,并通过近似同时氧化以获取对应折射率的混合材料。同时,因磁控溅射技术制备的薄膜较热蒸发而言具有更加致密的结构,因此其耐久性与稳定性优于热蒸发沉积的膜层。
同时,本发明提出了一种获取可控的、无吸收的非常规折射率混合材料的方式及方法。本发明中非常规折射率混合材料由于在膜系设计中其物理厚度较薄,而由于本设备沉积氧化硅时存在迟滞效应(氧化钽无此现象),需要通过调节氧气流量以达到稳定阴极电压,从而稳定沉积速率(以下简称氧压控制方法),若不使用氧压控制方法,氧化硅沉积速率容易出现逐渐下降的情况出现。相似的,混合材料不使用氧压控制易出现速率不稳定的现象,因此提出混合材料的沉积也使用氧压控制以达到可控、稳定的沉积混合材料的目的。
因常规制备单种材料时沉积时间久,前期电压趋于稳定的过程时间在整个沉积过程中可忽略,而在膜系设计中,混合材料沉积时间短,趋于稳定的时间无法忽略,最终沉积的膜层会存在吸收现象。因此,本发明提出一种高频次、短时间单层混合材料沉积方式以模拟实际沉积时的状态,通过该方式沉积得到的沉积参数更接近于实际沉积的参数。本发明针对单次长时间混合膜材料沉积无吸收,多层膜成膜结果存在吸收的问题,通过多频次、短时间叠加成单层膜以获取多层膜设计中混合薄膜沉积参数,形成了一种可控的、无吸收的薄膜制备方法。
以上所述仅为本发明的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (2)

1.一种基于磁控溅射的非常规折射率混合薄膜制备方法,其特征在于,包括如下步骤:
步骤一:清洁阴极靶材,依次装好所需靶材;其中所需靶材按顺序为:2号靶材为钽靶、3号靶材为硅靶;
步骤二:夹具处理:使用夹具需进行喷砂处理;
步骤三:将洗净的待镀零件放入处理好的镀膜夹具,置于镀膜机的零件盘内,压紧真空室门,开始抽真空;其中,使用的镀膜机为带RF源的磁控溅射镀膜机;
步骤四:背景真空度P≤3.0×10-6 torr时,启动镀膜程序;本步骤使用的设备为光学薄膜设计软件及计算机;
步骤五:预溅射靶材:预溅射靶材:钽靶预溅射时间50-70s,硅靶预溅射时间100-160s,直至无飞溅点子;
其中,钽靶预溅射时间1分钟;
硅靶预溅射时间2分钟,直至无飞溅点子;
步骤六:溅射混合膜层:钽靶阴极功率3.2kw、氩气55-65sccm,硅靶阴极功率1.9kw、氩气65-75sccm,离子源功率3kw、氧气60-70sccm,沉积时间120s,关闭挡板,重复10次;
溅射混合膜层:钽靶阴极功率3.2kw、氩气60sccm,硅靶阴极功率1.9kw、氩气70sccm,离子源功率3kw、氧气65sccm,沉积时间120s,关闭挡板,重复10次;
步骤七:镀制结束,10分钟后取件;
其中,步骤一至步骤七中,
条件如下:
环境要求:洁净;
温度20~25℃;
相对湿度30~50%。
2.如权利要求1所述方法制备的混合薄膜。
CN201911147803.9A 2019-11-21 2019-11-21 一种基于磁控溅射的非常规折射率混合薄膜制备方法 Active CN110735121B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911147803.9A CN110735121B (zh) 2019-11-21 2019-11-21 一种基于磁控溅射的非常规折射率混合薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911147803.9A CN110735121B (zh) 2019-11-21 2019-11-21 一种基于磁控溅射的非常规折射率混合薄膜制备方法

Publications (2)

Publication Number Publication Date
CN110735121A CN110735121A (zh) 2020-01-31
CN110735121B true CN110735121B (zh) 2022-03-29

Family

ID=69273575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911147803.9A Active CN110735121B (zh) 2019-11-21 2019-11-21 一种基于磁控溅射的非常规折射率混合薄膜制备方法

Country Status (1)

Country Link
CN (1) CN110735121B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433607B (zh) * 2021-05-28 2023-06-27 浙江晶驰光电科技有限公司 一种双带通滤光片及其制作方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100569A (zh) * 1985-04-01 1986-07-02 南京工学院 变折射率薄膜的单源真空沉积法
CN1226970A (zh) * 1997-05-16 1999-08-25 保谷株式会社 具有抗反射膜的塑料光学器件以及用来使抗反射膜的厚度均一的机构
CN1368657A (zh) * 2001-02-07 2002-09-11 三星Sdi株式会社 改善了光学性能和电性能的功能薄膜
CN1459036A (zh) * 2001-03-19 2003-11-26 日本板硝子株式会社 具有高折射率的介电膜及其制备方法
CN101114697A (zh) * 2006-07-27 2008-01-30 上海宏力半导体制造有限公司 有机发光组件及其制造方法
CN101265568A (zh) * 2007-03-13 2008-09-17 Jds尤尼弗思公司 用于沉积由混合物组成并具有预定折射率的层的方法和系统
CN104395867A (zh) * 2012-07-03 2015-03-04 富士胶片株式会社 透明层叠体、静电电容型输入装置及图像显示装置
CN105116676A (zh) * 2015-09-15 2015-12-02 杭州科汀光学技术有限公司 一种混合激光光源及投影机
CN105734499A (zh) * 2016-04-21 2016-07-06 三明福特科光电有限公司 一种耐腐蚀增透防水膜的制备方法
CN107132604A (zh) * 2017-06-26 2017-09-05 中国工程物理研究院激光聚变研究中心 渐变折射率薄膜制备参数获取方法、制备方法及滤光片
CN109837517A (zh) * 2019-03-26 2019-06-04 江苏北方湖光光电有限公司 一种基于磁控溅射的外反射银膜制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100569A (zh) * 1985-04-01 1986-07-02 南京工学院 变折射率薄膜的单源真空沉积法
CN1226970A (zh) * 1997-05-16 1999-08-25 保谷株式会社 具有抗反射膜的塑料光学器件以及用来使抗反射膜的厚度均一的机构
CN1368657A (zh) * 2001-02-07 2002-09-11 三星Sdi株式会社 改善了光学性能和电性能的功能薄膜
CN1459036A (zh) * 2001-03-19 2003-11-26 日本板硝子株式会社 具有高折射率的介电膜及其制备方法
CN101114697A (zh) * 2006-07-27 2008-01-30 上海宏力半导体制造有限公司 有机发光组件及其制造方法
CN101265568A (zh) * 2007-03-13 2008-09-17 Jds尤尼弗思公司 用于沉积由混合物组成并具有预定折射率的层的方法和系统
CN104395867A (zh) * 2012-07-03 2015-03-04 富士胶片株式会社 透明层叠体、静电电容型输入装置及图像显示装置
CN107092384A (zh) * 2012-07-03 2017-08-25 富士胶片株式会社 透明层叠体、静电电容型输入装置及图像显示装置
CN105116676A (zh) * 2015-09-15 2015-12-02 杭州科汀光学技术有限公司 一种混合激光光源及投影机
CN105734499A (zh) * 2016-04-21 2016-07-06 三明福特科光电有限公司 一种耐腐蚀增透防水膜的制备方法
CN107132604A (zh) * 2017-06-26 2017-09-05 中国工程物理研究院激光聚变研究中心 渐变折射率薄膜制备参数获取方法、制备方法及滤光片
CN109837517A (zh) * 2019-03-26 2019-06-04 江苏北方湖光光电有限公司 一种基于磁控溅射的外反射银膜制备方法

Also Published As

Publication number Publication date
CN110735121A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
TWI703231B (zh) 高折射率氫化矽薄膜的製備方法、高折射率氫化矽薄膜、濾光疊層和濾光片
TWI647490B (zh) 具有傳輸改良之近紅外線光學干涉濾波器
Waldorf et al. Optical coatings deposited by reactive ion plating
EP0945523B1 (en) Method for forming a thin film and apparatus for carrying out the method
TW201643478A (zh) 具有傳輸改良之近紅外線光干擾濾波器
DK2735018T3 (en) PROCEDURE AND APPARATUS FOR PREPARING LOW PARTICLES
CN110735121B (zh) 一种基于磁控溅射的非常规折射率混合薄膜制备方法
JPH0770749A (ja) 薄膜形成方法および装置
CN111235527B (zh) 制作光学薄膜的方法、膜系结构、镀膜方法、激光反射镜
JP2006336084A (ja) スパッタ成膜方法
JP3391944B2 (ja) 酸化物薄膜の成膜方法
JP2007154242A (ja) 酸化物の混合膜の製造方法
CN112813391B (zh) 一种超宽波段红外长波通截止滤光膜制备方法
CN111286700B (zh) 基于混合物单层膜的光学镀膜元件面形补偿方法
JP2004176081A (ja) 原子層堆積法による光学多層膜の製造方法
CN113667930B (zh) AlCrSiBNiN纳米复合涂层及其制备方法和应用
Tang et al. Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method
EP1680527B1 (en) Apparatus and process for high rate deposition of rutile titanium dioxide
CN211375107U (zh) 一种低雾度的叠层滤光片薄膜
JPH09263937A (ja) 薄膜形成方法
CN115233159B (zh) 一种低粗糙度和介电常数可控的银膜及其制备方法
Huang et al. Refractive index variation of amorphous Ta 2 O 5 film fabricated by ion beam sputtering with RF bias power
CN113881926B (zh) 一种提升光学薄膜沉积精度的方法
Wei et al. Preparation of 100GHz DWDM filter by high power medium frequency pulse magnetron sputtering
KR100264217B1 (ko) 저반사 매트릭스 블랭크 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant