CN110729888B - 一种高电压转换比的混合电源变换器 - Google Patents
一种高电压转换比的混合电源变换器 Download PDFInfo
- Publication number
- CN110729888B CN110729888B CN201911035823.7A CN201911035823A CN110729888B CN 110729888 B CN110729888 B CN 110729888B CN 201911035823 A CN201911035823 A CN 201911035823A CN 110729888 B CN110729888 B CN 110729888B
- Authority
- CN
- China
- Prior art keywords
- converter
- mos
- phase
- buck
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 20
- 239000003990 capacitor Substances 0.000 claims abstract description 41
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/06—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明公开了一种高电压转换比的混合电源变换器,主要解决现有的1/N开关电容‑两相buck混合降压变换器无法实现两个电感均分负载电流的问题。该混合架构电源变换器将开关电容变换器和两相交错并联buck变换器结合在一起,能够有效地降低功率管的电压等级,提高buck变换器的占空比。同时,开关电容变换器采用两相结构,这样整个变换器的工作模式完全对称,可以实现两个电感均分负载电流。本发明提出的新型开关电容‑两相buck混合降压变换器架构可以拓展成1/N开关电容‑两相buck混合降压变换器,轻松应对例如48V转1V等高转换比电压变换要求。因此,具有很高的使用价值和推广价值。
Description
技术领域
本发明涉及一种,具体地说,是涉及一种高电压转换比的混合电源变换器。
背景技术
数据中心由大量的高性能CPU来完成庞大的数据处理,这类CPU的供电电压非常低(0.6V-1.8V),需要通过降压变换器将数据中心的高压母线电压转换成1V/1.2V/1.8V等各种电压等级给不同的芯片供电。传统的数据中心采用12V直流母线,但是随着近年来大数据/云计算/5G等技术的兴起,CPU消耗的负载电流急剧增大,造成12V直流母线上的电流变大,路径损耗也急剧增大。为了应对这个挑战,目前有些数据中心(例如Google)放弃了12V直流母线架构,转而采用48V直流母线。采用48V直流母线可以有效地降低母线上的电流,从而降低路径上的损耗,但是却对后级降压变换器提出了更高的要求,降压变换器需要完成48V转1V的电压变换,这对于常见的两开关buck降压变换器来说,几乎是难以实现的。
图1是现有的一种混合架构降压变换器,包括5个功率管(Q1、Q2、Q3、SR1、SR2);两个飞电容(CFLY1、CFLY2);两个电感(L1/L2);输入电源VIN;输出电容以及输出负载。该变换器将1/3降压的开关电容变换器和两相交错并联的buck降压变换器结合在一起,兼顾二者的优点。其中,1/3开关电容变换器可以有效地降低各个功率管的电压应力(从VIN降低到1/3VIN),以此来增加buck电路的占空比;交错并联buck降压变换器可以降低功率管和电感的电流应力。在电路稳态工作情况下,CFLY1上的电压VCFLY1=2*VIN/3,CFLY2上的电压VCFLY2=VIN/3。
如图2所示,其工作过程和工作原理如下:
在Phase1阶段,Q1、Q3、SR2导通,Q2、SR1关断。VIN通过CFLY1给电感L1充电,电容CFLY1充电。与此同时,CFLY2给电感L1充电,CFLY2放电。电感L2通过SR2续流放电。
在Phase2、Phase4阶段,SR1、SR2导通,Q1、Q2、Q3关断。电感L1通过SR1续流放电,电感L2通过SR2续流放电。
在Phase3阶段,Q2、SR1导通,Q1、Q3、SR2关断。电感L1通过SR1续流放电。电容CFLY1和CFLY2串联给电感L2充电,电容CFLY1放电,电容CFLY2充电。
现有方案的缺点:
假设在一个完整的工作周期T内,Phase1和Phase3工作的时间为D*T,那么Phase2和Phase4的工作时间为(1/2-D)*T。在一个工作周期内,电容的充放电电荷需保持平衡,以CFLY2为例:在phase1阶段,CFLY1和CFLY2共同承担L1电感电流,假设CFLY1=CFLY2,则CFLY2放电电流为1/2*iL1;在phase2阶段,CFLY2上流过全部的电感L2的电流,故CFLY2的充电电流为iL2。根据电荷平衡的要求,1/2*iL1*D*T=iL2*D*T,同时iL1+iL2=Io,所以得到iL1=(2/3)*Io,iL2=(1/3)*Io。
可见,现有的1/3开关电容-两相buck混合降压变换器无法实现两个电感均分负载电流。
发明内容
本发明的目的在于提供一种高电压转换比的混合电源变换器,主要解决现有的1/N开关电容-两相buck混合降压变换器无法实现两个电感均分负载电流的问题。
为实现上述目的,本发明采用的技术方案如下:
一种高电压转换比的混合电源变换器,包括漏极均与输入端VIN相连的MOS管Q1a、Q1b,两个正极分别与MOS管Q1a、Q1b的源极相连的电容CFLY1、CFLY2,两个漏极分别与电容CFLY1、CFLY2的负极相连的MOS管SRa、SRb,串联后一端与MOS管SRa的漏极相连且另一端与MOS管SRb的漏极相连的电感L1、L2,一端与电感L1、L2公共端相连且另一端接地的电容C1,一端与电感L1、L2公共端相连且另一端接地的电流源Io,两个漏极分别与MOS管Q1a、Q1b的源极相连的MOS管Q 2b、Q2a,一端分别与MOS管Q2b、Q2a的源极相连且另一端分别与MOS管SRa、SRb的源极相连若干级的依次叠加的开关电容支路;电感L1、L2、电容C1、电流源Io的输出端作为电源变换器的输出端VOUT;
其中,第N级所述开关电容支路包括漏极分别对应与上一级MOS管Q(N-1)b的源极、Q(N-1)a的源极相连的MOS管QNa、QNb,正极与MOS管QNb的漏极、QNa的漏极相连且负极分别与MOS管SRa、SRb相连的电容CFLY(2N-3)、CFLY(2N-2);其中,N为大于2的整数。
进一步地,所述MOS管Q1a、Q2a、…、Q(N-1)a、QNa、SRa、L1等效成A相buck变换器;所述Q1b、Q2b、…、Q(N-1)b、QNb、SRb、L2等效成B相buck变换器。
进一步地,所述A相和B相buck变换器的相位交错180度。
与现有技术相比,本发明具有以下有益效果:
本发明提出的混合架构变换器将开关电容变换器和两相交错并联buck变换器结合在一起,能够有效地降低功率管的电压等级,提高buck变换器的占空比。同时,开关电容变换器采用两相结构,这样整个变换器的工作模式完全对称,可以实现两个电感均分负载电流。本发明提出的新型开关电容-两相buck混合降压变换器架构可以拓展成1/N开关电容-两相buck混合降压变换器,轻松应对例如48V转1V等高转换比电压变换要求。
附图说明
图1为现有技术1/3开关电容-两相buck混合降压变换器结构示意图。
图2现有技术1/3开关电容-两相buck混合降压变换器工作在不同阶段的等效电路图。
图3本发明-实施例的1/3开关电容-两相buck混合降压变换器结构示意图。
图4本发明-实施例的1/3开关电容-两相buck混合降压变换器典型波形图。
图5本发明-实施例的1/4开关电容-两相buck混合降压变换器结构示意图。
图6本发明-实施例的1/N开关电容-两相buck混合降压变换器结构示意图。
具体实施方式
下面结合附图说明和实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。
实施例
如图3所示,本发明公开的一种高电压转换比的混合电源变换器,包括漏极均与输入端VIN相连的MOS管Q1a、Q1b,两个正极分别与MOS管Q1a、Q1b的源极相连的电容CFLY1、CFLY2,两个漏极分别与电容CFLY1、CFLY2的负极相连的MOS管SRa、SRb,串联后一端与MOS管SRa的漏极相连且另一端与MOS管SRb的漏极相连的电感L1、L2,一端与电感L1、L2公共端相连且另一端接地的电容C1,一端与电感L1、L2公共端相连且另一端接地的电流源Io,两个漏极分别与MOS管Q1a、Q1b的源极相连的MOS管Q 2b、Q2a,一端分别与MOS管Q2b、Q2a的源极相连且另一端分别与MOS管SRa、SRb的源极相连若干级的依次叠加的开关电容支路;电感L1、L2、电容C1、电流源Io的输出端作为电源变换器的输出端VOUT;
其中,第N级所述开关电容支路包括漏极分别对应与上一级MOS管Q(N-1)b的源极、Q(N-1)a的源极相连的MOS管QNa、QNb,正极与MOS管QNb的漏极、QNa的漏极相连且负极分别与MOS管SRa、SRb相连的电容CFLY(2N-3)、CFLY(2N-2);其中,N为大于2的整数。
如图4所示,为1/3开关电容-两相buck混合降压变换器在一个开关周期内的工作波形。Q1a、Q2a、Q3a、SRa、L1等效成A相buck变换器;Q1b、Q2b、Q3b、SRb、L2等效成B相buck变换器。A相和B相buck变换器的相位交错180度,可以有效较小输出电压的纹波。从图中可以看出,Q2a的占空比为D1,SRa的驱动信号和Q2a互补。Q1a、Q3a占空比为D2,略小于Q2a占空比,这种驱动方式的目的是为了在t1时刻实现VCLY2-VCFLY3=VIN-VCFLY1=VCFLY4,从而减小t1时刻飞电容之间的浪涌电流。对于本实施例的1/3开关电容-两相buck混合降压变换器来说,D2=(5/6)*D1。
如图4所示,在四个电容容值相同,即CFLY1=CFLY2=CFLY3=CFLY4的条件下讨论如下:
阶段1(t0-t1):
MOS管Q2a、SRb导通,电容CFLY2和CFLY3串联提供一半的负载电流,CFLY2以Io/2电流放电,CFLY3以Io/2电流充电。电感L2通过SRb续流。
阶段2(t1-t2):
t1时刻,MOS管Q1a和Q3a导通。此时电感L1上的电流由三条支路共同提供,其中,VIN通过CFLY1提供Io/5给iL1;CFLY2和CFLY3串联提供Io/10电流给iL1;CFLY4提供Io/5给iL1,电感L2通过SRb续流。
阶段3(t2-t3):
t2时刻,MOS管Q1a、Q2a、Q3a关断,MOS管SRa导通,电感L1通过SRa续流,电感L2通过SRb续流,iL1=iL2=Io/2。
阶段4(t3-t4):
t3时刻,MOS管Q2b导通,MOS管SRb关断。电容CFLY1和CFLY4串联提供一半的负载电流,CFLY1以Io/2电流放电,CFLY4以Io/2电流充电,电感L1通过SRa续流。
阶段5(t4-t5):
t4时刻,MOS管Q1b和Q3b导通。此时电感L2上的电流由三条支路共同提供,其中,VIN通过CFLY2提供Io/5给iL2;CFLY1和CFLY4串联提供Io/10电流给iL2;CFLY3提供Io/5给iL2,电感L1通过SRa续流。
阶段6(t5-t6):
t5时刻,MOS管Q1b、Q2b、Q3b关断,MOS管SRb导通,电感L1通过SRa续流,电感L2通过SRb续流,iL1=iL2=Io/2。
在图3所示的新型1/3开关电容-两相buck混合降压变换器基础之上,增加两个MOS管以及两个飞电容,即可得到图5所示的新型1/4开关电容-两相buck混合降压变换器。该变换器可以将MOS管耐压降低为VIN/4,同时电感L1和电感L2均分负载电流。
图6所示为1/N开关电容-两相buck混合降压变换器。实现MOS管电压应力降低为(1/N)*VIN,同时电感L1和电感L2均分负载电流。
通过上述设计,本发明提出的混合架构变换器将开关电容变换器和两相交错并联buck变换器结合在一起,能够有效地降低功率管的电压等级,提高buck变换器的占空比。同时,开关电容变换器采用两相结构,这样整个变换器的工作模式完全对称,可以实现两个电感均分负载电流。本发明提出的新型开关电容-两相buck混合降压变换器架构可以拓展成1/N开关电容-两相buck混合降压变换器,轻松应对例如48V转1V等高转换比电压变换要求。因此,具有很高的使用价值和推广价值。
上述实施例仅为本发明的优选实施方式之一,不应当用于限制本发明的保护范围,但凡在本发明的主体设计思想和精神上作出的毫无实质意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。
Claims (3)
1.一种高电压转换比的混合电源变换器,其特征在于,包括漏极均与输入端VIN相连的MOS管Q1a、Q1b,两个正极分别与MOS管Q1a、Q1b的源极相连的电容CFLY1、CFLY2,两个漏极分别与电容CFLY1、CFLY2的负极相连的MOS管SRa、SRb,串联后一端与MOS管SRa的漏极相连且另一端与MOS管SRb的漏极相连的电感L1、L2,一端与电感L1、L2公共端相连且另一端接地的电容C1,一端与电感L1、L2公共端相连且另一端接地的电流源Io,两个漏极分别与MOS管Q1a、Q1b的源极相连的MOS管Q 2b、Q2a,一端分别与MOS管Q2b、Q2a的源极相连且另一端分别与MOS管SRa、SRb的源极相连若干级的依次叠加的开关电容支路;电感L1、L2、电容C1、电流源Io的公共端作为电源变换器的输出端 VOUT;
其中,第N级所述开关电容支路包括漏极分别对应与上一级MOS管Q(N-1)b的源极、Q(N-1)a的源极相连的MOS管QNa、QNb,正极分别 与MOS管QNb的漏极、QNa的漏极相连且负极分别与MOS管SRa、SRb相连的电容CFLY(2N-3)、CFLY(2N-2);其中,N为大于2的整数。
2.根据权利要求1所述的一种高电压转换比的混合电源变换器,其特征在于,所述MOS管Q1a、Q2a、…、Q(N-1)a、QNa、SRa、L1等效成A相buck变换器;所述Q1b、Q2b、…、Q(N-1)b、QNb、SRb、L2等效成B相buck变换器。
3.根据权利要求2所述的一种高电压转换比的混合电源变换器,其特征在于,所述A相和B相buck变换器的相位交错180度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911035823.7A CN110729888B (zh) | 2019-10-29 | 2019-10-29 | 一种高电压转换比的混合电源变换器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911035823.7A CN110729888B (zh) | 2019-10-29 | 2019-10-29 | 一种高电压转换比的混合电源变换器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110729888A CN110729888A (zh) | 2020-01-24 |
CN110729888B true CN110729888B (zh) | 2020-11-06 |
Family
ID=69222380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911035823.7A Active CN110729888B (zh) | 2019-10-29 | 2019-10-29 | 一种高电压转换比的混合电源变换器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110729888B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112003470A (zh) * | 2020-07-30 | 2020-11-27 | 苏州浪潮智能科技有限公司 | 一种用于服务器的48v转12v电源及电源转换方法 |
CN112054680B (zh) * | 2020-09-14 | 2021-08-13 | 广东工业大学 | 一种混合型电源转换器 |
KR20230069835A (ko) * | 2021-11-12 | 2023-05-19 | 사우스칩 세미컨덕터 테크놀로지 (상하이) 씨오., 엘티디. | 직렬-병렬형 스위치드 커패시터 전압 변환기 |
CN114337256B (zh) * | 2022-01-04 | 2024-06-11 | 上海南芯半导体科技股份有限公司 | 一种实现电压转换的电路拓扑 |
CN114785114B (zh) * | 2022-05-26 | 2023-04-28 | 电子科技大学 | 一种高电压变比的混合模式双相功率变换器 |
CN116505774B (zh) * | 2023-07-03 | 2023-09-26 | 华南理工大学 | 一种快瞬态高电压转换比的混合降压变换器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE403259T1 (de) * | 2002-05-27 | 2008-08-15 | Bernafon Ag | Stromversorgungsanordnung |
US7696735B2 (en) * | 2007-03-30 | 2010-04-13 | Intel Corporation | Switched capacitor converters |
US8541999B2 (en) * | 2009-08-05 | 2013-09-24 | Apple Inc. | Controlling power loss in a switched-capacitor power converter |
US8619445B1 (en) * | 2013-03-15 | 2013-12-31 | Arctic Sand Technologies, Inc. | Protection of switched capacitor power converter |
CN104218798A (zh) * | 2014-09-18 | 2014-12-17 | 天津大学 | 基于开关电容和耦合电感的高电压增益双向dc-dc变换器 |
CN104218800B (zh) * | 2014-09-26 | 2016-06-15 | 三峡大学 | 一种高降压非隔离型dc/dc变换器 |
WO2018066444A1 (ja) * | 2016-10-06 | 2018-04-12 | 株式会社村田製作所 | Dc-dcコンバータ |
DK3447894T3 (da) * | 2017-08-24 | 2021-07-05 | Gn Hearing As | Rekonfigurerbar switched capacitor-dc-dc-omformer til hovedbærbare høreindretninger |
US10277120B1 (en) * | 2018-01-18 | 2019-04-30 | Marko Krstic | Optimized, multiphase switched-capacitor DC-DC converter with variable gain |
CN108616217B (zh) * | 2018-04-24 | 2020-04-14 | 南京工业大学 | 一种开关电容式高带宽包络线跟踪电源电路及其控制方法 |
CN110212764B (zh) * | 2019-06-04 | 2021-04-20 | 西安交通大学 | 一种适用于数据中心电压调节模块的非隔离直流斩波电路 |
-
2019
- 2019-10-29 CN CN201911035823.7A patent/CN110729888B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110729888A (zh) | 2020-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110729888B (zh) | 一种高电压转换比的混合电源变换器 | |
CN108923643B (zh) | 一种无阈值电压损失的可重构型升压电荷泵 | |
CA3056408A1 (en) | Zero inductor voltage converter topology with improved switch utilization | |
US20230155495A1 (en) | Biphasic dickson switched capacitor converter | |
US20230155491A1 (en) | Switched capacitor converter | |
CN109004832B (zh) | 五级单相降压型dc/dc转换器及五级两相降压转换器 | |
KR20230069860A (ko) | Dickson형 스위치드 커패시터 전압 변환기 | |
KR20230069835A (ko) | 직렬-병렬형 스위치드 커패시터 전압 변환기 | |
KR20230069867A (ko) | 캐스케이드형 스위치 커패시터 컨버터 | |
US7446521B2 (en) | DC DC voltage boost converter | |
Chen et al. | A 92.7%-efficiency 30A 48V-to-1V dual-path hybrid Dickson converter for PoL applications | |
CN113612386B (zh) | 一种多模式降压变换器 | |
CN112653328B (zh) | 一种高电压转换比直流电源变换器 | |
US20210399642A1 (en) | Power converter | |
TW201828580A (zh) | 切換式電容直流對直流轉換器電路及其產生方法 | |
CN111884508B (zh) | 一种低电压纹波多相高增益双向dc–dc变换器及其控制方法 | |
CN117937923A (zh) | 一种降压开关电源转换装置 | |
US20240079954A1 (en) | Power Conversion System and Control Method | |
CN117277795A (zh) | 电压转换电路、开关电源、电源管理芯片及电子设备 | |
CN114785114B (zh) | 一种高电压变比的混合模式双相功率变换器 | |
CN107493022B (zh) | 一种低电压高效电荷泵 | |
CN115842476A (zh) | 一种基于开关电容的单电感直流功率变换器 | |
CN113261189B (zh) | 混合功率转换器与方法 | |
CN114285279A (zh) | 一种高增益升压变换器 | |
CN117439406B (zh) | 一种高转换比的三电流路径混合降压变换器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: Room 214, No.1000 Chenhui Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 200120 Patentee after: Shanghai Nanxin Semiconductor Technology Co.,Ltd. Address before: Room 214, No.1000 Chenhui Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 200120 Patentee before: SOUTHCHIP SEMICONDUCTOR TECHNOLOGY (SHANGHAI) Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder |