CN110702743B - 一种纳米机电氢气传感器及其制备方法 - Google Patents

一种纳米机电氢气传感器及其制备方法 Download PDF

Info

Publication number
CN110702743B
CN110702743B CN201910983310.2A CN201910983310A CN110702743B CN 110702743 B CN110702743 B CN 110702743B CN 201910983310 A CN201910983310 A CN 201910983310A CN 110702743 B CN110702743 B CN 110702743B
Authority
CN
China
Prior art keywords
layer
metal nanowire
hydrogen
ferroelectric
ferroelectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910983310.2A
Other languages
English (en)
Other versions
CN110702743A (zh
Inventor
张敏昊
宋凤麒
曹路
张同庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201910983310.2A priority Critical patent/CN110702743B/zh
Publication of CN110702743A publication Critical patent/CN110702743A/zh
Application granted granted Critical
Publication of CN110702743B publication Critical patent/CN110702743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种纳米机电氢气传感器及其制备方法,其中传感器包括自下至上依次设置的衬底层和至少一层铁电层,位于最上层的铁电层上设置有至少一根金属纳米线,每根金属纳米线上设置有至少一个裂结,所述金属纳米线的两端分别连接设置于最上层的铁电层上第一电极层,位于最下层的铁电层与衬底层之间设置有第二电极层,或者第二电极层设置并连接于非最上层的铁电层的外围;本发明采用铁电层/金属纳米线及其裂结的复合结构作为纳米机电氢气传感器的敏感模块,既充分利用了金属纳米线及其裂结的氢敏特性,又利用了铁电层在循环电场作用下对裂结的开闭状态的控制,使得这种结构纳米机电氢气传感器能获得寿命长更高灵敏的氢敏特性。

Description

一种纳米机电氢气传感器及其制备方法
技术领域
本发明属于气体检测技术领域,特别涉及一种纳米机电氢气传感器及其制备方法。
背景技术
我国是第一产氢大国,具有丰富的氢源基础。预计到2050年氢在我国终端能源体系占比至少达10%。
作为一种清洁、高效的二次能源,氢气具有易燃、易爆等特性。在室温与标准大气压下,当空气中氢气体积浓度达4%~75%时,氢气变得易燃且极易发生爆炸。因而研制出能灵敏探测氢气浓度的传感器尤为重要。
钯金属由于对氢气极为敏感而常作为氢气传感器的敏感媒介。当钯金属暴露于含氢气的环境中,氢分子会吸附于钯金属的表面,逐渐分解为氢原子,并渗透进钯金属内形成钯-氢化合物。由于钯-氢化合物许多性质,如导电性、晶格常数、折射率都与钯金属不同,并且由于钯金属对于氢气具有固有的选择性、快速的吸附速度、氢化物形成的可逆性,使得钯金属成为制作氢气传感器的良好材料。
纯钯纳米薄膜氢气传感器是通过将钯纳米薄膜溅射到硅衬底上获得的,其根据钯吸氢形成氢化物(PdHx)后电阻上升的原理来探测氢气。而脆氢现象影响着纯钯纳米薄膜氢气传感器的重复使用。研究发现,利用不同种类的钯合金制作薄膜氢气传感器能够增强钯基氢气传感器的稳定性,例如Pd-Au和Pd-Ag。但是钯合金薄膜氢气传感器存在成本造价较高的问题。
研究发现纳米团簇形态的钯薄膜相比于一般的钯纳米薄膜在响应度和响应时间上都更加优秀。钯的纳米团簇形态减少了钯氢气传感器的滞回效应,但长时间暴露在氢气环境下并不能克服脆氢现象。
研究发现直径越小的表面越粗糙的钯纳米线具有更好的响应度和更低的相应时间。但其相对钯薄膜制备难度大、成品率低。而且长时间暴露在氢气环境下,其也不能克服脆氢现象。
因此,基于钯金属的现有技术中氢气传感器需要进一步的改进。
发明内容
为了解决现有技术中的问题,本发明提供一种纳米机电氢气传感器及其制备方法,该传感器寿命长且具有更好的氢敏特性。
为实现上述目的,本发明采用的技术方案为:
一种纳米机电氢气传感器,包括自下至上依次设置的衬底层1和至少一层铁电层2,位于最上层的铁电层2上设置有至少一根金属纳米线3,每根金属纳米线3上设置有至少一个裂结4,所述金属纳米线3的两端分别连接设置于最上层的铁电层2上第一电极层51,位于最下层的铁电层2与衬底层1之间设置有第二电极层52,或者第二电极层52设置并连接于非最上层的铁电层2的外围,优选地,第二电极层52也可以设置在铁电层2的侧方。
优选地,所述衬底层1为单晶硅层、钛酸锶层、云母层、蓝宝石层或玻璃。
优选地,所述铁电层2为铌镁酸铅-钛酸铅(PMN-PT)层、钛酸钡层、聚偏氟乙烯(PVDF)层、氧化铪层或掺杂氧化铪层,铁电层可以通过脉冲激光沉积、分子束外延或有机合成等方法形成。
优选地,所述金属纳米线3为具有氢敏特性的金属纳米线,金属纳米线可以通过电子束蒸发、磁控溅射、热蒸镀、脉冲激光沉积或分子束外延等方法形成。
优选地,所述金属纳米线3为具有吸氢后体积膨胀性质的金属钯纳米线;该金属纳米线吸氢后,其性质例如,导电性、晶格常数等等发生变化,而析氢后性质恢复如初。
优选地,所述第一电极层51和第二电极层52均为金、银、铜、铂、镍或铟层,第一电极层51和第二电极层52均可以通过电子束蒸发、磁控溅射、热蒸镀、脉冲激光沉积或分子束外延等方法形成。
优选地,所述裂结4可以通过聚焦离子束刻蚀、机械法、电迁移、化学法或掩膜沉积法等方法形成。其产生、位置、方向和大小都是可控的,裂结4开启的间隙大小可以通过铁电层在循环电场作用下来精确调节,这种结构充分利用了铁电层对裂结4间隙的可调性,从而调控纳米机电氢气传感器能获得更好的氢敏特性。
进一步的,在吸收氢气之前,裂结开启,使得金属纳米线中间分离;而在吸收氢气之后,金属纳米线体积膨胀,裂结闭合,金属纳米线中间接触,纳米机电氢气传感器阻值发生明显的下降。
进一步的,在吸收氢气之前,铁电层在循环电场作用下可以对裂结的开启或闭合状态进行精确地控制,在吸收氢气之后,铁电层在循环电场作用下可以对裂结的开启或闭合状态进行精确控制。
进一步的,当纳米机电氢气传感器在长时间暴露在氢气的环境下,裂结4闭合;铁电层2在循环电场作用下,再次开启裂结4,使得金属纳米线中间分离,纳米机电氢气传感器阻值又能会恢复到正常态,这种纳米机电氢气传感器结构既充分利用了金属纳米线及其裂结的氢敏特性,也利用了铁电层的“清洁”功能,使得纳米机电氢气传感器能获得更好的氢敏特性和更长的寿命。
一种纳米机电氢气传感器的制备方法,包括以下步骤:
S1、选取铁电层2,依次用丙酮、乙醇、去离子水超声清洗;优选地,铁电层2为单晶PMN-PT;
S2、在铁电层2的下表面镀第二电极层52;优选地,第二电极层52用电子束蒸发设备制备,在单晶PMN-PT铁电层的下表面镀一层金作为第二电极层52,蒸镀时,腔体真空度为10-4Pa,衬底温度为20℃,沉积速率为为
Figure GDA0002276947940000031
制备的金膜厚度为10~100nm;
S3、采用胶将第二电极层52的下表面黏贴于衬底层1上;优选地,衬底层1为硅衬底;
S4、在铁电层2的上表面制备金属纳米线3;优选地,金属纳米线用电子束蒸发设备制备,在单晶PMN-PT铁电层的上表面通过电子束光刻、电子束蒸发制备金属钯纳米线,蒸镀时,腔体真空度为10-4Pa,衬底温度为20℃,沉积速率为
Figure GDA0002276947940000032
制备的金属钯纳米线的宽度为50nm,长度为10μm;
S5、在金属纳米线3上制备裂结4,裂结4通过聚焦离子束刻蚀来制备;采用聚焦离子束刻蚀技术,在金属钯纳米线上制备宽度为2-10nm的裂结4;
S6、将金属纳米线3的两端沉积上第一电极层51;优选地,第一电极层51为金电极,将金属钯纳米线的两端沉积上金电极;且第一电极层51与第二电极层52不相接。
一种纳米机电氢气传感器的制备方法,包括以下步骤:
S1、选取衬底层1,依次用丙酮、乙醇、去离子水超声清洗;优选地,衬底层1为单晶钛酸锶衬底;
S2、在衬底层1的上表面镀第二电极层52;优选地,第二电极层52用电子束蒸发设备制备,在单晶钛酸锶衬底层的上表面镀一层镍作为第二电极层52,蒸镀时,腔体真空度为10-4Pa,衬底温度为20℃,沉积速率为
Figure GDA0002276947940000033
制备的镍膜厚度为10nm;
S3、在第二电极层52的上表面制备钛酸钡作为铁电层2,铁电层2用脉冲激光沉积法制备,蒸镀时,激光能量300为mJ/pluse,腔体真空度为10-4Pa,衬底温度为550℃,制备的钛酸钡厚度为10nm。
S4、在铁电层2的上表面制备金属纳米线3;优选地,金属钯纳米线用磁控溅射设备制备,通过电子束光刻、磁控溅射在钛酸钡层上表面制备金属钯纳米线,蒸镀时,腔体真空度为10-3Pa,衬底温度为20℃,沉积速率为
Figure GDA0002276947940000041
制备的金属钯纳米线的宽度为50nm,长度为10μm;
S5、在金属纳米线3上制备裂结4,优选地,裂结4通过机械脆裂法来制备;采用机械脆裂技术,在金属钯纳米线上制备宽度为2-5nm的裂结4;
S6、将金属纳米线3的两端沉积上第一电极层51;优选地,第一电极层51采用磁控溅射法制备;第一电极层51为镍电极,将金属钯纳米线的两端沉积上镍电极;且第一电极层51与第二电极层52不相接。
与现有技术相比,本发明具有以下有益效果:
本发明采用铁电层/金属纳米线及其裂结的复合结构作为纳米机电氢气传感器的敏感模块,既充分利用了金属纳米线及其裂结的氢敏特性,又利用了铁电层在循环电场作用下对裂结的开闭状态的控制,使得这种结构纳米机电氢气传感器能获得寿命长更高灵敏的氢敏特性。
附图说明
图1是本发明的结构示意图;
图2是图1的俯视图;
图3是图2中铁电层在循环电场作用下的俯视图;
图4是吸收氢气之后纳米机电氢气传感器的俯视图;
图5是图4中铁电层在循环电场作用下的俯视图;
其中:1-衬底层,2-铁电层,3-金属纳米线,4-裂结,51-第一电极层,52-第二电极层。
具体实施方式
下面结合实施例对本发明作更进一步的说明。
如图1-5所示,一种纳米机电氢气传感器,包括自下至上依次设置的衬底层1和至少一层铁电层2,位于最上层的铁电层2上设置有至少一根金属纳米线3,每根金属纳米线3上设置有至少一个裂结4,所述金属纳米线3的两端分别连接设置于最上层的铁电层2上第一电极层51,位于最下层的铁电层2与衬底层1之间设置有第二电极层52,或者第二电极层52设置并连接于非最上层的铁电层2的外围,优选地,第二电极层52也可以设置在铁电层2的侧方。
作为一个优选方案,所述衬底层1为单晶硅层、钛酸锶层、云母层、蓝宝石层或玻璃;
作为一个优选方案,所述铁电层2为铌镁酸铅-钛酸铅(PMN-PT)层、钛酸钡层、聚偏氟乙烯(PVDF)层、氧化铪层或掺杂氧化铪层,铁电层可以通过脉冲激光沉积、分子束外延或有机合成等方法形成。
作为一个优选方案,所述金属纳米线3为具有氢敏特性的金属纳米线,优选地,金属纳米线可以通过电子束蒸发、磁控溅射、热蒸镀、脉冲激光沉积或分子束外延等方法形成;优选地,所述金属纳米线3为具有吸氢后体积膨胀性质的金属钯纳米线;该金属纳米线吸氢后,其性质例如,导电性、晶格常数等等发生变化,而析氢后性质恢复如初。
作为一个优选方案,所述第一电极层51和第二电极层52均为金、银、铜、铂、镍或铟层,优选地,第一电极层51和第二电极层52均可以通过电子束蒸发、磁控溅射、热蒸镀、脉冲激光沉积或分子束外延等方法形成。
作为一个优选方案,所述裂结4可以通过聚焦离子束刻蚀、机械法、电迁移、化学法或掩膜沉积法等方法形成。裂结4的产生、位置、方向和大小都是可控的,具体地讲,裂结4开启的间隙大小可以通过铁电层在循环电场作用下来精确调节,如图3所示。这种结构充分利用了铁电层对裂结4间隙的可调性,从而调控纳米机电氢气传感器能获得更好的氢敏特性。
作为一个优选方案,在吸收氢气之前,裂结开启,使得金属纳米线中间分离;而在吸收氢气之后,金属纳米线体积膨胀,裂结闭合,金属纳米线中间接触,纳米机电氢气传感器阻值发生明显的下降,如图4所示;
作为一个优选方案,在吸收氢气之前,铁电层在循环电场作用下可以对裂结的开启或闭合状态进行精确地控制,在吸收氢气之后,铁电层在循环电场作用下可以对裂结的开启或闭合状态进行精确控制。如当纳米机电氢气传感器在长时间暴露在氢气的环境下,裂结4闭合;铁电层2在循环电场作用下,再次开启裂结4,使得金属纳米线中间分离,纳米机电氢气传感器阻值又能会恢复到正常态,如图5所示。这种纳米机电氢气传感器结构既充分利用了金属纳米线及其裂结的氢敏特性,也利用了铁电层的“清洁”功能,使得纳米机电氢气传感器能获得更好的氢敏特性和更长的寿命。
下面通过实施例对纳米机电氢气传感器的制备方法进行描述,
实施例1
一种纳米机电氢气传感器的制备方法,包括以下步骤:
S1、选取单晶PMN-PT作为铁电层2,依次用丙酮、乙醇、去离子水超声清洗;
S2、采用电子束蒸发设备,在单晶PMN-PT铁电层的下表面镀一层金作为第二电极层52;蒸镀时,腔体真空度为10-4Pa,衬底温度为20℃,沉积速率为为
Figure GDA0002276947940000061
制备的金膜厚度为10~100nm;
S3、采用胶将第二电极层52的下表面黏贴于硅衬底上;
S4、金属纳米线采用电子束蒸发设备制备,在单晶PMN-PT铁电层的上表面通过电子束光刻、电子束蒸发制备金属钯纳米线,蒸镀时,腔体真空度为10-4Pa,衬底温度为20℃,沉积速率为
Figure GDA0002276947940000062
制备的金属钯纳米线的宽度为50nm,长度为10μm;
S5、在金属纳米线3上通过聚焦离子束刻蚀来制备裂结4,裂结4采用聚焦离子束刻蚀技术,在金属钯纳米线上制备宽度为2-10nm的裂结4;
S6、将金属钯纳米线的两端沉积上金电极第一电极层;且第一电极层51与第二电极层52不接触。
实施例2
一种纳米机电氢气传感器的制备方法,包括以下步骤:
S1、选取单晶钛酸锶作为衬底层1,依次用丙酮、乙醇、去离子水超声清洗;
S2、用电子束蒸发设备,在单晶钛酸锶衬底层的上表面镀一层镍作为第二电极层52;蒸镀时,腔体真空度为10-4Pa,衬底温度为20℃,沉积速率为
Figure GDA0002276947940000063
制备的镍膜厚度为10nm;
S3、采用脉冲激光沉积法,在第二电极层52的上表面制备钛酸钡作为铁电层2,蒸镀时,激光能量300为mJ/pluse,腔体真空度为10-4Pa,衬底温度为550℃,制备的钛酸钡厚度为10nm。
S4、金属钯纳米线采用磁控溅射设备制备,在钛酸钡层上表面通过电子束光刻、磁控溅射制备金属钯纳米线,蒸镀时,腔体真空度为10-3Pa,衬底温度为20℃,沉积速率为
Figure GDA0002276947940000064
制备的金属钯纳米线的宽度为50nm,长度为10μm;
S5、在金属纳米线3上通过机械脆裂法来制备裂结4,裂结4采用机械脆裂技术,在金属钯纳米线上制备宽度为2-5nm的裂结4;
S6、将金属纳米线3的两端沉积上第一电极层51;优选地,第一电极层51采用磁控溅射法制备;第一电极层51为镍电极,将金属钯纳米线的两端沉积上镍电极;且第一电极层51与第二电极层52不接触。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种纳米机电氢气传感器,其特征在于:包括自下至上依次设置的衬底层(1)和至少一层铁电层(2),位于最上层的铁电层(2)上设置有至少一根金属纳米线(3),每根金属纳米线(3)上设置有至少一个裂结(4),所述金属纳米线(3)的两端分别连接设置于最上层的铁电层(2)上第一电极层(51),位于最下层的铁电层(2)与衬底层(1)之间设置有第二电极层(52),或者第二电极层(52)设置并连接于非最上层的铁电层(2)的外围;
在吸收氢气之前,所述裂结(4)处于开启状态,使得金属纳米线中间分离;在吸收氢气之后,所述金属纳米线(3)体积膨胀,使得所述裂结(4)处于闭合状态,金属纳米线中间接触,纳米机电氢气传感器阻值发生下降;
在吸收氢气之前,铁电层在循环电场作用下对裂结(4)的开启或闭合状态进行控制;在吸收氢气之后,铁电层在循环电场作用下对裂结(4)的开启或闭合状态进行控制;
纳米机电氢气传感器暴露在氢气的环境下,裂结(4)闭合;铁电层(2)在循环电场作用下,再次开启裂结(4),金属纳米线(3)中间分离,纳米机电氢气传感器阻值又能会恢复到正常态。
2.根据权利要求1所述的纳米机电氢气传感器,其特征在于:所述衬底层(1)为单晶硅层、钛酸锶层、云母层、蓝宝石层或玻璃。
3.根据权利要求1所述的纳米机电氢气传感器,其特征在于:所述铁电层(2)为铌镁酸铅-钛酸铅层、钛酸钡层、聚偏氟乙烯层、氧化铪层或掺杂氧化铪层。
4.根据权利要求1所述的纳米机电氢气传感器,其特征在于:所述金属纳米线(3)为具有氢敏特性的金属纳米线。
5.根据权利要求4所述的纳米机电氢气传感器,其特征在于:所述金属纳米线(3)为具有吸氢后体积膨胀性质的金属钯纳米线。
6.根据权利要求1所述的纳米机电氢气传感器,其特征在于:所述第一电极层(51)和第二电极层(52)均为金、银、铜、铂、镍或铟层。
7.根据权利要求1-6任一所述的纳米机电氢气传感器的制备方法,其特征在于,包括以下步骤:
S101、选取铁电层(2),依次用丙酮、乙醇、去离子水超声清洗;
S102、在铁电层(2)的下表面镀第二电极层(52);
S103、采用胶将第二电极层(52)的下表面黏贴于衬底层(1)上;
S104、在铁电层(2)的上表面制备金属纳米线(3);
S105、在金属纳米线(3)上制备裂结(4);
S106、将金属纳米线(3)的两端沉积上第一电极层(51);
S201、选取衬底层(1),依次用丙酮、乙醇、去离子水超声清洗;
S202、在衬底层(1)的上表面镀第二电极层(52);
S203、在第二电极层(52)的上表面制备钛酸钡作为铁电层(2);
S204、在铁电层(2)的上表面制备金属纳米线(3);
S205、在金属纳米线(3)上制备裂结(4);
S206、将金属纳米线(3)的两端沉积上第一电极层(51)。
CN201910983310.2A 2019-10-16 2019-10-16 一种纳米机电氢气传感器及其制备方法 Active CN110702743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910983310.2A CN110702743B (zh) 2019-10-16 2019-10-16 一种纳米机电氢气传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910983310.2A CN110702743B (zh) 2019-10-16 2019-10-16 一种纳米机电氢气传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN110702743A CN110702743A (zh) 2020-01-17
CN110702743B true CN110702743B (zh) 2021-09-28

Family

ID=69199797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910983310.2A Active CN110702743B (zh) 2019-10-16 2019-10-16 一种纳米机电氢气传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN110702743B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398362A (zh) * 2020-03-23 2020-07-10 南京大学 一种纳米机电氢气传感器及制备方法
CN111487289A (zh) * 2020-03-26 2020-08-04 南京大学 一种低功耗的氢气检测方法
CN111483973A (zh) * 2020-04-15 2020-08-04 湖北大学 一种单根纳米线、制备方法、氢气传感器及微纳机电设备
CN113155904B (zh) * 2021-02-02 2023-06-20 浙江工业大学 一种用于空气环境中的高灵敏氢气传感器及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056339A1 (en) * 1981-01-14 1982-07-21 Westinghouse Electric Corporation A method of producing a stannic oxide type gas-detecting device
CN1127430A (zh) * 1994-08-11 1996-07-24 日本碍子株式会社 压电/电致伸缩膜元件及其制作方法
EP0877422A1 (en) * 1997-05-09 1998-11-11 Ramtron International Corporation Dual-level metalization method for integrated circuit ferroelectric devices
US6225656B1 (en) * 1998-12-01 2001-05-01 Symetrix Corporation Ferroelectric integrated circuit with protective layer incorporating oxygen and method for fabricating same
CN101084587A (zh) * 2004-12-22 2007-12-05 日本碍子株式会社 膜片结构体
CN101124476A (zh) * 2005-02-22 2008-02-13 毫微-专卖股份有限公司 连续范围氢传感器
CN101482528A (zh) * 2009-01-23 2009-07-15 南京大学 一种可集成的密集纳米颗粒单层膜氢气传感器的制备方法
CN101493481A (zh) * 2009-02-25 2009-07-29 清华大学 基于周期极化铁电晶体的光电集成电场传感器
CN101983914A (zh) * 2010-10-21 2011-03-09 南京大学 制备微观数密度或尺寸梯度金属纳米粒子点阵的方法
CN102313761A (zh) * 2011-07-11 2012-01-11 西安交通大学 一种用于氢气检测的阵列化气敏传感器结构
CN103336036A (zh) * 2013-06-26 2013-10-02 苏州新锐博纳米科技有限公司 一种传感参数可控的钯纳米粒子点阵氢气传感器
CN103424441A (zh) * 2012-05-22 2013-12-04 香港理工大学 制备于柔度可控基底上的连通性可调的钯基氢气传感器及其制作方法
CN103789734A (zh) * 2014-01-27 2014-05-14 南京大学 一种中性团簇束流喷嘴集群实现宽幅纳米颗粒束流的方法
CN105220117A (zh) * 2015-09-07 2016-01-06 胡万谦 一种金属纳米粒子有序微结构的制备方法
CN106469754A (zh) * 2015-08-20 2017-03-01 清华大学 一种轨道开关及其制备方法与应用
CN109307688A (zh) * 2017-07-27 2019-02-05 通用电气公司 感测系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186381B2 (en) * 2001-07-20 2007-03-06 Regents Of The University Of California Hydrogen gas sensor
JP6372848B2 (ja) * 2014-03-28 2018-08-15 Tianma Japan株式会社 Tftイオンセンサ並びにこれを用いた測定方法及びtftイオンセンサ機器
CN104237320B (zh) * 2014-06-19 2017-01-25 电子科技大学 一种氢气传感器
KR101671694B1 (ko) * 2015-08-19 2016-11-02 광주과학기술원 수소 센서의 제조방법 및 이에 의해 제조된 수소 센서

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056339A1 (en) * 1981-01-14 1982-07-21 Westinghouse Electric Corporation A method of producing a stannic oxide type gas-detecting device
CN1127430A (zh) * 1994-08-11 1996-07-24 日本碍子株式会社 压电/电致伸缩膜元件及其制作方法
EP0877422A1 (en) * 1997-05-09 1998-11-11 Ramtron International Corporation Dual-level metalization method for integrated circuit ferroelectric devices
US6225656B1 (en) * 1998-12-01 2001-05-01 Symetrix Corporation Ferroelectric integrated circuit with protective layer incorporating oxygen and method for fabricating same
CN101084587A (zh) * 2004-12-22 2007-12-05 日本碍子株式会社 膜片结构体
CN101124476A (zh) * 2005-02-22 2008-02-13 毫微-专卖股份有限公司 连续范围氢传感器
CN101482528A (zh) * 2009-01-23 2009-07-15 南京大学 一种可集成的密集纳米颗粒单层膜氢气传感器的制备方法
CN101493481A (zh) * 2009-02-25 2009-07-29 清华大学 基于周期极化铁电晶体的光电集成电场传感器
CN101983914A (zh) * 2010-10-21 2011-03-09 南京大学 制备微观数密度或尺寸梯度金属纳米粒子点阵的方法
CN102313761A (zh) * 2011-07-11 2012-01-11 西安交通大学 一种用于氢气检测的阵列化气敏传感器结构
CN103424441A (zh) * 2012-05-22 2013-12-04 香港理工大学 制备于柔度可控基底上的连通性可调的钯基氢气传感器及其制作方法
CN103336036A (zh) * 2013-06-26 2013-10-02 苏州新锐博纳米科技有限公司 一种传感参数可控的钯纳米粒子点阵氢气传感器
CN103789734A (zh) * 2014-01-27 2014-05-14 南京大学 一种中性团簇束流喷嘴集群实现宽幅纳米颗粒束流的方法
CN106469754A (zh) * 2015-08-20 2017-03-01 清华大学 一种轨道开关及其制备方法与应用
CN105220117A (zh) * 2015-09-07 2016-01-06 胡万谦 一种金属纳米粒子有序微结构的制备方法
CN109307688A (zh) * 2017-07-27 2019-02-05 通用电气公司 感测系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Flexible hydrogen sensors using graphene with palladium nanoparticle decoration;Chung M G 等;《Sensors and Actuators B: Chemical》;20121231(第169期);第387-392页 *
拓扑绝缘体自旋阀及磁传感新原理器件的研究;张敏昊;《中国博士学位论文全文数据库 信息科技辑》;20180815(第08期);第I140-30页 *

Also Published As

Publication number Publication date
CN110702743A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN110702743B (zh) 一种纳米机电氢气传感器及其制备方法
US20060249384A1 (en) Chemical sensor
TWI238553B (en) A piezoelectric device and a method making the same, and a memory device having the same
Yi et al. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors
KR101513574B1 (ko) 디포지트와 이를 포함한 전자 디바이스
Ahmad et al. Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing
KR101495422B1 (ko) 산화아연 기반 수소 센서 및 그의 제조방법
KR101198301B1 (ko) 금속 나노입자를 이용하고 환원된 그래핀 산화물에 기반한 양쪽극 기억소자 및 이의 제조방법
WO2000074932A1 (en) Deposited thin film void-column network materials
KR101878748B1 (ko) 그래핀의 전사 방법 및 이를 이용한 소자의 제조 방법
US20080157354A1 (en) Multiple stacked nanostructure arrays and methods for making the same
KR20150017422A (ko) 그래핀/실리콘 나노선 분자 센서 또는 이의 제조 방법과 이를 이용한 분자 확인 방법
KR101381317B1 (ko) 코어-쉘 구조의 산화갈륨-산화아연 나노로드, 이의 제조방법 및 이를 이용한 가스센서
KR101766114B1 (ko) 수소 센서 및 그 제조방법
CN111398362A (zh) 一种纳米机电氢气传感器及制备方法
KR101273452B1 (ko) 산화물 반도체 나노 막대를 이용한 물질 감지 소자 및 그 제조 방법
WO2006121349A1 (en) Hydrogen sensors and fabrication methods
KR20120100536A (ko) 은이 도핑된 산화아연 나노선을 갖는 가스 센서 및 그 제조 방법
KR20100019261A (ko) 산화아연 나노막대 어레이를 이용한 센서 및 그 제조방법
Pandya et al. MEMS based ethanol sensor using ZnO nanoblocks, nanocombs and nanoflakes as sensing layer
KR100775412B1 (ko) 다공성 알루미나 나노틀을 이용하여 제조한 탄소나노튜브가스센서의 제조방법
KR100793417B1 (ko) 산화아연계 나노선을 구비한 3차원 구조를 갖는 나노 소자및 이를 이용한 장치
JP2012033910A (ja) 多孔性絶縁体及び電界効果トランジスタ
Lee et al. Fabrication of a hydrogen sensor using palladium-coated silver dendrites formed electrochemically
CN1117196A (zh) 高性能无机薄膜型湿敏器件及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant