CN110676486A - 一种ht-pem甲醇水燃料电池的甲醇水浓度及电堆活性计算方法 - Google Patents
一种ht-pem甲醇水燃料电池的甲醇水浓度及电堆活性计算方法 Download PDFInfo
- Publication number
- CN110676486A CN110676486A CN201910941594.9A CN201910941594A CN110676486A CN 110676486 A CN110676486 A CN 110676486A CN 201910941594 A CN201910941594 A CN 201910941594A CN 110676486 A CN110676486 A CN 110676486A
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- methanol
- value
- activity
- methanol water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04447—Concentration; Density of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fuel Cell (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
Abstract
本发明公开了一种HT‑PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,涉及燃料电池技术领域,方法包括:设定料燃料电池系统运作状态下的参考甲醇水浓度阈值和电堆活性阈值;获取燃料电池系统运作状态下的相关参数数据;根据所述相关参数数据依次计算甲醇水浓度值和电堆活性值;根据所述甲醇水浓度值和电堆活性值得出分析结果,并对燃料电池系统做出总体评价。本发明能够直接测量得到甲醇水溶液实时浓度和燃料电池电堆的实时活性,从而为评估燃料电池的工作状态提供了可以量化的指标,并可通过将该指标稳定控制在一定范围内,来提升甲醇水燃料电池的工作效率。
Description
技术领域
本发明涉及燃料电池技术领域,特别涉及一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法。
背景技术
甲醇燃料电池属于质子交换膜燃料电池(PEMFC)中之一类,直接使用甲醇水溶液或蒸汽甲醇为燃料供给来源,而不需通过甲醇、汽油及天然气的重整制氢以供发电。相较于质子交换膜燃料电池(PEMFC),直接甲醇燃料电池(DMFC)具备低温快速启动、燃料洁净环保以及电池结构简单等特性。这使得直接甲醇燃料电池(DMFC)可能成为未来便携式电子产品应用的主流。
现有技术中,只是针对甲醇水燃料电池工作过程中的温度数据、泵机转速、风机转速、系统工作模式、输出功率、告警信息进行描述,并没有对甲醇水燃料电池电堆的甲醇水浓度及电堆活性进行计算处理,从而影响到电堆发电时的工作效率。
发明内容
为克服上述现有技术中存在的问题,本发明提供了一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,以及时调整甲醇水燃料电池系统工作的参数,从而提高甲醇水溶液燃料电池的工作效率。
本发明的技术方案是:
一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,该方法包括:
S1、设定料燃料电池系统运作状态下的参考甲醇水浓度阈值和电堆活性阈值;
S2、获取燃料电池系统运作状态下的相关参数数据;
S3、根据所述相关参数数据依次计算甲醇水浓度值和电堆活性值;
S4、根据所述甲醇水浓度值和电堆活性值得出分析结果,并对燃料电池系统做出总体评价。
优选的,所述相关参数数据,包括燃烧室温度Tb、进液泵转速Vp、系统运行时间t、重整室进液泵进液量Vr、重整室温度Tr、电堆温度Tf和电堆输出功率Pf。
优选的,甲醇水浓度值的计算方法是:
Tc1=∫Vp×t×k1,
其中,Tc1为燃烧室单位时间等效温度参考值,Vc为甲醇水浓度值,k1为温度转换系数,K2为浓度转换系数。
优选的,电堆活性值的计算方法是:
Tc2=∫Vr×t×k3;
其中,Tc2为重整室单位时间等效温度参考值,∮为电堆活性值,k3为温度转换系数。
与现有技术相比,本发明的有益效果是:通过本发明能够直接测量得到甲醇水溶液实时浓度和燃料电池电堆的实时活性,从而为评估燃料电池的工作状态提供了可以量化的指标,并可通过将该指标稳定控制在一定范围内,来提升甲醇水燃料电池的工作效率。
附图说明
图1为本发明的计算方法流程图。
具体实施方式
下面结合本发明中的附图,对本发明实施例的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
如图1所示,本发明提供的一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,该方法包括以下步骤:
S1、设定料燃料电池系统运作状态下的参考甲醇水浓度阈值和电堆活性阈值;
S2、获取燃料电池系统运作状态下的相关参数数据;
其中,所述相关参数数据,包括燃烧室温度Tb、进液泵转速Vp、系统运行时间t、重整室进液泵进液量Vr、重整室温度Tr、电堆温度Tf和电堆输出功率Pf。
S3、根据所述相关参数数据依次计算甲醇水浓度值和电堆活性值;
具体的,甲醇水浓度值的计算方法是:
Tc1=∫Vp×t×k1,
其中,Tc1为燃烧室单位时间等效温度参考值,Vc为甲醇水浓度值,k1为温度转换系数,K2为浓度转换系数。
电堆活性值的计算方法是:
Tc2=∫Vr×t×k3;
其中,Tc2为重整室单位时间等效温度参考值,∮为电堆活性值,k3为温度转换系数,且k3与k1的值不同。
S4、根据所述甲醇水浓度值和电堆活性值得出分析结果,并对燃料电池系统做出总体评价。
本发明提供的一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,能够直接测量得到甲醇水溶液实时浓度和燃料电池电堆的实时活性,从而为评估燃料电池的工作状态提供了可以量化的指标,并可通过将该指标稳定控制在一定范围内,来提升甲醇水燃料电池的工作效率。
以上公开的仅为本发明的较佳的具体实施例,但是,本发明实施例并非局限于此,任何本领域技术人员能思之的变化都应落入本发明的保护范围。
Claims (4)
1.一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,包括:
S1、设定料燃料电池系统运作状态下的参考甲醇水浓度阈值和电堆活性阈值;
S2、获取燃料电池系统运作状态下的相关参数数据;
S3、根据所述相关参数数据依次计算甲醇水浓度值和电堆活性值;
S4、根据所述甲醇水浓度值和电堆活性值得出分析结果,并对燃料电池系统做出总体评价。
2.如权利要求1所述的一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,其特征在于,所述相关参数数据,包括燃烧室温度Tb、进液泵转速Vp、系统运行时间t、重整室进液泵进液量Vr、重整室温度Tr、电堆温度Tf和电堆输出功率Pf。
4.如权利要求2所述的一种HT-PEM甲醇水燃料电池的甲醇水浓度及电堆活性计算方法,其特征在于,
电堆活性值的计算方法是:
Tc2=∫Vr×t×k3;
其中,Tc2为重整室单位时间等效温度参考值,∮为电堆活性值,k3为温度转换系数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910941594.9A CN110676486B (zh) | 2019-09-30 | 2019-09-30 | 一种ht-pem甲醇水燃料电池的甲醇水浓度及电堆活性计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910941594.9A CN110676486B (zh) | 2019-09-30 | 2019-09-30 | 一种ht-pem甲醇水燃料电池的甲醇水浓度及电堆活性计算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110676486A true CN110676486A (zh) | 2020-01-10 |
CN110676486B CN110676486B (zh) | 2022-07-12 |
Family
ID=69078802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910941594.9A Active CN110676486B (zh) | 2019-09-30 | 2019-09-30 | 一种ht-pem甲醇水燃料电池的甲醇水浓度及电堆活性计算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110676486B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117747885A (zh) * | 2024-02-21 | 2024-03-22 | 苏州氢洁电源科技有限公司 | 甲醇重整高温燃料电池系统性能测评装置与评价方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340174A (ja) * | 2004-04-07 | 2005-12-08 | Yamaha Motor Co Ltd | 燃料電池システムおよびその制御方法 |
JP2007299647A (ja) * | 2006-04-28 | 2007-11-15 | Toshiba Corp | 燃料電池および燃料電池の制御方法 |
CN103918114A (zh) * | 2011-01-28 | 2014-07-09 | Ird燃料电池股份有限公司 | 用于在变化负载和零下温度的情况下稳定直接甲醇燃料电池的操作的方法和系统 |
CN109709487A (zh) * | 2018-12-28 | 2019-05-03 | 中科军联(张家港)新能源科技有限公司 | 一种直接甲醇燃料电池电流效率测试装置及计算方法 |
-
2019
- 2019-09-30 CN CN201910941594.9A patent/CN110676486B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340174A (ja) * | 2004-04-07 | 2005-12-08 | Yamaha Motor Co Ltd | 燃料電池システムおよびその制御方法 |
JP2007299647A (ja) * | 2006-04-28 | 2007-11-15 | Toshiba Corp | 燃料電池および燃料電池の制御方法 |
CN103918114A (zh) * | 2011-01-28 | 2014-07-09 | Ird燃料电池股份有限公司 | 用于在变化负载和零下温度的情况下稳定直接甲醇燃料电池的操作的方法和系统 |
CN109709487A (zh) * | 2018-12-28 | 2019-05-03 | 中科军联(张家港)新能源科技有限公司 | 一种直接甲醇燃料电池电流效率测试装置及计算方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117747885A (zh) * | 2024-02-21 | 2024-03-22 | 苏州氢洁电源科技有限公司 | 甲醇重整高温燃料电池系统性能测评装置与评价方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110676486B (zh) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | 3-E analysis and optimization of an organic rankine flash cycle integrated with a PEM fuel cell and geothermal energy | |
Escobar-Yonoff et al. | Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation | |
CN106784935B (zh) | 一种燃料电池输出性能的寻优方法 | |
Authayanun et al. | Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications | |
CN107681181B (zh) | 一种燃料电池的性能诊断方法 | |
CN109902435B (zh) | 质子交换膜燃料电池建模方法、存储介质及计算机设备 | |
Song et al. | Advanced exergy analysis for the solid oxide fuel cell system combined with a kinetic-based modeling pre-reformer | |
CN113782778B (zh) | 基于定频阻抗和气体压降的电堆水管理调控方法及装置 | |
CN105244521A (zh) | 一种燃料电池的含水量控制方法及系统 | |
Vang et al. | A transient fuel cell model to simulate HTPEM fuel cell impedance spectra | |
CN114361512B (zh) | 一种燃料电池排水、排杂控制系统及控制方法 | |
CN113346111A (zh) | 一种质子交换膜燃料电池系统的建模方法 | |
CN110676486B (zh) | 一种ht-pem甲醇水燃料电池的甲醇水浓度及电堆活性计算方法 | |
CN110008435A (zh) | 一种燃料电池最优功率点计算方法 | |
Peng et al. | Generalized spatial–temporal fault location method for solid oxide fuel cells using LSTM and causal inference | |
CN109542157A (zh) | 一种燃料电池最大功率点直接计算与跟踪方法 | |
Wu et al. | Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells | |
CN115577529A (zh) | 一种燃料电池系统增湿器建模仿真方法 | |
CN113991149B (zh) | 燃料电池电堆进气温度测试方法、装置及存储介质 | |
CN114744254A (zh) | 氢气循环泵在燃料电池系统中的建模方法 | |
Sahlin et al. | Electrochemical impedance spectroscopy (EIS) characterization of reformate-operated high temperature PEM fuel cell stack | |
Martemianov et al. | Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain | |
Herlambang et al. | Numerical analysis of phenomena transport of a proton exchange membrane (PEM) fuel cell | |
Gharibzadeh et al. | Comprehensive optimization of an integrated energy system for power, hydrogen, and freshwater generation using high-temperature PEM fuel cell | |
Khater et al. | Optimum Alkaline Electrolyzer‐Proton Exchange Membrane Fuel Cell Coupling in a Residential Solar Stand‐Alone Power System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |