CN110700804B - Method for adding antihypertensive and augmented injection medicament - Google Patents

Method for adding antihypertensive and augmented injection medicament Download PDF

Info

Publication number
CN110700804B
CN110700804B CN201910955697.0A CN201910955697A CN110700804B CN 110700804 B CN110700804 B CN 110700804B CN 201910955697 A CN201910955697 A CN 201910955697A CN 110700804 B CN110700804 B CN 110700804B
Authority
CN
China
Prior art keywords
well
injection
pressure
water
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910955697.0A
Other languages
Chinese (zh)
Other versions
CN110700804A (en
Inventor
邓志颖
张随望
宋昭杰
王尔珍
陆小兵
王勇
隋蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN201910955697.0A priority Critical patent/CN110700804B/en
Publication of CN110700804A publication Critical patent/CN110700804A/en
Application granted granted Critical
Publication of CN110700804B publication Critical patent/CN110700804B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5086Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention discloses a method for adding a pressure-reducing injection-increasing medicament, which comprises the first step of obtaining the minimum fracture pressure P of an oil well corresponding to the same layer position of a water injection welleAs threshold pressure; secondly, detecting the bottom hole pressure of the water injection well; and thirdly, when the water injection well is a multilayer underinjection well which is about to reach the threshold pressure and corresponds to an oil well with a high water content well, when the water injection well is about to reach the threshold pressure and corresponds to a single-layer underinjection well with a low water content well, when the water injection well is a non-underinjection well which is not yet reaching the threshold pressure and corresponds to an oil well with a low water content well, and when the oil pressure is low, the water injection well is a non-underinjection well which is previously injected with the pressure-reducing and injection-increasing medicament, and the theoretical medicine adding time t is calculated. By different dosing measures, the water injection pressure is reduced, and the injection pressure rise of a high-pressure underinjection well close to a well and a crack opening well close to the well is prevented.

Description

Method for adding antihypertensive and augmented injection medicament
Technical Field
The invention belongs to the technical field of oilfield injection water development, and particularly relates to a method for adding a pressure-reducing and injection-increasing agent.
Background
Water injection is an effective means for supplementing stratum energy and ensuring long-term stable yield of an oil field, but part of low-permeability oil in the oil field in Changqing is hidden in the water injection development process, along with the extension of the water injection development, underinjection wells are increased year by year, the water injection pressure is increased year by year, meanwhile, more microcracks are gradually opened, the proportion of high-water-content wells and low-liquid-content wells in corresponding oil wells is increased year by year, the water drive effect range is poor, and the development contradiction is gradually exposed.
Therefore, to reduce the increase of the underinjection wells and prevent the ineffective fracture from opening, the injection pressure of the injection well must be reduced. At present, the method for reducing the water injection pressure of a water injection well at home and abroad is more, and mainly comprises acidification and injection increase and medicament addition. The scale inhibitor, the surfactant and the bactericide are mainly added in the adding of the medicaments, but the medicaments are all added into each well from a medicament tank of a water injection station every day, and the adding method has the characteristics of large dosage and lack of pertinence, and has poor effect on opening a well under high pressure near the well and a crack near the well.
Disclosure of Invention
The invention aims to provide a method for adding a pressure-reducing injection-increasing medicament, which determines the adding time of the pressure-reducing injection-increasing medicament according to well history and production data so as to reduce water injection pressure and prevent the injection pressure of a short injection well and a well opening near a well crack from rising.
The invention aims to realize the purpose through the following technical means, and the method for adding the pressure-reducing and injection-increasing medicament comprises the following steps:
firstly, acquiring the minimum fracture pressure P of the oil well corresponding to the same layer position of the water injection welleAs threshold pressure;
secondly, detecting the bottom hole pressure of the water injection well;
thirdly, when the water injection well is about to reach the threshold pressure and corresponds to a multilayer underinjection well with a high water-containing well in the oil well, a pressure-reducing and injection-increasing medicament is not injected, and a flow-dividing acidification technology is adopted to carry out acidification and injection-increasing on the side direction of the crack so as to plug the crack channel;
when the water injection well is about to reach the threshold pressure and a single-layer underclothing well with a low water-containing well is arranged corresponding to the oil well, a local pressurization device is installed on a well site, and then a pressure-reducing injection-increasing medicament is added into a medicament adding tank of the local pressurization device;
when the water injection well is an under-injection well which does not reach the threshold pressure and has a low water-containing well corresponding to the oil well and the oil pressure is low, a pressure-reducing and injection-increasing medicament is not injected, a local pressurization device is installed on a well site, and the oil pressure of the water injection well is increased to be 2-3 MPa lower than the threshold pressure;
when the water injection well is a non-underpinning injection well which has been injected with the blood pressure reducing and injection increasing medicament before, calculating theoretical medicine adding time t, installing a local pressurization device, and adding the blood pressure reducing and injection increasing medicament 3-4 months before the theoretical medicine adding time t;
in the third step, in the shunting acidification technology, shunting agents are used, and the shunting agents comprise 75-80% of bacteria for generating polymers by microorganisms in the malt, 3-5% of film-forming corrosion inhibitors, 3-5% of sulfo penetrants and 10-14% of alkylphenol polyoxyethylene ether nonionic surfactants by mass.
Further, the pressure-reducing injection-increasing medicament is one of a molecular membrane surfactant, a hetero-gemini surfactant or a nano oil-displacing agent.
Further, the pressure-reducing injection-increasing medicament is a mixture of a hetero-gemini surfactant and a long-acting clay stabilizer, when the content of the reservoir clay minerals is up to more than 20%, the reservoir clay is medium water-sensitive, and the volume ratio of the hetero-gemini surfactant to the long-acting clay stabilizer is 2: 1; when the content of the reservoir clay mineral is lower than 20%, the reservoir clay is free or weak in water sensitivity, and the volume ratio of the hetero-gemini surfactant to the long-acting clay stabilizer is 3: 1.
further, in the third step, when the water injection well is an insufficient injection well which does not reach the threshold pressure, and the water well is still insufficient injection after treatment, a pressure-reducing injection-increasing medicament is added, wherein the mass ratio of the medicament to the injected water is 0.5: 100-1: 100, and continuously adding the medicine for at least 3 months.
Further, in the third step, when the pressure-reducing injection-increasing agent is added, the mass ratio of the pressure-reducing injection-increasing agent to the injected water is 0.5: 100-1: 100, and continuously adding the medicine for at least 3 months.
Further, in the third step, the theoretical dosing time is calculated by collecting data of daily water injection amount and corresponding daily oil pressure after the last injection of the pressure-reducing and injection-increasing agent, drawing a fitting curve of the ratio of the daily water injection amount to the oil pressure and the time,
Figure GDA0003220937690000031
in the formula: t is theoretical dosing time;
qwthe daily water injection amount of the water injection well;
k is the slope of a fitting curve of the ratio of the water injection amount to the oil pressure and the time after the last measure of the pressure reduction and injection increase of the bet takes effect;
b is the ratio of the water injection amount to the oil pressure after the last measure of the pressure-reducing and injection-increasing agent is effective;
t0after the measures of the last-time bet pressure reduction and increasing injection of the medicament are taken, the measures take effect for a long time.
Further, after a fitting curve of the ratio of daily water injection amount to oil pressure and time is drawn, abnormal points are removed from the fitting curve, normalization processing and rarefaction processing are carried out, a new fitting curve is obtained, and the slope of the new fitting curve is used as k.
The invention has the beneficial effects that: 1. the bacteria which generate the polymer by the microorganisms can be propagated after entering the stratum and meeting water, the volume is increased, and the pore throat is blocked. Compared with the existing particle type flow dividing stage, the problem of blockage caused by mismatching of particles and pore throats is avoided. The flow divider can effectively block the pore throat by expanding the volume per se according to the size of the pore throat;
2. the corrosion inhibitor added into the invention can form a corrosion inhibition film on the surface of the pipe column, so that the corrosion of the corrosion inhibitor to the pipe column is reduced, the operation of the pipe column can be realized without moving the pipe column, the construction steps are effectively simplified, and the construction risk and cost are reduced;
3. the added penetrating agent and surface active agent improve the permeability, are more beneficial to the flow dividing agent to enter fine passages of the stratum and improve the swept area.
Drawings
FIG. 1 is a statistical graph of the ratio of water injection to oil pressure over time.
The present invention will be described in further detail with reference to the accompanying drawings and examples.
Detailed Description
[ example 1 ]
A method for adding a pressure-reducing and injection-increasing medicament comprises the following steps:
firstly, acquiring the minimum fracture pressure P of the oil well corresponding to the same layer position of the water injection welleAs threshold pressure; wherein the same layer position of the water injection well corresponds to the minimum fracture pressure P of the oil welleCan be obtained from the fracturing data of the oil well during normal pressure fracturing production.
Secondly, detecting the bottom hole pressure of the water injection well;
thirdly, when the water injection well is about to reach the threshold pressure and corresponds to a multilayer underinjection well with a high water-containing well in the oil well, a pressure-reducing and injection-increasing medicament is not injected, and a flow-dividing acidification technology is adopted to carry out acidification and injection-increasing on the side direction of the crack so as to plug the crack channel;
when the water injection well is about to reach the threshold pressure and a single-layer underclothing well with a low water-containing well is arranged corresponding to the oil well, a local pressurization device is installed on a well site, and then a pressure-reducing injection-increasing medicament is added into a medicament adding tank of the local pressurization device;
when the water injection well is an under-injection well which does not reach the threshold pressure and has a low water-containing well corresponding to the oil well and the oil pressure is low, a pressure-reducing and injection-increasing medicament is not injected, a local pressurization device is installed on a well site, and the oil pressure of the water injection well is increased to be 2-3 MPa lower than the threshold pressure;
when the water injection well is a non-underpinning injection well which has been injected with the blood pressure reducing and injection increasing medicament before, calculating theoretical medicine adding time t, installing a local pressurization device, and adding the blood pressure reducing and injection increasing medicament 3-4 months before the theoretical medicine adding time t;
in the third step, in the shunting acidification technology, shunting agents are used, and the shunting agents comprise 75-80% of bacteria for generating polymers by microorganisms in the malt, 3-5% of film-forming corrosion inhibitors, 3-5% of sulfo penetrants and 10-14% of alkylphenol polyoxyethylene ether nonionic surfactants by mass.
Wherein the low water content: the water content is 0-30%; medium water content: the water content is 30-60%; high water content: the water content is more than 60%.
[ example 2 ]
On the basis of the embodiment 1, the pressure-reducing injection-increasing medicament is one of a molecular membrane surfactant, a hetero-gemini surfactant or a nano oil-displacing agent.
The pressure-reducing injection-increasing medicament is prepared by mixing a heterogemini surfactant and a long-acting clay stabilizer, when the mineral content of the reservoir clay is up to more than 20%, the reservoir clay is medium water-sensitive, and the volume ratio of the heterogemini surfactant to the long-acting clay stabilizer is 2: 1; when the content of the reservoir clay mineral is lower than 20%, the reservoir clay is free or weak in water sensitivity, and the volume ratio of the hetero-gemini surfactant to the long-acting clay stabilizer is 3: 1.
for low permeability reservoirs, the medicament combining the heterogemini surfactant and the long-acting clay stabilizer is preferably selected.
When the clay mineral is more than 20 percent, wherein the illite and illite mixed layer in the clay mineral is more than 20 percent, the reservoir is medium water-sensitive, and the proportion of the heterogemini surfactant and the long-acting clay stabilizer in the pressure-reducing injection-increasing medicament is 2: 1; when the clay mineral is less than 20 percent, wherein the clay mineral has less content of illite and illite-montmorillonite mixed layers, the reservoir is free/weak water-sensitive, and the proportion of the heterogemini surfactant and the long-acting clay stabilizer in the pressure-reducing injection-increasing medicament is 3: 1.
in the third step, when the water injection well is an insufficient injection well which does not reach the threshold pressure and is treated, the water well is still insufficient injection, a pressure-reducing injection-increasing medicament is added, and the mass ratio of the medicament to the injected water is 0.5: 100 to 1: 100, and continuously adding the medicine for at least 3 months.
In the third step, in the shunting acidification technology, shunting agents are used, and the shunting agents comprise 75-80% of bacteria for generating polymers by microorganisms in the malt, 3-5% of film-forming corrosion inhibitors, 3-5% of sulfo penetrants and 10-14% of alkylphenol polyoxyethylene ether nonionic surfactants by mass.
In the third step, when the pressure-reducing injection-increasing medicament is added, the mass ratio of the pressure-reducing injection-increasing medicament to the injected water is 0.5: 100-1: 100, and continuously adding the medicine for at least 3 months.
The bacteria which generate the polymer by the microorganisms can be propagated after entering the stratum and meeting water, the volume is increased, and the pore throat is blocked. Compared with the existing particle type flow dividing stage, the problem of blockage caused by mismatching of particles and pore throats is avoided. The flow divider can effectively block the pore throat by expanding the volume per se according to the size of the pore throat; 2. the corrosion inhibitor added into the invention can form a corrosion inhibition film on the surface of the pipe column, so that the corrosion of the corrosion inhibitor to the pipe column is reduced, the operation of the pipe column can be realized without moving the pipe column, the construction steps are effectively simplified, and the construction risk and cost are reduced; 3. the added penetrating agent and surface active agent improve the permeability, are more beneficial to the flow dividing agent to enter fine passages of the stratum and improve the swept area.
[ example 3 ]
On the basis of embodiment 1 or embodiment 2, this embodiment provides a diverting agent, which is prepared from the following raw materials in percentage by weight, based on 100% of the total weight of the oil-soluble diverting temporary plugging agent:
75 percent of bacteria of a microorganism generated polymer, 3 percent of film-forming corrosion inhibitor, 3 percent of sulfo penetrant, 10 percent of alkylphenol polyoxyethylene ether nonionic surfactant and the balance of water.
In this embodiment, the bacteria that the microorganism generates the polymer are zoogloea, alkalophilic acid-producing bacteria, and the like;
the film-forming corrosion inhibitor is 2-thioketone-1-aminoethyl imidazoline;
the sulfogroup penetrant is polysiloxane sulfosuccinate;
the alkylphenol polyoxyethylene ether nonionic surfactant is Alkylphenol Polyoxyethylene (APEO).
The flow splitting agent is prepared by a preparation method comprising the following steps: the bacteria and the corrosion inhibitor are mixed according to a proportion at 60 ℃, and then the penetrant, the surfactant and the water are added at normal temperature and stirred uniformly.
[ example 4 ]
On the basis of embodiment 1 or embodiment 2, this embodiment provides a diverting agent, which is prepared from the following raw materials in percentage by weight, based on 100% of the total weight of the oil-soluble diverting temporary plugging agent:
80 percent of bacteria which are used for generating polymers by microorganisms, 4 percent of film-forming corrosion inhibitor, 5 percent of sulfo penetrant, 10 percent of alkylphenol polyoxyethylene ether nonionic surfactant and the balance of water.
In this embodiment, the bacteria that the microorganism generates the polymer are zoogloea, alkalophilic acid-producing bacteria, and the like;
the film-forming corrosion inhibitor is 2-thioketone-1-aminoethyl imidazoline;
the sulfogroup penetrant is polysiloxane sulfosuccinate;
the alkylphenol polyoxyethylene ether nonionic surfactant is Alkylphenol Polyoxyethylene (APEO).
The flow splitting agent is prepared by a preparation method comprising the following steps: the bacteria and the corrosion inhibitor are mixed according to a proportion at 60 ℃, and then the penetrant, the surfactant and the water are added at normal temperature and stirred uniformly.
[ example 5 ]
On the basis of embodiment 1 or embodiment 2, this embodiment provides a diverting agent, which is prepared from the following raw materials in percentage by weight, based on 100% of the total weight of the oil-soluble diverting temporary plugging agent:
77% of bacteria which are used for generating polymers by microorganisms, 3% of film-forming corrosion inhibitor, 4% of sulfo penetrant, 12% of alkylphenol polyoxyethylene ether nonionic surfactant and the balance of water.
In this embodiment, the bacteria that the microorganism generates the polymer are zoogloea, alkalophilic acid-producing bacteria, and the like;
the film-forming corrosion inhibitor is 2-thioketone-1-aminoethyl imidazoline;
the sulfogroup penetrant is polysiloxane sulfosuccinate;
the alkylphenol polyoxyethylene ether nonionic surfactant is Alkylphenol Polyoxyethylene (APEO).
The flow splitting agent is prepared by a preparation method comprising the following steps: the bacteria and the corrosion inhibitor are mixed according to a proportion at 60 ℃, and then the penetrant, the surfactant and the water are added at normal temperature and stirred uniformly.
[ example 6 ]
In the third step, the theoretical dosing time is calculated by collecting data of daily water injection amount and corresponding daily oil pressure after the last injection of the pressure-reducing and injection-increasing agent, drawing a fitting curve of the ratio of the daily water injection amount to the oil pressure and time,
Figure GDA0003220937690000091
in the formula: t is theoretical dosing time;
qwthe daily water injection amount of the water injection well;
k is the slope of a fitting curve of the ratio of the water injection amount to the oil pressure and the time after the last measure of the pressure reduction and injection increase of the bet takes effect;
b is the ratio of the water injection amount to the oil pressure after the last measure of the pressure-reducing and injection-increasing agent is effective;
t0after the measures of the last-time bet pressure reduction and increasing injection of the medicament are taken, the measures take effect for a long time.
And after a fitting curve of the ratio of daily water injection amount to oil pressure and time is drawn, removing abnormal points from the fitting curve, carrying out normalization treatment and carrying out rarefaction treatment to obtain a new fitting curve, and taking the slope of the new fitting curve as k.
As shown in FIG. 1, the development layer of the Ralo 1 block J1 well in Ji tableland is 8 th1Since the development, the ratio of daily water injection amount to oil pressure and the time are in a better linear relationship, the injection increasing measures are carried out in 4 months in 2017, the measures in 6 months in 2017 take effect, the ratio of the daily water injection amount to the oil pressure is increased correspondingly, namely t is t in 6 months in 20170The oil pressure at this time was 5.38MPa, and the daily water injection rate was 15 MPa. The ratio of the daily water injection amount to the oil pressure is increased, but the value is gradually reduced along with the extension of the development time, the reduction amplitude (0.0009) is smaller than the amplitude before measure (0.0013), and the daily water injection amount in 7 months in 2018 is 11m3D, well head pressure (oil pressure) is 16.4MPa, and the ratio of daily water injection quantity to oil pressure is 0.67m3And (d.MPa), the water injection well corresponds to 4 oil wells at the same layer, the initial wellhead fracture pressure of the 4 oil wells is 22.2MPa, 22.5MPa, 25.5MPa and 23.7MPa respectively, namely the minimum fracture pressure of the J1 well corresponding to the same layer of the oil well is 22.2 MPa.
Figure GDA0003220937690000101
2545 days is equal to about 6.9 years and equal to about 11 months of 6 years, then on the basis of 6 months of 2017, 11 months of 6 years are added, and 5 months of 2024 are obtained. The theoretical administration time is 2024 years and 5 months.
The steps and processes not described in detail in this embodiment are all common means, and are not described in detail here. The raw materials of the related reagents can be directly purchased in the market.

Claims (7)

1. A method for adding a pressure-reducing and injection-increasing medicament is characterized by comprising the following steps:
firstly, acquiring the minimum fracture pressure P of the oil well corresponding to the same layer position of the water injection welleAs threshold pressure;
secondly, detecting the bottom hole pressure of the water injection well;
thirdly, when the water injection well is about to reach the threshold pressure and corresponds to a multilayer underinjection well with a high water-containing well in the oil well, a pressure-reducing and injection-increasing medicament is not injected, and a flow-dividing acidification technology is adopted to carry out acidification and injection-increasing on the side direction of the crack so as to plug the crack channel;
when the water injection well is about to reach the threshold pressure and a single-layer underclothing well with a low water-containing well is arranged corresponding to the oil well, a local pressurization device is installed on a well site, and then a pressure-reducing injection-increasing medicament is added into a medicament adding tank of the local pressurization device;
when the water injection well is an under-injection well which does not reach the threshold pressure and has a low water-containing well corresponding to the oil well and the oil pressure is low, a pressure-reducing and injection-increasing medicament is not injected, a local pressurization device is installed on a well site, and the oil pressure of the water injection well is increased to be 2-3 MPa lower than the threshold pressure;
when the water injection well is a non-underpinning injection well which has been injected with the blood pressure reducing and injection increasing medicament before, calculating theoretical medicine adding time t, installing a local pressurization device, and adding the blood pressure reducing and injection increasing medicament 3-4 months before the theoretical medicine adding time t;
in the third step, in the shunting acidification technology, shunting agents are used, and the shunting agents comprise 75-80% of bacteria for generating polymers by microorganisms in the malt, 3-5% of film-forming corrosion inhibitors, 3-5% of sulfo penetrants and 10-14% of alkylphenol polyoxyethylene ether nonionic surfactants by mass.
2. The method for adding the antihypertensive and injection-increasing medicament according to claim 1, characterized in that: the pressure-reducing injection-increasing medicament is one of a molecular membrane surfactant, a hetero-gemini surfactant or a nano oil-displacing agent.
3. The method for adding the antihypertensive and injection-increasing medicament according to claim 1, characterized in that: the pressure-reducing injection-increasing medicament is prepared by mixing a heterogemini surfactant and a long-acting clay stabilizer, when the mineral content of the reservoir clay is up to more than 20%, the reservoir clay is medium water-sensitive, and the volume ratio of the heterogemini surfactant to the long-acting clay stabilizer is 2: 1; when the content of the reservoir clay mineral is lower than 20%, the reservoir clay is free or weak in water sensitivity, and the volume ratio of the hetero-gemini surfactant to the long-acting clay stabilizer is 3: 1.
4. the method for adding the antihypertensive and injection-increasing medicament according to claim 1, characterized in that: in the third step, when the water injection well is an insufficient injection well which does not reach the threshold pressure and is treated, the water well is still insufficient injection, a pressure-reducing injection-increasing medicament is added, and the mass ratio of the medicament to the injected water is 0.5: 100-1: 100, and continuously adding the medicine for at least 3 months.
5. The method for adding the antihypertensive and injection-increasing medicament according to claim 1, characterized in that: in the third step, when the pressure-reducing injection-increasing medicament is added, the mass ratio of the pressure-reducing injection-increasing medicament to the injected water is 0.5: 100-1: 100, and continuously adding the medicine for at least 3 months.
6. The method for adding the antihypertensive and injection-increasing medicament according to claim 1, characterized in that: in the third step, the theoretical dosing time is calculated by collecting data of daily water injection amount and corresponding daily oil pressure after the last injection of the pressure-reducing and injection-increasing agent, drawing a fitting curve of the ratio of the daily water injection amount to the oil pressure and time,
Figure FDA0003220937680000021
in the formula: t is theoretical dosing time;
qwthe daily water injection amount of the water injection well;
k is the slope of a fitting curve of the ratio of the water injection amount to the oil pressure and the time after the last measure of the pressure reduction and injection increase of the bet takes effect;
b is the ratio of the water injection amount to the oil pressure after the last measure of the pressure-reducing and injection-increasing agent is effective;
t0after the measures of the last-time bet pressure reduction and increasing injection of the medicament are taken, the measures take effect for a long time.
7. The method for adding the blood pressure-reducing and injection-increasing medicament according to claim 6, characterized in that: and after a fitting curve of the ratio of daily water injection amount to oil pressure and time is drawn, removing abnormal points from the fitting curve, carrying out normalization treatment and carrying out rarefaction treatment to obtain a new fitting curve, and taking the slope of the new fitting curve as k.
CN201910955697.0A 2019-10-09 2019-10-09 Method for adding antihypertensive and augmented injection medicament Active CN110700804B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910955697.0A CN110700804B (en) 2019-10-09 2019-10-09 Method for adding antihypertensive and augmented injection medicament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910955697.0A CN110700804B (en) 2019-10-09 2019-10-09 Method for adding antihypertensive and augmented injection medicament

Publications (2)

Publication Number Publication Date
CN110700804A CN110700804A (en) 2020-01-17
CN110700804B true CN110700804B (en) 2022-01-04

Family

ID=69200069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910955697.0A Active CN110700804B (en) 2019-10-09 2019-10-09 Method for adding antihypertensive and augmented injection medicament

Country Status (1)

Country Link
CN (1) CN110700804B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111946312A (en) * 2020-08-28 2020-11-17 中国石油天然气股份有限公司 Method for prolonging effective period of water injection well
CN112576227A (en) * 2020-11-26 2021-03-30 中国石油天然气股份有限公司 Long-acting augmented injection method for water injection well of ultra-low permeability reservoir

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846981A (en) * 1988-12-19 1989-07-11 Texaco Inc. Method of restoring permeability around wellbores
CN101691838A (en) * 2009-10-14 2010-04-07 西安中孚凯宏石油科技有限责任公司 Ultralow permeability oil filed water injection well multicomponent chemical microemulsion pressure reduction and injection gain method
CN101781982A (en) * 2010-02-25 2010-07-21 中国石油化工股份有限公司 Short-injection water injection well acidation injectivity process
CN102311728A (en) * 2010-07-06 2012-01-11 中国石油天然气股份有限公司 Chemical pressure-reducing injection-increasing agent for injection well and preparation and use thereof
CN103573235A (en) * 2013-11-01 2014-02-12 中国石油集团川庆钻探工程有限公司 Acidizing, pressure-decreasing and injection-increasing technique without replacing string for water injection well
CN105602540A (en) * 2016-01-29 2016-05-25 中国石油天然气股份有限公司 Dense oil reservoir under injection well treatment method
CN105985759A (en) * 2015-02-11 2016-10-05 中国海洋石油总公司 Composite blocking remover for oil well and preparation method thereof
CN106833580A (en) * 2016-12-29 2017-06-13 中国石油天然气股份有限公司 A kind of hyposmosis water injection well increasing injection scale preventative and preparation method thereof
CN108104782A (en) * 2018-01-10 2018-06-01 中国石油天然气股份有限公司 A kind of long-acting augmented injection acidification technique of water injection well
CN109111908A (en) * 2018-07-26 2019-01-01 东营利丰化工新材料有限公司 A kind of oil field increasing injection double type surfactant system and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703045B (en) * 2012-06-18 2013-11-06 长江大学 Multi-slug composite pressure decreasing and injection increasing agent for ultra-low permeability oil field
CA2981370A1 (en) * 2015-04-02 2016-10-06 Clariant International Ltd Composition and method for inhibition of sulfide scales
CN107384352A (en) * 2017-06-28 2017-11-24 常州市雄图纺织有限公司 A kind of de-plugging agent and its application method
CN109251739A (en) * 2018-09-26 2019-01-22 中国石油天然气股份有限公司 A kind of increasing injection medicament and preparation method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846981A (en) * 1988-12-19 1989-07-11 Texaco Inc. Method of restoring permeability around wellbores
CN101691838A (en) * 2009-10-14 2010-04-07 西安中孚凯宏石油科技有限责任公司 Ultralow permeability oil filed water injection well multicomponent chemical microemulsion pressure reduction and injection gain method
CN101781982A (en) * 2010-02-25 2010-07-21 中国石油化工股份有限公司 Short-injection water injection well acidation injectivity process
CN102311728A (en) * 2010-07-06 2012-01-11 中国石油天然气股份有限公司 Chemical pressure-reducing injection-increasing agent for injection well and preparation and use thereof
CN103573235A (en) * 2013-11-01 2014-02-12 中国石油集团川庆钻探工程有限公司 Acidizing, pressure-decreasing and injection-increasing technique without replacing string for water injection well
CN105985759A (en) * 2015-02-11 2016-10-05 中国海洋石油总公司 Composite blocking remover for oil well and preparation method thereof
CN105602540A (en) * 2016-01-29 2016-05-25 中国石油天然气股份有限公司 Dense oil reservoir under injection well treatment method
CN106833580A (en) * 2016-12-29 2017-06-13 中国石油天然气股份有限公司 A kind of hyposmosis water injection well increasing injection scale preventative and preparation method thereof
CN108104782A (en) * 2018-01-10 2018-06-01 中国石油天然气股份有限公司 A kind of long-acting augmented injection acidification technique of water injection well
CN109111908A (en) * 2018-07-26 2019-01-01 东营利丰化工新材料有限公司 A kind of oil field increasing injection double type surfactant system and preparation method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Residual oil distribution characteristic of fractured-cavity carbonate reservoir after water flooding and enhanced oil recovery by N-2 flooding of fractured-cavity carbonate reservoir;Yuan Dengyu等;《JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING》;20150531;全文 *
低渗油藏高压注水区块降压增注研究;赵贵林;《中国优秀硕士学位论文全文数据库工程科技Ι辑》;20150331(第3(2015)期);正文第431页第1节和第435页第4节 *
超低渗油藏在线分流酸化增注技术研究与应用;邓志颖等;《石油与天然气地质》;20190104;第40卷(第02期);正文第125-126页第3-4节 *
超低渗透油藏长8区块欠注井综合治理对策研究;王勇等;《石油天然气学报》;20130815;第35卷(第08期);正文第262-263页引言,第1节和第264页第2节 *
长庆姬塬油田长效在线增注技术现场应用;王尔珍等;《油田化学》;20190625;第36卷(第02期);全文 *

Also Published As

Publication number Publication date
CN110700804A (en) 2020-01-17

Similar Documents

Publication Publication Date Title
CN105952430B (en) A kind of compact oil reservoir low yield horizontal well volume fracturing supplement ENERGY METHOD
CN103740353B (en) A kind of composite blockage relieving agent and tight sandstone reservoir fracturing production horizontal well composite blockage relieving method
CN101747881B (en) Descaling and blockage relieving agent for oil-water well
CN102775980B (en) Acidizing block remover suitable for complex lithologic reservoir
CN110700804B (en) Method for adding antihypertensive and augmented injection medicament
CN111534290B (en) Water-lock releasing agent for reservoir protection drilling fluid and preparation and use methods thereof
BRPI0809395A2 (en) method of treatment of underground formations by in situ hydrolysis of organic acid esters
CN104879113A (en) Compound acid fracturing method for carbonate reservoir
CN109267985B (en) Control method for using amount of temporary plugging agent for temporary plugging steering fracturing
CN107575183B (en) Process is made in a kind of tune-uncoupling for water injection well
CN104295275A (en) Deep blockage removal and injection increase method for water injection well of medium-and-high-permeability sandstone reservoir
CN105089596A (en) Hydraulic fracturing treatment method of an unconventional reservoir oil and gas well
CN105985762B (en) A kind of fracturing fluid and preparation method thereof
CN104612650A (en) Oxidizing composite acid deep acidizing plugging removal method used for acidizing plugging removal of water injection well
CN101126314A (en) Foam plug flow diverting acidification technique
Li et al. How extremely High-TDS produced water compositions affect selection of fracturing fluid additives
CN106837284A (en) A kind of pressure break connection of handling up for improving Recovery Factor of Low-Permeability Reservoirs makees method
US20160168455A1 (en) Fracturing or gravel-packing fluid with cmhec in brine
CN110066649A (en) The preparation of a kind of compound organic deblocking agent and in low permeability oil field application
CN104232041A (en) Low-leak-off high-corrosion acidification unblocking liquid used in oil-water well and preparation method of low-leak-off high-corrosion acidification unblocking liquid
CN111963130A (en) Fracturing method capable of maintaining flow conductivity of cracks for long time and application thereof
Zhu et al. Successful Applications of a novel compound lost circulation additive with variable structure
CN104481475A (en) Oil well carbon dioxide carbonated water throughput production increasing method
CN110552670B (en) Block overall profile adjusting device and method for oil field
CN112724953B (en) Nano pressure-reducing, injection-increasing, oil-displacing and viscosity-reducing integrated agent and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant