CN110706912A - 一种非晶纳米晶软磁粉芯的制备方法 - Google Patents
一种非晶纳米晶软磁粉芯的制备方法 Download PDFInfo
- Publication number
- CN110706912A CN110706912A CN201910846097.0A CN201910846097A CN110706912A CN 110706912 A CN110706912 A CN 110706912A CN 201910846097 A CN201910846097 A CN 201910846097A CN 110706912 A CN110706912 A CN 110706912A
- Authority
- CN
- China
- Prior art keywords
- magnetic powder
- soft magnetic
- powder core
- amorphous nanocrystalline
- parylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0246—Manufacturing of magnetic circuits by moulding or by pressing powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15358—Making agglomerates therefrom, e.g. by pressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15383—Applying coatings thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明提供一种非晶纳米晶软磁粉芯的制备方法,包括以下步骤:1)对清洗后的非晶纳米晶磁粉进行偶联处理;2)在偶联后的磁粉表面化学气相沉积一层派瑞林薄膜,对磁粉进行绝缘包覆处理;3)在常温下采用模具将磁粉压制成型,脱模得到压坯;4)对压坯进行退火热处理,得到非晶纳米晶软磁粉芯;本发明方法绝缘包覆后能够在较高的压力下维持绝缘层稳定,实现非晶纳米晶磁粉的有效绝缘,并且可有效降低颗粒表面的摩擦系数,从而获得具有较高密度和优异软磁性能的非晶纳米晶软磁磁粉芯。
Description
技术领域
本发明涉及磁性材料技术领域,具体讲是一种非晶纳米晶软磁粉芯的制备方法。
背景技术
金属软磁粉芯是由铁磁性颗粒与绝缘介质混合,通过粉末冶金工艺压制而成的一种软磁材料。它既保留了软磁合金和铁氧体软磁的优良特性,又最大限度的克服了它们的部分缺陷,使得金属磁粉芯磁饱和高,工作频率范围宽,磁导率稳定性好且可控性高,这对于电子产品向高精度、高灵敏度和大容量、小型化方向发展具有及其重要的意义。
常见的磁粉芯主要包括铁粉芯、铁硅粉芯、铁硅铝粉芯、铁镍粉芯以及铁镍钼粉芯。而非晶纳米晶磁粉芯由于具有高频(可至数兆赫以上)大电流、高稳定等特点,大量用于高频开关电源中,是磁粉芯材料的重要发展方向。然而,非晶纳米晶软磁粉末由于具有较大的硬度,很难压制成形,常规压力下制备的压坯密度很低,目前的压制制备方案都是采用2GPa左右的超高压强成形。在如此高的压强下,无机包覆层如磷酸盐、金属氧化物及铁氧体等,容易由于脆性开裂而影响其绝缘性能;而有机包覆层热稳定性较差,通常在超过300℃时就开始快速分解。因此,为保持磁粉芯的强度和绝缘效果,需用采用较多的有机包覆材料,从而增加了颗粒间气隙,导致磁粉芯的磁滞损耗增加。中国发明专利CN109559865A公开了一种新型非晶磁粉芯粘结剂,采用粒径为2-4μm的锰锌铁氧体作为有机包覆剂硅树脂的填料。然而铁氧体超大的粒径增加了包覆层厚度,大幅度增加磁滞损耗且降低磁导率。中国发明专利CN 106890999 A采用无机、有机双层包覆,并在压制前再加入绝缘剂,同时在压坯热处理后再浸入有机粘结溶液中固化制备粉芯。而该方法虽然可以提高磁粉芯的密度,但制备工艺繁琐且非磁性物质含量高,极大的恶化了软磁性能。
为解决目前存在的问题,急需一种厚度薄、在较高压强下可保持稳定、流动性好且耐高温的绝缘包覆涂层,以发挥非晶纳米晶软磁粉芯的最大应用潜力。
发明内容
针对上述技术现状,本发明旨在提供一种非晶纳米晶软磁粉芯的制备方法,利用该方法绝缘包覆后能够在较高的压力下维持绝缘层稳定,实现非晶纳米晶磁粉的有效绝缘,并且可有效降低颗粒表面的摩擦系数,从而获得具有较高密度和优异软磁性能的非晶纳米晶软磁磁粉芯。
本发明的技术解决方案如下:一种非晶纳米晶软磁粉芯的制备方法,包括以下步骤:
1)对清洗后的非晶纳米晶磁粉进行偶联处理;
2)在偶联后的磁粉表面化学气相沉积一层派瑞林薄膜,对磁粉进行绝缘包覆处理;
3)在常温下采用模具将磁粉压制成型,脱模得到压坯;
4)对压坯进行退火热处理,得到非晶纳米晶软磁粉芯。
步骤1)中,所述非晶纳米晶磁粉包括FeSiB、FeSiBC、FeSiBP、FeSiBCr、FePBNb、FeBCu、FeBCCu、FeSiBCu、FeSiBNbCu系软磁粉末中的一种或几种。
步骤1)中,所述偶联处理的具体工艺为:采用超声混合的方式将偶联剂与乙醇均匀混合10-30分钟,形成分散液,然后将清洗后的磁粉与分散液均匀混合,机械搅拌0.5-2h后并清洗1-3次,在40-100℃下真空干燥2-6h后,过100目筛得到偶联磁粉。
步骤2)中,所述化学气相沉积的具体工艺为:在真空2.0-3.0Pa的条件下将派瑞林粉体加热至160-200℃,并随惰性气流进入裂解腔在630-700℃下裂解为单体,最后单体进入旋转的室温沉积腔,均匀地沉积在滚动的磁粉表面形成绝缘包覆薄膜层。
步骤3)中,成型压力为800-2200MPa,保压时间为10-180s。
步骤4)中,退火热处理采用真空热处理或气氛热处理,热处理温度为340-520℃,处理时间为0.5-2h。
所述偶联剂包括硅烷偶联剂、钛酸酯偶联剂或铬络合物偶联剂中的一种或几种,偶联剂的含量为磁粉质量的0.5-6 wt.%。
所述的派瑞林粉末为派瑞林-N、派瑞林-C、派瑞林-D、派瑞林-F、派瑞林-HT中的一种或几种,沉积的绝缘层厚度为0.01-5μm。
所述的热处理气氛包括氮气、氩气或氢气中的一种或混合气体。
本发明的有益效果是:本发明采用化学气相沉积技术,在已偶联处理后的非晶纳米晶磁粉表面包覆一层派瑞林绝缘包覆层。在常温下进行高压压制,退火后制成软磁粉芯。与现有的非晶纳米晶软磁粉芯制备方法相比,派瑞林绝缘包覆层可在高压下保持其完整性与稳定性,有利于粉末颗粒之间的绝缘;而较低的动态摩擦系数可以有效增大粉芯密度并提升粉芯的直流偏置特性。采用本方法制作的非晶纳米晶软磁粉芯具有良好的磁导率高频稳定性,较高的直流偏置特性和较低的磁芯损耗。
本发明对非晶纳米晶磁粉进行表面改性后,在磁粉颗粒表面沉积致密均匀的派瑞林绝缘包覆层,然后压制成型并退火热处理得到软磁粉芯。采用该方法制备的磁粉表面包覆层光滑、致密且均匀,可在高压下保持其完整性与稳定性,有利于磁粉颗粒之间的绝缘,并可以有效增大磁粉芯的密度,提高磁粉芯的强度。采用本方法制备的非晶纳米晶软磁粉芯具有良好的磁导率高频稳定性,较高的直流偏置特性和较低的磁芯损耗,可广泛应用于大功率开关电源及高效节能型电机等器件的制造。
附图说明
图1是是实施例1中包覆派瑞林绝缘层的磁粉颗粒的表面微观形貌图。
图2是实施例1中包覆派瑞林绝缘层的磁粉颗粒的截面微观形貌图。
图3是对比例1中包覆环氧树脂绝缘层的磁粉颗粒的表面微观形貌图。
具体实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
实施例1:
(1)将磁粉重量1 wt.%的硅烷偶联剂(APTES)分散于100ml分析纯无水乙醇溶液中,并超声0.5 h得到分散液。将水雾化制备的FeSiBPNbCr非晶磁粉于无水乙醇中清洗3遍后,加入到分散液中,在室温下机械搅拌1 h,随后用无水乙醇清洗磁粉3遍。然后将磁粉在45℃的真空环境内干燥6h,并过100目筛收集相互分离的偶联磁粉。
(2)将偶联后的磁粉置于可旋转的滚动沉积腔内,在2.0~3.0 Pa的真空条件下将派瑞林粉体加热至180℃,并随气流进入裂解腔,在650℃下裂解为单体,最后单体进入旋转的室温沉积腔,均匀地沉积在滚动的磁粉表面,形成绝缘包覆薄膜层。图1与图2分别为包覆后粉末表面形貌与粉末截面形貌,可以看到包覆层光滑且致密,厚度为0.14 μm。
(3)将步骤(2)得到的磁粉颗粒置于液压成型机中,使用1800 MPa的压强压制成外径20.3 mm,内径12.7 mm,高度为5.5 mm的环形磁粉芯,保压时间为60 s,得到成型度完好的压坯。
(4)对压坯进行460℃真空热处理,保温时间为1h,得到非晶软磁粉芯。
按照实施例1制备的非晶软磁粉芯,对其进行性能测试,结果如下:
经派瑞林包覆后磁粉芯密度为5.83 g/cm3,在1MHz下磁导率为60,在0.1T,100kHz的条件下损耗为810 mW/cm3,外加100Oe磁场下直流偏置性能为48%。
实施例2:
本实施例与实施例1基本相同,其不同之处在于,所采用的非晶磁粉为FeSiBCCr,且包覆的派瑞林厚度为0.3 μm。
按照实施例2制备的非晶软磁粉芯,对其进行性能测试,结果如下:
经派瑞林包覆后磁粉芯密度为5.82 g/cm3,在1MHz下磁导率为58,在0.1T,100kHz的条件下损耗为805 mW/cm3,外加100Oe场下直流偏置性能为54%,表现出优异的综合软磁性能。
对比例1:
(1)选择铁基非晶磁粉,该铁基非晶磁粉与实施例1中步骤(1)所使用的铁基非晶磁粉完全相同。
(2)取磁粉重量2 wt.%的环氧树脂,溶于丙酮后与磁粉均匀混合并不断搅拌,过筛并收集100目以下的粉末于45℃真空干燥6 h。经环氧树脂包覆后磁粉的微观形貌如图3所示,可以看到很多絮状树脂附着在磁粉表面,对比图1可以发现派瑞林包覆的磁粉表面更为光滑。
(3)将步骤(2)得到的磁粉颗粒置于液压成型机中,使用1800 MPa的压强压制成外径20.3 mm,内径12.7 mm,高度为5.5 mm的环形磁粉芯,保压时间为60 s,得到成型度完好的压坯。
(4)对压坯进行460℃真空热处理,保温时间为1h,得到非晶软磁粉芯。
按照具体实施例1制备的非晶软磁粉芯,对其进行性能测试,结果如下:
经环氧树脂包覆后磁粉芯密度为5.72 g/cm3,在1MHz下磁导率为58,在0.1T,100kHz的条件下损耗为890 mW/cm3,外加100Oe场下直流偏置性能为43%。
对比例2:
本对比例与对比例1基本相同,其不同之处在于,所采用的非晶磁粉与实施例2中的磁粉相同。
按照具体对比例2制备的非晶软磁粉芯,对其进行性能测试,结果如下:
经环氧树脂包覆后磁粉芯密度为5.70 g/cm3,在1MHz下磁导率为55,在0.1T,100kHz的条件下损耗为865 mW/cm3,外加100Oe场下直流偏置性能为50%。
通过以上对比可以看出,利用本发明所述的非晶或纳米晶软磁粉芯的制备方法,与传统技术方案相比,可以有效提高磁粉芯的密度及直流偏置特性,并且可以进一步降低损耗。表1是本发明实施例与对比例的测试数据。
表1
以上仅是本发明的特征实施范例,对本发明保护范围不构成任何限制。凡采用同等交换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。
Claims (9)
1.一种非晶纳米晶软磁粉芯的制备方法,其特征在于,包括以下步骤:
1)对清洗后的非晶纳米晶磁粉进行偶联处理;
2)在偶联后的磁粉表面化学气相沉积一层派瑞林薄膜,对磁粉进行绝缘包覆处理;
3)在常温下采用模具将磁粉压制成型,脱模得到压坯;
4)对压坯进行退火热处理,得到非晶纳米晶软磁粉芯。
2.根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,步骤1)中,所述非晶纳米晶磁粉包括FeSiB、FeSiBC、FeSiBP、FeSiBCr、FePBNb、FeBCu、FeBCCu、FeSiBCu、FeSiBNbCu系软磁粉末中的一种或几种。
3.根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,步骤1)中,所述偶联处理的具体工艺为:采用超声混合的方式将偶联剂与乙醇均匀混合10-30分钟,形成分散液,然后将清洗后的磁粉与分散液均匀混合,机械搅拌0.5-2h后并清洗1-3次,在40-100℃下真空干燥2-6h后,过100目筛得到偶联磁粉。
4.根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,步骤2)中,所述化学气相沉积的具体工艺为:在真空2.0-3.0Pa的条件下将派瑞林粉体加热至160-200℃,并随惰性气流进入裂解腔在630-700℃下裂解为单体,最后单体进入旋转的室温沉积腔,均匀地沉积在滚动的磁粉表面形成绝缘包覆薄膜层。
5.根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,步骤3)中,成型压力为800-2200MPa,保压时间为10-180s。
6.根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,步骤4)中,退火热处理采用真空热处理或气氛热处理,热处理温度为340-520℃,处理时间为0.5-2h。
7. 根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,所述偶联剂包括硅烷偶联剂、钛酸酯偶联剂或铬络合物偶联剂中的一种或几种,偶联剂的含量为磁粉质量的0.5-6 wt.%。
8.根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,所述的派瑞林粉末为派瑞林-N、派瑞林-C、派瑞林-D、派瑞林-F、派瑞林-HT中的一种或几种,沉积的绝缘层厚度为0.01-5μm。
9.根据权利要求1所述的非晶纳米晶软磁粉芯的制备方法,其特征在于,所述的热处理气氛包括氮气、氩气或氢气中的一种或混合气体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910846097.0A CN110706912A (zh) | 2019-09-09 | 2019-09-09 | 一种非晶纳米晶软磁粉芯的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910846097.0A CN110706912A (zh) | 2019-09-09 | 2019-09-09 | 一种非晶纳米晶软磁粉芯的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110706912A true CN110706912A (zh) | 2020-01-17 |
Family
ID=69196141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910846097.0A Pending CN110706912A (zh) | 2019-09-09 | 2019-09-09 | 一种非晶纳米晶软磁粉芯的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110706912A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112341759A (zh) * | 2020-11-18 | 2021-02-09 | 重庆大学 | 一种改性纳米氧化铝复合环氧树脂绝缘材料及其制备方法 |
CN113066631A (zh) * | 2021-03-26 | 2021-07-02 | 福建尚辉润德新材料科技有限公司 | 一种Parylene粉末在铁基软磁复合材料中的应用方法 |
CN113113224A (zh) * | 2021-04-14 | 2021-07-13 | 中国科学院宁波材料技术与工程研究所 | 一种模压电感用软磁粉末的新型绝缘包覆方法 |
CN114220645A (zh) * | 2021-12-16 | 2022-03-22 | 宁波磁性材料应用技术创新中心有限公司 | 一种非晶复合磁粉芯的制备方法 |
CN114260457A (zh) * | 2021-01-15 | 2022-04-01 | 武汉科技大学 | FeSiBCCr非晶磁粉及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103247402A (zh) * | 2013-05-20 | 2013-08-14 | 哈尔滨工业大学 | 一种复合软磁材料及制备方法 |
CN105788793A (zh) * | 2016-05-10 | 2016-07-20 | 北京科技大学 | 提高各向异性永磁粉末颗粒表面润滑性的表面改性方法 |
CN108183012A (zh) * | 2017-12-25 | 2018-06-19 | 郑州轻工业学院 | 一种提高铁基软磁复合材料压制密度的绝缘包覆处理方法 |
-
2019
- 2019-09-09 CN CN201910846097.0A patent/CN110706912A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103247402A (zh) * | 2013-05-20 | 2013-08-14 | 哈尔滨工业大学 | 一种复合软磁材料及制备方法 |
CN105788793A (zh) * | 2016-05-10 | 2016-07-20 | 北京科技大学 | 提高各向异性永磁粉末颗粒表面润滑性的表面改性方法 |
CN108183012A (zh) * | 2017-12-25 | 2018-06-19 | 郑州轻工业学院 | 一种提高铁基软磁复合材料压制密度的绝缘包覆处理方法 |
Non-Patent Citations (1)
Title |
---|
SHEN WU, ET AL.: "Effect of Compaction Parameters on the Magnetic and Corrosive Properties of Soft Magnetic Composites with Parylene Insulation", 《JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112341759A (zh) * | 2020-11-18 | 2021-02-09 | 重庆大学 | 一种改性纳米氧化铝复合环氧树脂绝缘材料及其制备方法 |
CN114260457A (zh) * | 2021-01-15 | 2022-04-01 | 武汉科技大学 | FeSiBCCr非晶磁粉及其制备方法 |
CN113066631A (zh) * | 2021-03-26 | 2021-07-02 | 福建尚辉润德新材料科技有限公司 | 一种Parylene粉末在铁基软磁复合材料中的应用方法 |
CN113066631B (zh) * | 2021-03-26 | 2024-07-02 | 福建尚辉润德新材料科技有限公司 | 一种Parylene粉末在铁基软磁复合材料中的应用方法 |
CN113113224A (zh) * | 2021-04-14 | 2021-07-13 | 中国科学院宁波材料技术与工程研究所 | 一种模压电感用软磁粉末的新型绝缘包覆方法 |
CN114220645A (zh) * | 2021-12-16 | 2022-03-22 | 宁波磁性材料应用技术创新中心有限公司 | 一种非晶复合磁粉芯的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110706912A (zh) | 一种非晶纳米晶软磁粉芯的制备方法 | |
AU2020103177A4 (en) | Method For Preparing FeSiBCr/SiO2 Nanocrystalline Soft Magnetic Composite Iron Core | |
CN108777229B (zh) | 一种高频软磁铁硅铝磁粉芯的制备方法 | |
CN108046789B (zh) | 一种电磁屏蔽复合材料的制备方法 | |
CN104190945B (zh) | 一种非晶金属软磁粉芯的制备方法 | |
WO2021142974A1 (zh) | 一种绝缘包覆的金属软磁粉末及其制备方法和用途 | |
CN110911114B (zh) | 一种高导热无线充电接收端用复合隔磁片及其制备方法 | |
CN109103010B (zh) | 一种提高磁粉芯绝缘层致密度的材料及其方法 | |
CN103551568A (zh) | 一种鳞片状纳米晶高温微波吸收剂的制备方法 | |
CN111696746A (zh) | 一种破碎法铁硅铝软磁粉心及其制备方法 | |
CN111040729A (zh) | 一种碳化硅基纳米复合吸波材料制备方法及其应用 | |
CN112908603A (zh) | 一种铁基非晶磁粉芯及其制备方法 | |
Guo et al. | Biomass-based electromagnetic wave absorption materials with unique structures: a critical review | |
CN107119174B (zh) | 一种提高铁硅铝软磁粉芯直流偏置性能的退火方法 | |
CN117174424B (zh) | 一种电感用高性能合金磁体及制备方法 | |
CN117877828A (zh) | 一种高频率、低损耗的铁镍软磁材料的制备方法及其材料 | |
CN112562956A (zh) | 一种铁氧体包覆FeSiAl金属磁粉芯及其制备方法 | |
CN111696747A (zh) | 一种低损耗铁硅铝软磁粉心及其制备方法 | |
CN110828092A (zh) | 一种充电桩用磁导率为26的铁硅铝镍软磁粉心及其制备方法 | |
CN110853860A (zh) | 一种有效磁导率为60的铁硅铝镍软磁粉心及其制备方法 | |
JP6978040B2 (ja) | SiO2含有被膜を備えたSi含有Fe基合金粉及びその製造方法 | |
CN114078631B (zh) | 一种软磁复合材料的制备方法及一种金属磁粉芯 | |
CN113838658B (zh) | 一种铁硅磁粉芯的制备方法 | |
CN113299451A (zh) | 一种FeNi纳米粒子/环氧树脂复合包覆的铁硅磁粉芯及其制备方法 | |
CN110814336B (zh) | 一种抗氧化吸收剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200117 |
|
RJ01 | Rejection of invention patent application after publication |