CN110721743B - 一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备与应用 - Google Patents

一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备与应用 Download PDF

Info

Publication number
CN110721743B
CN110721743B CN201911033800.2A CN201911033800A CN110721743B CN 110721743 B CN110721743 B CN 110721743B CN 201911033800 A CN201911033800 A CN 201911033800A CN 110721743 B CN110721743 B CN 110721743B
Authority
CN
China
Prior art keywords
organic polymer
covalent triazine
triazine organic
polymer composite
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911033800.2A
Other languages
English (en)
Other versions
CN110721743A (zh
Inventor
毕进红
林桂云
李留义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201911033800.2A priority Critical patent/CN110721743B/zh
Publication of CN110721743A publication Critical patent/CN110721743A/zh
Application granted granted Critical
Publication of CN110721743B publication Critical patent/CN110721743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备方法和应用,属于光催化材料制备技术领域。采用湿浸渍辅助紫外光还原法合成原子级分散铜@共价三嗪有机聚合物复合光催化剂。该催化剂具有良好的可见光响应,能够实现高效、高选择性可见光光催化还原二氧化碳为甲烷和一氧化碳,为环境污染与能源危机提供了一种潜在的解决方案,并且该合成方法简单便捷,适用范围广,具有较大的应用潜力。

Description

一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催 化剂及其制备与应用
技术领域
本发明属于光催化材料制备技术领域,具体涉及一种高效产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备方法和应用。
背景技术
传统化石能源燃烧产生的CO2引起的全球变暖和能源短缺已经成为全球性问题。利用光催化技术将CO2转化为高附加值的碳氢化合物不仅可以减少空气中CO2浓度,降低温室效应的影响,还可以提供碳氢燃料,缓解能源短缺等问题。但目前光催化CO2的转化效率仍然较低,由于CO2为直线型对称分子,具有高的C=O双键断裂能,难以被活化转化,是弱电子供体和强电子接受体。因此开发高效光催化还原CO2材料仍是本领域研究的核心。共价三嗪有机聚合物(CTFs)作为一种独特的有机框架材料,相对于其它的多孔吸附剂具有更高的热化学稳定性、独特的光电性质以及对客体分子的高选择性分离能力,能为CO2的吸附和反应提供更多位点,有利于光催化还原CO2反应的进行,是一类拥有潜在发展前景的新型有机光催化材料。
我们在前期研究工作中成功制备出一种富氮型的共价三嗪有机聚合物(BI J H,FANG W, LI L Y, et al. Covalent triazine-based frameworks as visible lightphotocatalysts for the splitting of water. Macromolecular RapidCommunications, 2015, 36(20): 1799-1805.),其具有合适的能带结构且与CO2 分子之间存在着路易斯酸碱作用,可为CO2转化提供便利条件。然而,由于受有机分子内强的库仑力作用,光生载流子极易发生复合,导致光催化效率和量子产率不高。原子级分散的金属催化剂因具有接近100%的原子利用率在光催化CO2转化方面具有高效性和高选择性。铜元素由于其自然存储量丰富、价格低廉且有利于碳氢化合物的生成等优点,被广泛应用于 CO2 还原的研究。同时共价三嗪有机聚合物作为载体基质不仅为单个金属原子提供锚定位点,而且由于过渡金属原子和相邻的氮原子之间强烈的界面相互作用,还会改变金属原子的电荷密度和电子结构。当纳米颗粒尺寸减小至原子级水平时,金属-载体相互作用将最大化,带来新催化活性位点的产生,新的反应途径,从而提高其光催化活性。
发明内容
本发明的目的在于提供了一种高效产甲烷原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备方法和应用。该光催化剂具有良好的可见光响应,能够实现高效可见光光催化还原二氧化碳为甲烷和一氧化碳,同时该催化剂的制备对设备要求不高,生产成本低,有良好的应用前景。
为实现上述目的,本发明采用如下技术方案:
本发明采用湿浸渍辅助紫外光还原法合成原子级分散铜@共价三嗪有机聚合物复合光催化剂,其中原子级铜的负载质量为0.05-0.30 wt%。该光催化剂具有良好的可见光响应,可用于光催化还原二氧化碳为甲烷和一氧化碳的反应中。
所述的高效产甲烷的原子级分散铜@共价三嗪有机聚合物光催化剂的制备方法包括以下步骤:
(1)共价三嗪有机聚合物的制备
在0 ℃ 搅拌条件下,将10 mL三氟甲烷磺酸缓慢加入装有1.28 g对苯二甲腈的干燥圆底烧瓶中,更换油浴并升温至30 ℃,静置3-5天后将所得固体搅碎,用25-40 mL二氯甲烷抽滤洗涤,再用过量的氨水洗涤至灰白色,室温下将其分散于50-60 mL氨水中搅拌12-24h,用过量的蒸馏水离心洗涤至中性后用甲醇离心洗涤一次;收集固体沉淀于索式提取器中用甲醇在80-100 ℃ 条件下回流12-24 h,再用二氯甲烷在60-80 ℃ 条件下回流12-24 h;最后在80 ℃ 条件下真空干燥12 h,得到共价三嗪有机聚合物,记作CTF-1。
(2)原子级分散铜@共价三嗪有机聚合物复合光催化剂的制备
称取50 mg共价三嗪有机聚合物于烧杯中,加入50 mL甲醇,超声分散0.5-1 h,在搅拌条件下滴入25-150 μL 1 mg/mL三水合硝酸铜溶液并在室温下大力搅拌24-30 h;将得到的悬浊液在氮气氛围下曝气30 min,在磁力搅拌下,500W高压汞灯(λ = 365 nm)光照还原1-1.5 h;将反应后的混合液静置洗涤三次,待自然干燥即得到原子级分散铜@共价三嗪有机聚合物复合光催化剂。
所述原子级分散铜@共价三嗪有机聚合物复合光催化剂在可见光照射下能催化还原二氧化碳为甲烷和一氧化碳,其中主要产物为甲烷。
本发明的显著优点在于:
(1)本发明首次将原子级铜负载于共价三嗪有机聚合物中,开发出一种新型过渡金属以原子级高度分散于共价三嗪有机聚合物的可见光光催化材料;
(2)本发明制备方法简单便捷,能够快速合成该光催化材料;
(3)本发明制备的光催化材料能够实现高效可见光光催化还原二氧化碳为甲烷和一氧化碳,为能源危机提供了潜在的解决方案,具有较高的实用价值。
附图说明
图1为共价三嗪有机聚合物与实施例1-4所得的原子级分散铜@共价三嗪有机聚合物复合光催化剂的X射线粉末衍射谱图;
图2为实施例2所得的原子级分散铜@共价三嗪有机聚合物复合光催化剂的紫外-可见漫反射光谱图;
图3为共价三嗪有机聚合物与实施例2所得的原子级分散铜@共价三嗪有机聚合物复合光催化剂的可见光光催化还原二氧化碳为甲烷和一氧化碳的效果图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
共价三嗪有机聚合物的制备:在0 ℃ 搅拌条件下,将10 mL三氟甲烷磺酸缓慢加入装有1.28 g对苯二甲腈的干燥圆底烧瓶中,更换油浴并升温至30 ℃,静置3天后将所得固体搅碎,用30 mL二氯甲烷抽滤洗涤,再用过量的氨水洗涤至灰白色,室温下将其分散于50 mL氨水中搅拌12 h,用过量的蒸馏水离心洗涤至中性后用甲醇离心洗涤一次;收集固体沉淀于索式提取器中用甲醇在90℃ 条件下回流12h,再用二氯甲烷在70 ℃ 条件下回流12h;最后在80 ℃ 条件下真空干燥12 h,得到共价三嗪有机聚合物,记作CTF-1。
实施例1 原子级分散铜@共价三嗪有机聚合物复合光催化剂的制备
称取50 mg共价三嗪有机聚合物于烧杯中,加入50 mL甲醇,超声分散1 h,在搅拌条件下滴入25 μL 1 mg/mL三水合硝酸铜溶液并在室温下大力搅拌24 h;将得到的悬浊液在氮气氛围下曝气30 min,在磁力搅拌下,500W高压汞灯(λ = 365 nm)光照还原1.5 h;反应后的混合液静置洗涤三次,待自然干燥即得到0.05%原子级分散铜@共价三嗪有机聚合物复合光催化剂,记作Cu0.05/CTF。
实施例2 原子级分散铜@共价三嗪有机聚合物复合光催化剂的制备
称取50 mg共价三嗪有机聚合物于烧杯中,加入50 mL甲醇,超声分散1 h,在搅拌条件下滴入50 μL 1 mg/mL三水合硝酸铜溶液并在室温下大力搅拌24 h;将得到的悬浊液在氮气氛围下曝气30 min,在磁力搅拌下,500W高压汞灯(λ = 365 nm)光照还原1.5 h;反应后的混合液静置洗涤三次,待自然干燥即得到0.10%原子级分散铜@共价三嗪有机聚合物复合光催化剂,记作Cu0.10/CTF。
实施例3 原子级分散铜@共价三嗪有机聚合物复合光催化剂的制备
称取50 mg共价三嗪有机聚合物于烧杯中,加入50 mL甲醇,超声分散1 h,在搅拌条件下滴入100 μL 1 mg/mL三水合硝酸铜溶液并在室温下大力搅拌24 h;将得到的悬浊液在氮气氛围下曝气30 min,在磁力搅拌下,500W高压汞灯(λ = 365 nm)光照还原1.5 h;反应后的混合液静置洗涤三次,待自然干燥即得到0.20%原子级分散铜@共价三嗪有机聚合物复合光催化剂,记作Cu0.20/CTF。
实施例4 原子级分散铜@共价三嗪有机聚合物复合光催化剂的制备
称取50 mg共价三嗪有机聚合物于烧杯中,加入50 mL甲醇,超声分散1 h,在搅拌条件下滴入150 μL 1 mg/mL三水合硝酸铜溶液并在室温下大力搅拌24 h;将得到的悬浊液在氮气氛围下曝气30 min,在磁力搅拌下,500W高压汞灯(λ = 365 nm)光照还原1.5 h;反应后的混合液静置洗涤三次,待自然干燥即得到0.30%原子级分散铜@共价三嗪有机聚合物复合光催化剂,记作Cu0.30/CTF。
性能测试
图1为共价三嗪有机聚合物与实施例1-4所得的原子级分散铜@共价三嗪有机聚合物复合光催化剂的X射线粉末衍射谱图。从图中可以看出,与母体样品相比,实施例1-4所得的原子级分散铜@共价三嗪有机聚合物复合光催化剂的三个主体衍射峰位置未发生明显偏移,表明原子级铜的引入没有改变共价三嗪有机聚合物的晶型结构。
图2为共价三嗪有机聚合物与实施例2所得的0.10%原子级分散铜@共价三嗪有机聚合物复合光催化剂的紫外-可见漫反射光谱图。从图中可以发现,相对于母体样品,实施例2所得的0.10%原子级分散铜@共价三嗪有机聚合物复合光催化剂的光吸收范围变宽,增强了催化剂的光吸收性能。
图3为共价三嗪有机聚合物与实施例2所得的0.10%原子级分散铜@共价三嗪有机聚合物复合光催化剂的可见光光催化还原二氧化碳效果图。以300 W氙灯作为光源,入射光为可见光(λ ≥ 420 nm),催化剂用量均为10.0 mg,反应体系为10 mL 超纯水与2.075 mL三乙胺。从图中可以看出,相对于母体样品,实施例1-4所得的原子级铜原子级分散于共价三嗪有机聚合物光催化剂的产甲烷性能均得到不同程度的提高,其中0.10%原子级分散铜@共价三嗪有机聚合物复合光催化剂具有最优的光催化还原二氧化碳性能,其甲烷产率达到了16.89μmol g-1 h-1,并且产物中甲烷的选择性达到98.16%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂的制备方法,其特征在于:采用湿浸渍辅助紫外光还原法将原子级铜高度分散于共价三嗪有机聚合物中,合成一种在光催化CO2还原方面具有高催化效率和高催化选择性的可见光光催化剂;所述可见光光催化剂中原子级铜的质量百分比为0.05-0.30%;具体包括以下步骤:
(1)共价三嗪有机聚合物的制备:
在0 ℃搅拌条件下,将10 mL三氟甲烷磺酸缓慢加入装有1.28 g对苯二甲腈的干燥圆底烧瓶中,更换油浴并升温至30 ℃,静置3-5天后将所得固体搅碎,用25-40 mL二氯甲烷抽滤洗涤,再用过量的氨水洗涤至灰白色,室温下将其分散于50-60 mL氨水中搅拌12-24 h,用过量的蒸馏水离心洗涤至中性后用甲醇离心洗涤一次;收集固体沉淀于索式提取器中用甲醇在80-100 ℃条件下回流12-24 h,再用二氯甲烷在60-80 ℃条件下回流12-24 h;最后在80 ℃条件下真空干燥12 h,得到共价三嗪有机聚合物;
(2)原子级分散铜@共价三嗪有机聚合物复合光催化剂的制备
称取50 mg共价三嗪有机聚合物于烧杯中,加入50 mL甲醇,超声分散0.5-1 h,在搅拌条件下滴入25-150 μL 1 mg/mL三水合硝酸铜溶液并在室温下大力搅拌24-30 h;将得到的悬浊液在氮气氛围下曝气30 min,在磁力搅拌下,光照还原;将反应后的混合液静置洗涤三次,待自然干燥即得到原子级分散铜@共价三嗪有机聚合物复合光催化剂。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中光照还原具体为500W高压汞灯,λ = 365 nm。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中光照还原具体时间为1-1.5 h。
4.一种如权利要求1所述制备方法制得的 原子级分散铜@共价三嗪有机聚合物复合光催化剂的应用,其特征在于:所述的光催化剂应用于可见光光催化还原二氧化碳为甲烷和一氧化碳。
CN201911033800.2A 2019-10-29 2019-10-29 一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备与应用 Active CN110721743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911033800.2A CN110721743B (zh) 2019-10-29 2019-10-29 一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911033800.2A CN110721743B (zh) 2019-10-29 2019-10-29 一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备与应用

Publications (2)

Publication Number Publication Date
CN110721743A CN110721743A (zh) 2020-01-24
CN110721743B true CN110721743B (zh) 2021-08-31

Family

ID=69222247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911033800.2A Active CN110721743B (zh) 2019-10-29 2019-10-29 一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备与应用

Country Status (1)

Country Link
CN (1) CN110721743B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106093B (zh) * 2022-07-05 2023-12-22 中科澜荷(山东)新材料有限责任公司 一种金属共价有机框架催化剂制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126919B (zh) * 2015-08-24 2018-01-12 福州大学 一种复合型可见光催化剂及其制备方法与应用
CN108355719B (zh) * 2018-03-14 2020-08-11 福州大学 一种单原子钯负载共价三嗪有机聚合物复合光催化材料及其制备和应用
CN108395544B (zh) * 2018-06-07 2021-03-16 中国科学院上海高等研究院 一种具有三嗪骨架共价聚合物的大规模制备方法

Also Published As

Publication number Publication date
CN110721743A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
Jin et al. Exploration of Zr–metal–organic framework as efficient photocatalyst for hydrogen production
Jin et al. Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution
Wang et al. Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction
Wei et al. Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO
Ding et al. Impregnation of semiconductor CdS NPs in MOFs cavities via double solvent method for effective photocatalytic CO2 conversion
CN107649150B (zh) 一种富含硫空位的Cd/CdS异质结可见光催化剂的制备方法及其应用
Li et al. Atomically dispersed Au confined by oxygen vacancies in Au-θ-Al2O3/Au/PCN hybrid for boosting photocatalytic CO2 reduction driven by multiple built-in electric fields
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
CN109331883A (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
CN113058617B (zh) 一种光催化剂及其制备方法和应用
Zhang et al. MoP@ MoO 3 S-scheme heterojunction in situ construction with phosphating MoO 3 for high-efficient photocatalytic hydrogen production
Hu et al. Red/black phosphorus Z-scheme heterogeneous junction modulated by co-MOF for enhanced photocatalytic hydrogen evolution
Liu et al. CdS Photocorrosion Protection by MoSe 2 Modification for Photocatalytic Hydrogen Production
Li et al. ZIF‐67 derived hollow double‐shell core Co3O4 modified g‐C3N4 to construct p‐n heterojunction for efficient photocatalytic hydrogen evolution
Chong et al. Hollow double-shell stacked CdS@ ZnIn2S4 photocatalyst incorporating spatially separated dual cocatalysts for the enhanced photocatalytic hydrogen evolution and hydrogen peroxide production
Cheng et al. Biomass derived carbon dots mediated exciton dissociation in rose flower-like carbon nitride for boosting photocatalytic performance
Li et al. Synthesis of Ni 12 P 5 on Co 3 S 4 material for effectively improved photocatalytic hydrogen production from water splitting under visible light
Chen et al. Metal-organic framework composites for photocatalysis
Jin et al. Efficient photocatalytic hydrogen production achieved by WO3 coupled with NiP2 over ZIF-8
Guan et al. Wettability control of defective TiO2 with alkyl acid for highly efficient photocatalytic ammonia synthesis
Wang et al. Hierarchically grown Ni–Mo–S modified 2D CeO2 for high-efficiency photocatalytic hydrogen evolution
CN110721743B (zh) 一种产甲烷的原子级分散铜@共价三嗪有机聚合物复合光催化剂及其制备与应用
Li et al. Exploring a Ni–N4 Active Site‐Based Conjugated Microporous Polymer Z‐Scheme Heterojunction Through Covalent Bonding for Visible Light‐Driven Photocatalytic CO2 Conversion in Pure Water
Wang et al. Comparison of modulation strategies for enhancing the photocatalytic water splitting performance of metal-organic frameworks
Li et al. High-Density Ultrafine Au Nanocluster-Doped Co-LDH Nanocages for Enhanced Visible-Light-Driven CO2 Reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant