CN110719641A - 边缘计算中用户卸载与资源分配联合优化方法 - Google Patents

边缘计算中用户卸载与资源分配联合优化方法 Download PDF

Info

Publication number
CN110719641A
CN110719641A CN201910976515.8A CN201910976515A CN110719641A CN 110719641 A CN110719641 A CN 110719641A CN 201910976515 A CN201910976515 A CN 201910976515A CN 110719641 A CN110719641 A CN 110719641A
Authority
CN
China
Prior art keywords
user
task
strategy
users
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910976515.8A
Other languages
English (en)
Other versions
CN110719641B (zh
Inventor
朱琦
栗志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910976515.8A priority Critical patent/CN110719641B/zh
Publication of CN110719641A publication Critical patent/CN110719641A/zh
Application granted granted Critical
Publication of CN110719641B publication Critical patent/CN110719641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种边缘计算中用户卸载与资源分配联合优化方法,首先将用户卸载比例、分配带宽和分配计算资源组成一个策略组合,再由不同策略组合构成种群矩阵,每个策略组合为种群中的单个个体,个体中的每个变量为个体的基因;通过最优个体选择选出种群矩阵中最优的分配方案;通过基因交叉、基因变异操作形成新的种群矩阵;重复迭代直到最优值收敛,最终得到用户卸载比例与资源分配方案。本发明采用了启发式方法对三种变量的联合分配进行求解,减少了收敛的迭代次数,提高了最优解的全局搜索能力,同时保证了通信资源和计算资源的充分利用,最小化总体任务完成时间的同时,保证了不同用户间的公平性。

Description

边缘计算中用户卸载与资源分配联合优化方法
技术领域
本发明属于通信技术领域,具体涉及边缘计算中用户卸载与资源分配联合优化方法。
背景技术
随着5G网络的到来,各种智能服务不断出现,数以亿计的智能终端设备需要处理大量的任务,但是由于终端设备的资源有限,限制了任务的完成能力。移动边缘计算(MEC,Mobile-Edge Computing)可以使终端设备通过无线接入网络,将部分计算任务卸载到边缘服务器,缩短了服务器与用户之间的距离从而大大降低任务的完成时间。在边缘计算网络中,任务卸载策略与资源分配会直接影响系统性能,已成为研究热点。
近年来,学术界和工业界已经开展了关于MEC卸载问题的研究,卸载任务可分为可拆分任务和不可拆分任务,可拆分任务指用户可以将任务部分卸载或全部卸载,不可拆分任务指的是用户只能选择将任务全部本地处理或全部卸载给边缘服务器处理。可拆分任务模型更大增强了用户的选择性,可以更好满足用户需求。现有的可拆分任务模型下,卸载策略计算方法大多采用博弈论,但这种方法需要将卸载比例进行等分,精度不高,需要反复多次迭代才能计算出次优解,计算复杂度高,且不能很好的计算出最优卸载策略。
所以,需要一个新的技术方案来解决这个问题。
发明内容
发明目的:为了克服现有技术中存在的不足,提供一种边缘计算中用户卸载与资源分配联合优化方法,其在边缘计算网络中能够充分利用带宽资源和计算资源,保证总体任务完成时间最短,同时保证所有用户的公平性。
技术方案:为实现上述目的,本发明提供一种边缘计算中用户卸载与资源分配联合优化方法,包括如下步骤:
S1:定义用户设备集合{M}={1,2,3...m...M},一共M个用户设备,每个用户设备用m表示,用户m需要处理的计算任务为Um={fm,Dm,Lm},其中fm为用户的本地计算资源,Dm为用户所需要处理的任务的大小,Lm为处理1个字节任务所需要的CPU周期数;
S2:每个用户需要优化三个变量,分别为用户卸载比例Pm,信道分配带宽Bm和MES分配计算资源Fm,将所有用户的卸载比例与分配资源组成一组策略组合{P,F,B}({P1,P2...Pm,F1,F2...Fm,B1,B2...Bm});
S3:重复步骤S2生成N个不同的策略组合,组成一个N行,3*M列的种群矩阵K,N的大小为4*M,定义K为:
其中ki,j(i∈[1,N],j∈[1,m])为第i个策略组合中,第j个用户的卸载资源比例Pm;ki,j(i∈[1,N],j∈[m+1,2m])为第i个策略组合中,第j-m个用户的MEC分配的计算资源Fm;ki,j(i∈[1,N],j∈[2m+1,3m])为第i个策略组合中,j-2m个用户的分配带宽Bm
S4:同时进行用户的任务卸载和本地任务处理,系统中M个用户同时处理任务,求出系统总体完成时间;
S5:初始化:精度exp、信道带宽Bmax、MEC计算资源Fmax、Um={fm,Dm,Lm}、种群矩阵K;
S6:随机生成一个3行3*M列矩阵Ktemp用于存放每次迭代过程中的最优个体选择以及基因交叉和变异后得到的三个最优策略组合;
S7:系统中M个用户同时处理任务,对于每个策略组合Kn,最后总体任务完成时间应该是所有用户全部完成任务处理的时间;
S8:求出所有策略组合Kn的完成时间,选出种群矩阵中完成时间最小的最优策略组合;
S9:进行策略组合间基因交叉操作,生成最优策略组合
Figure BDA0002233812500000022
S10:进行策略组合中基因变异操作,生成最优策略组合
Figure BDA0002233812500000023
S11:令若abs((min(T(Ktemp1))-min(T(Ktemp))))≤exp,则输出argmax(T(Ktemp1))作为输出的最优分配策略,否则,Ktemp=Ktemp1,返回步骤S8,重复执行,直至最优值收敛。
进一步的,所述步骤S4具体为:
每个用户需要将Pm比例的任务卸载到边缘服务器中(Pm取值范围为[0,1])进行处理,剩下的(1-Pm)比例的计算任务留在本地处理,用户m本地处理的时间
Figure BDA0002233812500000025
用户通过频分复用的方式来传输卸载的数据,用户m卸载任务数据的速率Rm=Bm*log2(1+SNRm);每个用户卸载任务的传输时间
Figure BDA0002233812500000031
当用户将部分任务卸载到边缘服务器后,服务器将分配Fm计算资源来处理这些数据,则边缘服务器处理用户m卸载任务的时间
Figure BDA0002233812500000032
因此用户卸载任务的处理时间
Figure BDA0002233812500000033
由于用户的任务卸载和本地任务处理是同时进行的,所以每一个用户的总完成时间Tm=Max(Tm_local,Tm_offload);系统中M个用户同时处理任务,因此系统总体完成时间T=Max(T1,T2,T3...TM)。
进一步的,所述步骤S8中求出所有策略组合Kn的完成时间,得到比例矩阵Q=(Q1,Q2...Qn),其中
Figure BDA0002233812500000034
并将Q降序排列,生成[0,1]的随机数rand,计算rand落在Q的哪个范围之内,选出范围所属的个体Kn作为种群矩阵的最优策略组合。
进一步的,所述步骤S9中策略组合间基因交叉操作具体为:
S9-1:生成随机数a(a∈3*M),交换K中k2*i-1,a和k2*i,a(i∈[1,N/2])的值,随机交换不同策略组合中相同基因的值,产生新的策略组合;
S9-2:生成[0,(N/2)]的随机数rand,重复操作S2-2-1 rand次,形成新的种群矩阵K1
S9-3:重复步骤S8,生成最优策略组合
Figure BDA0002233812500000035
进一步的,所述步骤S10中策略组合中基因变异操作具体为:
S10-1:生成随机数c,(c∈[0,1]);
S10-2:若b∈[0,M],生成随机数c,(c∈[0,1]);
S10-3:若b∈[M+1,2*M],生成随机数c,(c∈[0,Fmax]),Fmax是MES最大计算能力;
S10-4:若b∈[2*M+1,3*M],生成随机数c,(c∈[0,Bmax]),Bmax是信道最大传输带宽;
S10-5:交换ki,b(i∈[1,N])和c的值,完成最优策略组合中基因变异操作,形成新的种群矩阵K2
S10-6:重复步骤S8,生成最优策略组合
对于多用户单边缘服务器,可拆分任务模型场景下,本发明采用启发式方法来分析边缘计算中用户卸载和资源分配问题,以最小化总体任务完成时间来保证用户性能。本发明首先将用户卸载比例、分配带宽和分配计算资源组成一个策略组合,再由不同策略组合构成种群矩阵,每个策略组合为种群中的单个个体,个体中的每个变量为个体的基因;通过最优个体选择选出种群矩阵中最优的分配方案;通过基因交叉、基因变异操作形成新的种群矩阵;重复迭代直到最优值收敛,最终得到用户卸载比例与资源分配方案。
本发明基于多用户单MES可拆分任务模型,对用户的卸载比例、信道带宽和MES计算资源进行分配,解决了最小化总体完成时间的问题;每次迭代过程中,通过最优个体选择、个体交叉和变异操作,得到三个不同策略组合,并将其与上一次的三个优秀策略组合进行最优值比较,最终最优值收敛,输出最优策略组合。不但保证了信道带宽资源和MES计算资源的有效利用,同时保证了用户做出选择后的任务完成时间小于本地处理任务完成时间,提高了服务质量。
有益效果:本发明与现有技术相比,具备如下优点:
1、本发明采用了启发式方法对三种变量的联合分配进行求解,减少了收敛的迭代次数,提高了最优解的全局搜索能力,同时保证了通信资源和计算资源的充分利用。
2、本发明采用的可拆分任务模型,较不可拆分任务模型而言,更有利于用户做出适合自己行为的选择;最小化总体任务完成时间的同时,保证了不同用户间的公平性。
附图说明
图1为本发明的网络模型图;
图2为本发明的方法流程图;
图3为完成时间随用户数量变化的仿真结果图;
图4为10用户下总完成时间随着本地计算资源变化的仿真结果图;
图5为用户公平性对比情况示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
本实施例将本发明方法应用于如图1所示的场景,提供一种边缘计算中用户卸载与资源分配联合优化方法,参照图2,其包括如下步骤:
S1:定义用户设备集合{M}={1,2,3...m...M},一共M个用户设备,每个用户设备用m表示,用户m需要处理的计算任务为Um={fm,Dm,Lm},其中fm为用户的本地计算资源,Dm为用户所需要处理的任务的大小,Lm为处理1个字节任务所需要的CPU周期数;
S2:每个用户需要优化三个变量,分别为用户卸载比例Pm,信道分配带宽Bm和MES分配计算资源Fm,将所有用户的卸载比例与分配资源组成一组策略组合{P,F,B}({P1,P2...Pm,F1,F2...Fm,B1,B2...Bm});
S3:重复步骤S2生成N个不同的策略组合,组成一个N行,3*M列的种群矩阵K,N的大小为4*M,定义K为:
Figure BDA0002233812500000051
其中ki,j(i∈[1,N],j∈[1,m])为第i个策略组合中,第j个用户的卸载资源比例Pm;ki,j(i∈[1,N],j∈[m+1,2m])为第i个策略组合中,第j-m个用户的MEC分配的计算资源Fm;ki,j(i∈[1,N],j∈[2m+1,3m])为第i个策略组合中,j-2m个用户的分配带宽Bm
S4:总体任务完成时间定义:
S4-1:每个用户需要将Pm比例的任务卸载到边缘服务器中(Pm取值范围为[0,1])进行处理,剩下的(1-Pm)比例的计算任务留在本地处理,用户m本地处理的时间为:
Figure BDA0002233812500000052
S4-2:用户通过频分复用的方式来传输卸载的数据,系统的总带宽为Bmax,分配给每一个用户的带宽为Bm,则用户m卸载任务数据的速率为:
Rm=Bm*log2(1+SNRm) (3)
S4-3:其中SNRm为用户m的信噪比。因此,每个用户卸载任务的传输时间为:
S4-4:当用户将部分任务卸载到边缘服务器后,服务器将分配Fm计算资源来处理这些数据,则边缘服务器处理用户m卸载任务的时间为:
Figure BDA0002233812500000054
S4-5:在边缘服务器处理完任务后,会将处理好的数据回传给用户,回传时间为Tback,和其他时间相比,Tback对整体时间的影响比较小[12],可以忽略不计。因此用户卸载任务的处理时间为:
Figure BDA0002233812500000061
S4-6:由于用户的任务卸载和本地任务处理是同时进行的,所以每一个用户的总完成时间为:
Tm=Max(Tm_local,Tm_offload) (7)
S4-7:系统中M个用户同时处理任务,因此系统总体完成时间T为:
T=Max(T1,T2,T3...TM) (8)
S5:初始化:精度exp、信道带宽Bmax、MEC计算资源Fmax、Um={fm,Dm,Lm}、种群矩阵K;
S6:随机生成一个3行3*M列矩阵Ktemp用于存放每次迭代过程中的最优个体选择以及基因交叉和变异后得到的三个最优策略组合;
S7:系统中M个用户同时处理任务,对于每个策略组合Kn,最后总体任务完成时间应该是所有用户全部完成任务处理的时间,因此Kn总体完成时间T(Kn)=Max(T1,T2...TM);
S8:求出所有策略组合Kn的完成时间,得出比例矩阵Q=(Q1,Q2...QN),其中并将Q降序排列,生成[0,1]的随机数rand,计算rand落在Q的哪个范围之内,选出范围所属的个体Kn作为种群矩阵的最优策略组合;
S9:进行策略组合间基因交叉操作;
S9-1:生成随机数a(a∈3*M),交换K中k2*i-1,a和k2*i,a(i∈[1,N/2])的值,随机交换不同策略组合中相同基因的值,产生新的策略组合;
S9-2:生成[0,(N/2)]的随机数rand,重复操作S2-2-1 rand次,形成新的种群矩阵K1
S9-3:重复步骤S8,生成最优策略组合
Figure BDA0002233812500000063
S10:进行策略组合中基因变异操作;
S10-1:生成随机数c,(c∈[0,1]);
S10-2:若b∈[0,M],生成随机数c,(c∈[0,1]);
S10-3:若b∈[M+1,2*M],生成随机数c,(c∈[0,Fmax]),Fmax是MES最大计算能力;
S10-4:若b∈[2*M+1,3*M],生成随机数c,(c∈[0,Bmax]),Bmax是信道最大传输带宽;
S10-5:交换ki,b(i∈[1,N])和c的值,完成最优策略组合中基因变异操作,形成新的种群矩阵K2
S10-6:重复步骤S8,生成最优策略组合
Figure BDA0002233812500000071
S11:令
Figure BDA0002233812500000072
若abs((min(T(Ktemp1))-min(T(Ktemp))))≤exp,则输出argmax(T(Ktemp1))作为输出的最优分配策略,否则,Ktemp=Ktemp1,返回步骤S8,重复执行,直至最优值收敛。
为了验证本发明方法的实际效果,本实施例进行了仿真实验,将本发明方法和文献[12]算法进行对比,文献[12]算法即为势博弈的算法,为了方便理解,以下均表述为文献[12]算法,其具体的结果如下:
如图3所示为Bmax=10MHz,Fmax=5GHz/s下完成时间随用户数量变化的仿真结果图,可以看出,若不使用卸载,平均完成时间会在10s左右,在用户数量增多的同时,本文算法和文献[12]算法都会朝着这个值不断逼近,因为随着用户数量的增多,可分配的带宽和MEC计算能力并没有发生变化,这会导致传输时间和服务器处理时间不断上升,由于文献[12]并不考虑带宽和MEC计算资源的分配,导致资源浪费,因此本文的总体完成时间更快。当用户数为19时,卸载的完成时间为9.5s,此时与不卸载相差不大,考虑到传输能耗等问题,当用户数达到19不要卸载为好。
如图4所示为Bmax=10MHz,Fmax=5GHz/s,10用户下总完成时间随着本地计算资源变化的仿真结果图,可以看出,当本地计算资源少的时候,卸载有很大的优势,因为此时本地处理任务较慢,因此将部分计算任务分配给处理速度快的MEC会使总体时间变快;而当本地资源很充足的时候,由于任务在本地已经可以在很快的速度内完成,所以随着本地资源的增大,卸载优势越发不明显。
为了验证不同用户间的公平性,本实施例采用时间标准差的方式反应用户的公平性,将步骤S11得出的结果带入公式中与其他方法公平性比较,衡量标准如下:
Figure BDA0002233812500000073
图5为Bmax=10MHz,Fmax=5GHz/s下,用户公平性对比情况示意图,可以看出,较文献[12],本文用户时间标准差随着用户数的增多,大小基本不变,从而保证了公平性。

Claims (5)

1.边缘计算中用户卸载与资源分配联合优化方法,其特征在于:包括如下步骤:
S1:定义用户设备集合{M}={1,2,3...m...M},一共M个用户设备,每个用户设备用m表示,用户m需要处理的计算任务为Um={fm,Dm,Lm},其中fm为用户的本地计算资源,Dm为用户所需要处理的任务的大小,Lm为处理1个字节任务所需要的CPU周期数;
S2:每个用户需要优化三个变量,分别为用户卸载比例Pm,信道分配带宽Bm和MES分配计算资源Fm,将所有用户的卸载比例与分配资源组成一组策略组合{P,F,B}({P1,P2...Pm,F1,F2...Fm,B1,B2...Bm});
S3:重复步骤S2生成N个不同的策略组合,组成一个N行,3*M列的种群矩阵K,N的大小为4*M,定义K为:
Figure FDA0002233812490000011
其中ki,j(i∈[1,N],j∈[1,m])为第i个策略组合中,第j个用户的卸载资源比例Pm;ki,j(i∈[1,N],j∈[m+1,2m])为第i个策略组合中,第j-m个用户的MEC分配的计算资源Fm;ki,j(i∈[1,N],j∈[2m+1,3m])为第i个策略组合中,j-2m个用户的分配带宽Bm
S4:同时进行用户的任务卸载和本地任务处理,系统中M个用户同时处理任务,求出系统总体完成时间;
S5:初始化:精度exp、信道带宽Bmax、MEC计算资源Fmax、Um={fm,Dm,Lm}、种群矩阵K;
S6:随机生成一个3行3*M列矩阵Ktemp用于存放每次迭代过程中的最优个体选择以及基因交叉和变异后得到的三个最优策略组合;
S7:系统中M个用户同时处理任务,对于每个策略组合Kn,最后总体任务完成时间应该是所有用户全部完成任务处理的时间;
S8:求出所有策略组合Kn的完成时间,选出种群矩阵中完成时间最小的最优策略组合;
S9:进行策略组合间基因交叉操作,生成最优策略组合
Figure FDA0002233812490000012
S10:进行策略组合中基因变异操作,生成最优策略组合
Figure FDA0002233812490000013
S11:令
Figure FDA0002233812490000014
若abs((min(T(Ktemp1))-min(T(Ktemp))))≤exp,则输出argmax(T(Ktemp1))作为输出的最优分配策略,否则,Ktemp=Ktemp1,返回步骤S8,重复执行,直至最优值收敛。
2.根据权利要求1所述的边缘计算中用户卸载与资源分配联合优化方法,其特征在于:所述步骤S4具体为:
每个用户需要将Pm比例的任务卸载到边缘服务器中(Pm取值范围为[0,1])进行处理,剩下的(1-Pm)比例的计算任务留在本地处理,用户m本地处理的时间
Figure FDA0002233812490000021
用户通过频分复用的方式来传输卸载的数据,用户m卸载任务数据的速率Rm=Bm*log2(1+SNRm);每个用户卸载任务的传输时间
Figure FDA0002233812490000022
当用户将部分任务卸载到边缘服务器后,服务器将分配Fm计算资源来处理这些数据,则边缘服务器处理用户m卸载任务的时间
Figure FDA0002233812490000023
因此用户卸载任务的处理时间由于用户的任务卸载和本地任务处理是同时进行的,所以每一个用户的总完成时间Tm=Max(Tm_local,Tm_offload);系统中M个用户同时处理任务,因此系统总体完成时间T=Max(T1,T2,T3...TM)。
3.根据权利要求2所述的边缘计算中用户卸载与资源分配联合优化方法,其特征在于:所述步骤S8中求出所有策略组合Kn的完成时间,得到比例矩阵Q=(Q1,Q2...Qn),其中
Figure FDA0002233812490000025
并将Q降序排列,生成[0,1]的随机数rand,计算rand落在Q的哪个范围之内,选出范围所属的个体Kn作为种群矩阵的最优策略组合。
4.根据权利要求1所述的边缘计算中用户卸载与资源分配联合优化方法,其特征在于:所述步骤S9中策略组合间基因交叉操作具体为:
S9-1:生成随机数a(a∈3*M),交换K中k2*i-1,a和k2*i,a(i∈[1,N/2])的值,随机交换不同策略组合中相同基因的值,产生新的策略组合;
S9-2:生成[0,(N/2)]的随机数rand,重复操作S2-2-1rand次,形成新的种群矩阵K1
S9-3:重复步骤S8,生成最优策略组合
Figure FDA0002233812490000031
5.根据权利要求1或4所述的边缘计算中用户卸载与资源分配联合优化方法,其特征在于:所述步骤S10中策略组合中基因变异操作具体为:
S10-1:生成随机数c,(c∈[0,1]);
S10-2:若b∈[0,M],生成随机数c,(c∈[0,1]);
S10-3:若b∈[M+1,2*M],生成随机数c,(c∈[0,Fmax]),Fmax是MES最大计算能力;
S10-4:若b∈[2*M+1,3*M],生成随机数c,(c∈[0,Bmax]),Bmax是信道最大传输带宽;
S10-5:交换ki,b(i∈[1,N])和c的值,完成最优策略组合中基因变异操作,形成新的种群矩阵K2
S10-6:重复步骤S8,生成最优策略组合
Figure FDA0002233812490000032
CN201910976515.8A 2019-10-15 2019-10-15 边缘计算中用户卸载与资源分配联合优化方法 Active CN110719641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910976515.8A CN110719641B (zh) 2019-10-15 2019-10-15 边缘计算中用户卸载与资源分配联合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910976515.8A CN110719641B (zh) 2019-10-15 2019-10-15 边缘计算中用户卸载与资源分配联合优化方法

Publications (2)

Publication Number Publication Date
CN110719641A true CN110719641A (zh) 2020-01-21
CN110719641B CN110719641B (zh) 2022-08-26

Family

ID=69211657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910976515.8A Active CN110719641B (zh) 2019-10-15 2019-10-15 边缘计算中用户卸载与资源分配联合优化方法

Country Status (1)

Country Link
CN (1) CN110719641B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511028A (zh) * 2020-04-13 2020-08-07 北京邮电大学 一种多用户资源分配方法、装置、系统及存储介质
CN112083967A (zh) * 2020-08-18 2020-12-15 深圳供电局有限公司 一种云边端计算任务的卸载方法、计算机设备及存储介质
CN112188560A (zh) * 2020-09-08 2021-01-05 北京科技大学 一种边缘协同的计算资源分配方法
CN112492626A (zh) * 2020-12-07 2021-03-12 南京邮电大学 一种移动用户计算任务的卸载方法
CN114189521A (zh) * 2021-12-15 2022-03-15 福州大学 在f-ran架构中协作计算卸载的方法
CN115190126A (zh) * 2022-07-01 2022-10-14 北京理工大学长三角研究院(嘉兴) 一种协调计算与传输的移动边缘计算系统及最优卸载方法
CN118474681A (zh) * 2024-05-24 2024-08-09 苏州市职业大学 基于边缘计算的任务卸载方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130308570A1 (en) * 2012-05-17 2013-11-21 Beijing University Of Posts And Telecommunications Method for joint optimization of schedule and resource allocation based on the genetic algorithm
CN109814951A (zh) * 2019-01-22 2019-05-28 南京邮电大学 移动边缘计算网络中任务卸载及资源分配的联合优化方法
CN110062026A (zh) * 2019-03-15 2019-07-26 重庆邮电大学 移动边缘计算网络中资源分配和计算卸载联合优化方案

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130308570A1 (en) * 2012-05-17 2013-11-21 Beijing University Of Posts And Telecommunications Method for joint optimization of schedule and resource allocation based on the genetic algorithm
CN109814951A (zh) * 2019-01-22 2019-05-28 南京邮电大学 移动边缘计算网络中任务卸载及资源分配的联合优化方法
CN110062026A (zh) * 2019-03-15 2019-07-26 重庆邮电大学 移动边缘计算网络中资源分配和计算卸载联合优化方案

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511028A (zh) * 2020-04-13 2020-08-07 北京邮电大学 一种多用户资源分配方法、装置、系统及存储介质
CN112083967A (zh) * 2020-08-18 2020-12-15 深圳供电局有限公司 一种云边端计算任务的卸载方法、计算机设备及存储介质
CN112083967B (zh) * 2020-08-18 2023-10-20 深圳供电局有限公司 一种云边端计算任务的卸载方法、计算机设备及存储介质
CN112188560A (zh) * 2020-09-08 2021-01-05 北京科技大学 一种边缘协同的计算资源分配方法
CN112492626A (zh) * 2020-12-07 2021-03-12 南京邮电大学 一种移动用户计算任务的卸载方法
CN112492626B (zh) * 2020-12-07 2022-04-12 南京邮电大学 一种移动用户计算任务的卸载方法
CN114189521A (zh) * 2021-12-15 2022-03-15 福州大学 在f-ran架构中协作计算卸载的方法
CN114189521B (zh) * 2021-12-15 2024-01-26 福州大学 在f-ran架构中协作计算卸载的方法
CN115190126A (zh) * 2022-07-01 2022-10-14 北京理工大学长三角研究院(嘉兴) 一种协调计算与传输的移动边缘计算系统及最优卸载方法
CN115190126B (zh) * 2022-07-01 2023-08-18 北京理工大学长三角研究院(嘉兴) 一种协调计算与传输的移动边缘计算系统及最优卸载方法
CN118474681A (zh) * 2024-05-24 2024-08-09 苏州市职业大学 基于边缘计算的任务卸载方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110719641B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN110719641B (zh) 边缘计算中用户卸载与资源分配联合优化方法
CN108809695B (zh) 一种面向移动边缘计算的分布上行链路卸载策略
CN109814951B (zh) 移动边缘计算网络中任务卸载及资源分配的联合优化方法
CN111586720B (zh) 一种多小区场景下的任务卸载和资源分配的联合优化方法
CN109684075B (zh) 一种基于边缘计算和云计算协同进行计算任务卸载的方法
CN109413724B (zh) 一种基于mec的任务卸载和资源分配方案
Chen et al. Qoe-aware decentralized task offloading and resource allocation for end-edge-cloud systems: A game-theoretical approach
Wu et al. An efficient offloading algorithm based on support vector machine for mobile edge computing in vehicular networks
CN111010684B (zh) 一种基于mec缓存服务的车联网资源分配方法
CN110798849A (zh) 一种超密网边缘计算的计算资源分配与任务卸载方法
CN111475274B (zh) 云协同多任务调度方法及装置
CN109194763B (zh) 一种超密集网络中基于小型基站自组织协作的缓存方法
CN109600178B (zh) 一种边缘计算中能耗与时延和最小化的优化方法
CN110717300B (zh) 面向电力物联实时在线监测业务的边缘计算任务分配方法
CN110233755B (zh) 一种物联网中雾计算的计算资源和频谱资源分配方法
Meng et al. Deep reinforcement learning based task offloading algorithm for mobile-edge computing systems
CN112689296B (zh) 一种异构IoT网络中的边缘计算与缓存方法及系统
CN113645273B (zh) 基于业务优先级的车联网任务卸载方法
Tan et al. Joint offloading and resource allocation based on UAV-assisted mobile edge computing
CN113590279A (zh) 一种面向多核边缘计算服务器的任务调度和资源分配方法
Wang et al. Task allocation mechanism of power internet of things based on cooperative edge computing
CN110780986B (zh) 一种基于移动边缘计算的物联网任务调度方法及系统
CN114785692A (zh) 一种虚拟电厂聚合调控通信网络流量均衡方法及装置
Ren et al. Multi-slice joint task offloading and resource allocation scheme for massive MIMO enabled network
Li et al. Joint access point selection and resource allocation in MEC-assisted network: A reinforcement learning based approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant