CN110676064A - 一种超级电容器电极用CoTe纳米线的制备方法 - Google Patents

一种超级电容器电极用CoTe纳米线的制备方法 Download PDF

Info

Publication number
CN110676064A
CN110676064A CN201910862117.3A CN201910862117A CN110676064A CN 110676064 A CN110676064 A CN 110676064A CN 201910862117 A CN201910862117 A CN 201910862117A CN 110676064 A CN110676064 A CN 110676064A
Authority
CN
China
Prior art keywords
cote
electrode
concentration
nanowire
cobalt nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910862117.3A
Other languages
English (en)
Inventor
肖谧
宿玉鹏
赵美莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910862117.3A priority Critical patent/CN110676064A/zh
Publication of CN110676064A publication Critical patent/CN110676064A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/04Binary compounds including binary selenium-tellurium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种超级电容器电极用CoTe纳米线的制备方法。采用热溶剂法,以六水合硝酸钴、亚碲酸钠为主要原料,乙二醇为溶剂,制备直径为20nm~40nm,长度为1μm~1.5μm的CoTe纳米线电极材料。电极在1A/g电流密度下比电容最高达643.6F/g,在20A/g大电流密度下仍能保持90.2%的比电容,倍率性能优异,可结合传统软包超级电容器制作方法制成高性能超级电容器,在高电流密度下进行快速充电与放点。制成的电容器还可组成超级电容器组,用于大功率输出如起重机、汽车发动机启停等场合。得益于纳米线机械强度高的优点,碲化钴纳米线赝电容型超级电容器电极在柔性可穿戴储能设备领域也有着一定得到应用前景。

Description

一种超级电容器电极用CoTe纳米线的制备方法
技术领域
本发明属于一种以微观形貌为特征的超级电容器电极材料制备方法,特别涉及一种超级电容器电极用CoTe纳米线的制备方法。
背景技术
随着化石能源的逐渐消耗,为了解决传统能源和可再生能源的利用问题,对高性能储能装置的需求也在增加。储能设备可分为能量型和功率型。超级电容器作为一种功率型储能设备,以其功率密度大、循环寿命长等优点引起人们的广泛关注,并且在近些年得到了飞速发展。它填补了传统静电容器(高比功率、低比能量)和化学电池(高比能量、低比功率)之间的空白,在短时大功率输出场合如新能源汽车大功率电机启动等场合有着广泛的应用。
电极材料作为超级电容器的核心组成部分之一,其性能直接决定了器件的整体性能。电极材料主要分为双电层材料和赝电容材料。用作双电层超级电容器的材料主要是碳基材料,包括活性炭、纳米级炭、石墨烯等。碳材料的成本比较低,稳定性高,电导率比较高,高性能碳材料仍然是科学研究与商业应用的热点之一。对于常规碳材料来说,充电时电解液离子的吸附只发生在电极表面,而内部材料往往没有被充分利用,再加上这种物理吸附本身的限制,所以这类电极材料的比电容较低,通常在200F/g左右。Joseoh等[001]使用具有不同孔径的3D介孔二氧化硅作为模板,过期的碳酸饮料作为碳源合成了具有高表面积和可调孔径和功能化表面的高度有序的中孔碳材料,该材料具有高表面积(1400~1810m2g-1),大孔体积(1.45~2.81cm3g-1)和可调孔径(3.5~5.2nm)等优异性质,碳酸饮料中的葡萄糖和果糖以及碳酸酯基团有助于增加产物的中控和微孔的孔隙率,调整模板的孔径或碳酸化前体的量可以控制产物的表面参数,制成的电极在1A/g电流密度下比电容最高为284F/g。
相比于双电层材料,赝电容材料的储能方式有着很大的不同,主要是通过在外加电压作用下,电解液中的离子在材料表面吸附/脱附或嵌入/脱嵌到材料晶格中,与材料发生快速的氧化还原反应,引起材料的价态转变,通过电荷转移来进行能量储存,这也是它最主要的储能方式。通常来说,赝电容材料的储能密度要高于双电层材料,因此它也有着更大的发展潜力。常用的赝电容材料主要包括过渡金属氧化物/氢氧化物、导电聚合物等。Jeyalakshmi等[002]将V2O5溶胶均匀地涂覆在ITO导电玻璃上,制成V2O5薄膜,并以其为工作电极,铂片为对电极,饱和甘汞电极为参比电极,1mol/L LiClO4/碳酸丙烯酯(PC)溶液为电解液,制成三电极系统测试了性能,发现300℃下高温煅烧的V2O5薄膜首次充放电时比电容为346F/g。Navale等[003]利用电沉积技术制备聚苯胺(PANI)、氧化镍(NiO)精细纳米片型网络复合薄膜电极材料,在1M Na2SO4电解液中以5mV/s的扫描速率测量的比电容比纯相PANI和NiO电极(601F/g和263.5F/g)明显更高(936.36F/g)。但寻常的赝电容材料电阻较高,损耗较大,往往不能发挥全部性能。
纳米线材料通常为一种横向(直径)限制在100nm以下,纵向(长度)无限制的一维结构材料,自然界尚未发现,只能通过实验室人工合成。纳米线特殊的一维结构使得这种材料具有比较大的比表面积,并且具有一定的机械强度。碲(Te)元素作为一种在元素周期表中比较靠近金属元素的元素,具有一定的金属性质,电导率比较高。本发明利用这些优点,首次采用热溶剂法将碲(Te)元素与过渡金属元素钴(Co)元素化合,合成了直径约为20nm~40nm的纳米线型碲化钴(CoTe)材料,并首次将碲化钴(CoTe)纳米线材料用于制作作超级电容器电极。
发明内容
本发明的目的,是克服现有传统赝电容型电极材料电导率低,稳定性差,工艺复杂等缺点,以六水合硝酸钴、亚碲酸钠为主要原料,乙二醇为溶剂,采用热溶剂法制备直径为20nm~40nm,长度为1μm~1.5μm的CoTe纳米线电极材料。
本发明通过如下技术方案予以实现,具有以下步骤:
一种超级电容器电极用CoTe纳米线的制备方法;包括如下步骤:
(1)将纯度99.9%六水合硝酸钴与纯度99.9%亚碲酸钠加入乙二醇中,配置成硝酸钴浓度为0.01mol/L~0.03mol/L、亚碲酸钠浓度为0.01mol/L~0.03mol/L混合溶液,硝酸钴与亚碲酸钠物质的量比为1:1,搅拌至完全溶解;
(2)向步骤(1)溶液中滴加氨水至浓度为0.03mol/L~0.05mol/L,充分搅拌;
(3)向步骤(2)溶液中滴加一水合肼至浓度为0.03mol/L~0.05mol/L,充分搅拌得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在150-180℃下加热得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末;
(6)通过传统涂覆工艺制成电极。
所述六水合硝酸钴、亚碲酸钠原料的质量纯度大于99.9%。
所述六水合硝酸钴、亚碲酸钠按物质的量比例为1:1。
所述步骤(1)、(2)、(3)搅拌时间为30~60分钟。
所述氨水质量浓度为25%wt~28%wt。
所述一水合肼质量浓度为80%wt,充分搅拌搅拌30~60分钟。
所述步骤(4)在150-180℃下加热12-18小时得到灰黑色沉淀。
所述所述的方法制备的超级电容器电极用CoTe纳米线,其特征是直径为20nm~40nm,长度为1μm~1.5μm。
本发明以热溶剂法为基础,成功获得了直径为20-40nm的碲化钴纳米线赝电容型超级电容器电极材料。制成的电极在1A/g电流密度下比电容最高达643.6F/g,以及在20A/g大电流密度下仍能保持90.2%的比电容,倍率性能优异,可结合传统软包超级电容器制作方法制成高性能超级电容器,在高电流密度下进行快速充电与放点。制成的电容器还可组成超级电容器组,用于大功率输出如起重机、汽车发动机启停等场合。得益于纳米线机械强度高的优点,碲化钴纳米线赝电容型超级电容器电极在柔性可穿戴储能设备领域也有着一定得到应用前景。
附图说明
图1:实施例1纳米线形貌;
图2:实施例2纳米线形貌;
图3:实施例3纳米线形貌;
图4:实施例4纳米线形貌;
图5:实施例5纳米线形貌;
图6:实施例6纳米线形貌;
图7:实施例7纳米线形貌;
图8:实施例1-7得到的CoTe纳米线XRD衍射结果;
图9:实施例1-7得到的CoTe纳米线电极CV曲线;
图10:实施例1-7得到的CoTe纳米线电极GCD曲线;
图11:实施例1-7得到的CoTe纳米线电极20A/g电流密度下倍率特性变化曲线。
具体实施方式
本发明采用分析纯(纯度99.9%)化学原料六水合硝酸钴(Co(NO3)2·6H2O)、亚碲酸钠(Na2TeO3),乙二醇,23%wt~25%wt氨水(NH3·H2O)、80%wt一水合肼(N2H4·H2O,制备CoTe纳米线,具体实施例如下。
实施例1:
(1)纯度99.9%)六水合硝酸钴(Co(NO3)2·6H2O)纯度99.9%亚碲酸钠(Na2TeO3)按物质的量1:1的关系加入乙二醇中,配置成硝酸钴浓度为0.01mol/L、亚碲酸钠浓度为0.01mol/L混合溶液,搅拌30分钟至完全溶解;
(2)向步骤(1)溶液中滴加25%wt~28%wt的氨水至浓度为0.03mol/L,搅拌30分钟;
(3)向步骤(2)溶液中滴加80%wt的一水合肼(N2H4·H2O)至浓度为0.03mol/L,搅拌30分钟得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在150℃下加热12小时得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末,如图1所示;
(6)通过传统涂覆工艺制成电极。
最后,将所得粉末进行SEM与XRD测试和表征,通过传统涂覆工艺制成电极后进行循环伏安与直流充放电测试。图1为所得粉末SEM图像,可以看出纳米线形貌的粉末已经形成;XRD衍射曲线为图8实施例(1)曲线,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成,并且衍射峰比较尖锐,表明结晶良好;图9a为所得粉末制成电极后所测CV曲线,从图中可以看出,实施例所测CV曲线有两对明显的氧化还原峰,表明所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性;图10a为电流密度在1A/g下直流充放电测试(GCD)曲线,从图中得出,实施例所得电极电势从0.55V放电到0V所需的放点时间为352.77s,计算得出比电容值为641.4F/g。图11为各实施例在20A/g高电流密度下的倍率性能,实施例1对应Example 1的值,具体为89.0%。
实施例2:
(1)将纯度99.9%六水合硝酸钴(Co(NO3)2·6H2O)与纯度99.9%亚碲酸钠(Na2TeO3)按物质的量1:1的关系加入乙二醇中,配置成硝酸钴浓度为0.01mol/L、亚碲酸钠浓度为0.01mol/L混合溶液,搅拌30分钟至完全溶解;
(2)向步骤(1)溶液中滴加25%wt~28%wt的氨水至浓度为0.03mol/L,搅拌30分钟;
(3)向步骤(2)溶液中滴加80%wt的一水合肼(N2H4·H2O)至浓度为0.04mol/L,搅拌45分钟得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在150℃下加热12小时得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末,如图2所示;
(6)通过传统涂覆工艺制成电极。
最后,将所得粉末进行SEM与XRD测试和表征,通过传统涂覆工艺制成电极后进行循环伏安与直流充放电测试。图2为所得粉末SEM图像,可以看出纳米线形貌的粉末已经形成;XRD衍射曲线为图8实施例(2)曲线,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成,衍射峰略显低矮,可能是由于还原剂一水合肼浓度增加后反应加剧,结晶速度过快,导致结晶时产生晶体缺陷,但并不影响电容性能;图9b为所得粉末制成电极后所测CV曲线,从图中可以看出,实施例所测CV曲线有两对明显的氧化还原峰,表明所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性;图10b为电流密度在1A/g下直流充放电测试(GCD)曲线,从图中得出,实施例所得电极电势从0.55V,放电到0V所需的放点时间为352.66s,计算得出比电容值为641.2F/g。图11为各实施例在20A/g高电流密度下的倍率性能,实施例2对应Example 2的值,具体为89.4%。
实施例3:
(1)将纯度99.9%六水合硝酸钴(Co(NO3)2·6H2O)与纯度99.9%亚碲酸钠(Na2TeO3)按物质的量1:1的关系加入乙二醇中,配置成硝酸钴浓度为0.02mol/L、亚碲酸钠浓度为0.02mol/L混合溶液,搅拌30分钟至完全溶解;
(2)向步骤(1)溶液中滴加25%wt~28%wt的氨水至浓度为0.04mol/L,搅拌45分钟;
(3)向步骤(2)溶液中滴加80%wt的一水合肼(N2H4·H2O)至浓度为0.04mol/L,搅拌45分钟得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在150℃下加热12小时得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末,如图3所示;
(6)通过传统涂覆工艺制成电极。
最后,将所得粉末进行SEM与XRD测试和表征,通过传统涂覆工艺制成电极后进行循环伏安与直流充放电测试。图3为所得粉末SEM图像,可以看出纳米线形貌的粉末已经形成;XRD衍射曲线为图8实施例(3)曲线,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成,衍射峰比较尖锐,结晶良好;图9c为所得粉末制成电极后所测CV曲线,从图中可以看出,实施例所测CV曲线有两对明显的氧化还原峰,表明所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性;图10c为电流密度在1A/g下直流充放电测试(GCD)曲线,从图中得出,实施例所得电极电势从0.55V放电到0V所需的放点时间为353.98s,计算得出比电容值为643.6F/g,比电容值略有提高,原因可能是反应条件相对比较完美,材料比表面积比较大。图11为各实施例在20A/g高电流密度下的倍率性能,实施例3对应Example 3的值,具体为90.2%。
实施例4:
(1)将纯度99.9%六水合硝酸钴(Co(NO3)2·6H2O)与纯度99.9%亚碲酸钠(Na2TeO3)按物质的量1:1的关系加入乙二醇中,配置成硝酸钴浓度为0.03mol/L、亚碲酸钠浓度为0.03mol/L混合溶液,搅拌45分钟至完全溶解;
(2)向步骤(1)溶液中滴加25%wt~28%wt的氨水至浓度为0.04mol/L,搅拌45分钟;
(3)向步骤(2)溶液中滴加80%wt的一水合肼(N2H4·H2O)至浓度为0.05mol/L,搅拌45分钟得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在170℃下加热15小时得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末,如图4所示;
(6)通过传统涂覆工艺制成电极。
最后,将所得粉末进行SEM与XRD测试和表征,通过传统涂覆工艺制成电极后进行循环伏安与直流充放电测试。图4为所得粉末SEM图像,可以看出纳米线形貌的粉末已经形成;XRD衍射曲线为图8实施例(4)曲线,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成,衍射峰比较尖锐,结晶完好;图9d为所得粉末制成电极后所测CV曲线,从图中可以看出,实施例所测CV曲线有两对明显的氧化还原峰,表明所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性;图10d为电流密度在1A/g下直流充放电测试(GCD)曲线,从图中得出,实施例所得电极电势从0.55V放电到0V所需的放点时间为353.27s,计算得出比电容值为642.3F/g。图11为各实施例在20A/g高电流密度下的倍率性能,实施例4对应Example4的值,具体为88.0%。
实施例5:
(1)将纯度99.9%六水合硝酸钴(Co(NO3)2·6H2O)与纯度99.9%亚碲酸钠(Na2TeO3)按物质的量1:1的关系加入乙二醇中,配置成硝酸钴浓度为0.03mol/L、亚碲酸钠浓度为0.03mol/L混合溶液,搅拌45分钟至完全溶解;
(2)向步骤(1)溶液中滴加25%wt~28%wt的氨水至浓度为0.05mol/L,搅拌45分钟;
(3)向步骤(2)溶液中滴加80%wt的一水合肼(N2H4·H2O)至浓度为0.05mol/L,搅拌60分钟得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在170℃下加热15小时得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末,如图5所示;
(6)通过传统涂覆工艺制成电极。
最后,将所得粉末进行SEM与XRD测试和表征,通过传统涂覆工艺制成电极后进行循环伏安与直流充放电测试。图5为所得粉末SEM图像,可以看出纳米线形貌的粉末已经形成;XRD衍射曲线为图8实施例(5)曲线,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成,衍射峰比较尖锐,结晶完好;图9e为所得粉末制成电极后所测CV曲线,从图中可以看出,实施例所测CV曲线有两对明显的氧化还原峰,表明所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性;图10e为电流密度在1A/g下直流充放电测试(GCD)曲线,从图中得出,实施例所得电极电势从0.55V放电到0V所需的放点时间为353.71s,计算得出比电容值为643.1F/g。图11为各实施例在20A/g高电流密度下的倍率性能,实施例5对应Example5的值,具体为88.5%。
实施例6:
(1)将纯度99.9%六水合硝酸钴(Co(NO3)2·6H2O)与纯度99.9%亚碲酸钠(Na2TeO3)按物质的量1:1的关系加入乙二醇中,配置成硝酸钴浓度为0.03mol/L、亚碲酸钠浓度为0.03mol/L混合溶液,搅拌60分钟至完全溶解;
(2)向步骤(1)溶液中滴加25%wt~28%wt的氨水至浓度为0.05mol/L,搅拌45分钟;
(3)向步骤(2)溶液中滴加80%wt的一水合肼(N2H4·H2O)至浓度为0.05mol/L,搅拌60分钟得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在180℃下加热15小时得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末,如图6所示;
(6)通过传统涂覆工艺制成电极。
最后,将所得粉末进行SEM与XRD测试和表征,通过传统涂覆工艺制成电极后进行循环伏安与直流充放电测试。图6为所得粉末SEM图像,可以看出纳米线形貌的粉末已经形成;XRD衍射曲线为图8实施例(6)曲线,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成,衍射峰略显低矮,可能由于增加了反应温度使得反应加剧,结晶速度过快,导致结晶时产生晶体缺陷,但并不影响电容性能;图9f为所得粉末制成电极后所测CV曲线,从图中可以看出,实施例所测CV曲线有两对明显的氧化还原峰,表明所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性;图10f为电流密度在1A/g下直流充放电测试(GCD)曲线,从图中得出,实施例所得电极电势从0.55V放电到0V所需的放点时间为353.16s,计算得出比电容值为642.1F/g。图11为各实施例在20A/g高电流密度下的倍率性能,实施例6对应Example 6的值,具体为89.0%。
实施例7:
(1)将纯度99.9%六水合硝酸钴(Co(NO3)2·6H2O)与纯度99.9%亚碲酸钠(Na2TeO3)按物质的量1:1的关系加入乙二醇中,配置成硝酸钴浓度为0.03mol/L、亚碲酸钠浓度为0.03mol/L混合溶液,搅拌60分钟至完全溶解;
(2)向步骤(1)溶液中滴加25%wt~28%wt的氨水至浓度为0.05mol/,搅拌60分钟;
(3)向步骤(2)溶液中滴加80%wt的一水合肼(N2H4·H2O)至浓度为0.05mol/L,搅拌60分钟得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在180℃下加热18小时得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末,如图7所示;
(6)通过传统涂覆工艺制成电极。
最后,将所得粉末进行SEM与XRD测试和表征,通过传统涂覆工艺制成电极后进行循环伏安与直流充放电测试。图7为所得粉末SEM图像,可以看出纳米线形貌的粉末已经形成;XRD衍射曲线为图8实施例(6)曲线,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成,衍射峰略显低矮,可能由于增加反应温度使得反应进一步加剧,结晶速度过快,导致结晶时产生晶体缺陷,但并不明显影响电容性能;图9e为所得粉末制成电极后所测CV曲线,从图中可以看出,实施例所测CV曲线有两对明显的氧化还原峰,表明所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性;图10e为电流密度在1A/g下直流充放电测试(GCD)曲线,从图中得出,实施例所得电极电势从0.55V放电到0V所需的放点时间为352.99s,计算得出比电容值为641.8F/g。图11为各实施例在20A/g高电流密度下的倍率性能,实施例1对应Example 1的值,具体为89.2%。
实施方式总结:
通过检测结果可以看出,上述7组实施例均已成功合成CoTe纳米线材料,并且均展现出了典型的赝电容特性,比电容值均在641F/g以上,20A/g高电流密度下的倍率特性均在88%以上,已达领先水平。
本发明实施例的检测方法如下:
借助Rigaku D/max 2550PC型X射线衍射仪对粉体进行XRD测试,扫描角度为20-70°;借助MERLIN Compact扫描电子显微镜查看粉体的粒径和形貌;借助CHI760E电化学工作站测试电容性能。
本发明具体实施例的检测结果如下:
图1-7分别对应于实施例1-7得到的七种CoTe纳米线SEM图。图8为实施例1-7得到的CoTe纳米线的XRD结果,结合CoTe标准PDF卡片(34-0420)证明CoTe已经形成。图9a-图9g为实施例1-7在50mV/s的电压扫描速率下得到的CoTe纳米线电极的循环伏安测试(CV)曲线,从图中可以看出,每组实施例所得CV曲线均有两对明显的氧化还原峰,表明每组实施例所得电极充放电过程为一种氧化还原过程,展现出典型的赝电容特性。图10a-图10g为实施例1-7在电流密度为1A/g下直流充放电测试(GCD)曲线,从图中得出,每组实施例所得电极电势从0.55V放电到0V所需的放点时间分别为352.05s、352.77s、353.98s、353.27s、353.71s、353.16s、352.99s,经过计算,实施例1-7所得CoTe纳米线电极比电容分别为641.4F/g,641.2F/g,643.6F/g,642.3F/g,643.1F/g,642.1F/g,641.8F/g。图11为实施例1-7在20A/g高电流密度下相对于1A/g电流密度的倍率性能,分别为89.0%,89.4%,90.2%,88.0%,88.5%,89.0%,89.2%。上述性能最佳者为实施例3,比电容与倍率性能分别为643.6F/g和90.2%,展现出极具竞争力的电容性能,与其他被报道的同类型电极材料性能对比如表1,从表中看出本发明合成出一种比较新颖的纳米线形貌CoTe材料,并且应用在超级电容器中能够同时具有高比电容值与高倍率性能的优点,在整体上展现出优异的性能。
表1比电容与倍率性能列表
Figure BDA0002200103240000091
参考文献:
001 Joseph S,Kempaiah D M,Benzigar M R,et al.Highly ordered mesoporouscarbons with high specific surface area from carbonated soft drink forsupercapacitor application[J].Microporous and Mesoporous Materials,2019,280:337-346.
002 Joseph S,Kempaiah D M,Benzigar M R,et al.Highly ordered mesoporouscarbons with high specific surface area from carbonated soft drink forsupercapacitor application[J].Microporous and Mesoporous Materials,2019,280:337-346.
003 Navale Y H,Navale S T,Dhole I A,et al.Specific capacitance,energyand power density coherence in electrochemically synthesized polyaniline-nickel oxide hybrid electrode[J].Organic Electronics,57:110-117.
004 M.Manikandan,K.Subramani,M.Sathish and S.Dhanuskodi,NiTe Nanorodsas Electrode Material for High Performance Supercapacitor Applications,ChemistrySelect,3(2018),9034-9040.
005 P.Zhou,L.Fan,J.Wu,C.Gong,J.Zhang and Y.Tu,Facile hydrothermalsynthesis of NiTe and its application as positive electrode material forasymmetric supercapacitor,Journal of Alloys and Compounds,685(2016),384-390.
006 B.Ye,C.Gong,M.Huang,Y.Tu,X.Zheng,L.Fan,J.Lin and J.Wu,Improvedperformance of a CoTe//AC asymmetric supercapacitor using a redox additiveaqueous electrolyte,RSC.Adv.,8(2018),7997-8006.
007 Q.Bao,J.Wu,L.Fan,J.Ge,J.Dong,J.Jia,J.Zeng and J.Lin,Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode forhigh-performance supercapacitors,Journal of Energy Chemistry,26(2017),1252-1259.
008 X.Zhang,J.Gong,K.Zhang,W.Zhu,J.C.Li and Q.Ding,All-solid-stateasymmetric supercapacitor based on porous cobalt selenide thin films,Journalof Alloys and Compounds,772(2019),25-32.
本发明公开和提出的技术方案,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (8)

1.一种超级电容器电极用CoTe纳米线的制备方法;其特征是包括如下步骤:
(1)将高纯度六水合硝酸钴与高纯度亚碲酸钠加入乙二醇中,配置成硝酸钴浓度为0.01mol/L~0.03mol/L、亚碲酸钠浓度为0.01mol/L~0.03mol/L混合溶液,搅拌至完全溶解;
(2)向步骤(1)溶液中滴加氨水至浓度为0.03mol/L~0.05mol/L,充分搅拌;
(3)向步骤(2)溶液中滴加一水合肼至浓度为0.03mol/L~0.05mol/L,充分搅拌得到黑色溶液;
(4)将步骤(3)得到黑色溶液移入不锈钢水热反应釜中,并在150-180℃下加热得到灰黑色沉淀;
(5)将步骤(4)反应得到的灰黑色沉淀用去离子水和无水乙醇离心清洗数次,干燥后得到灰黑色CoTe粉末;
(6)通过传统涂覆工艺制成电极。
2.如权利要求1所述的方法,其特征是六水合硝酸钴、亚碲酸钠原料的质量纯度大于99.9%。
3.如权利要求1所述的方法,其特征是六水合硝酸钴、亚碲酸钠按物质的量比例为1:1。
4.如权利要求1所述的方法,其特征是步骤1)搅拌时间为30~60分钟。
5.如权利要求1所述的方法,其特征是氨水浓度为25%wt~28%wt。
6.如权利要求1所述的方法,其特征是一水合肼质量浓度为80%wt,充分搅拌搅拌30~60分钟。
7.如权利要求1所述的方法,其特征是步骤(4)在150-180℃下加热12-18小时得到灰黑色沉淀。
8.权利要求1所述的方法制备的超级电容器电极用CoTe纳米线,其特征是直径为20nm~40nm,长度为1μm~1.5μm。
CN201910862117.3A 2019-09-12 2019-09-12 一种超级电容器电极用CoTe纳米线的制备方法 Pending CN110676064A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910862117.3A CN110676064A (zh) 2019-09-12 2019-09-12 一种超级电容器电极用CoTe纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910862117.3A CN110676064A (zh) 2019-09-12 2019-09-12 一种超级电容器电极用CoTe纳米线的制备方法

Publications (1)

Publication Number Publication Date
CN110676064A true CN110676064A (zh) 2020-01-10

Family

ID=69077837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910862117.3A Pending CN110676064A (zh) 2019-09-12 2019-09-12 一种超级电容器电极用CoTe纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN110676064A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298813A (zh) * 2020-03-04 2020-06-19 青岛科技大学 一种电催化氮还原催化剂的方法
CN114291798A (zh) * 2021-12-07 2022-04-08 常州大学 微波法合成碲化钴纳米棒电催化剂及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847531A (zh) * 2017-03-20 2017-06-13 浙江大学 一种用于超级电容器电极的CoTe纳米材料及其制备方法
CN108922784A (zh) * 2018-08-31 2018-11-30 扬州大学 染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法
CN109742378A (zh) * 2019-01-24 2019-05-10 安徽师范大学 一种CoTe纳米线-石墨烯复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847531A (zh) * 2017-03-20 2017-06-13 浙江大学 一种用于超级电容器电极的CoTe纳米材料及其制备方法
CN108922784A (zh) * 2018-08-31 2018-11-30 扬州大学 染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法
CN109742378A (zh) * 2019-01-24 2019-05-10 安徽师范大学 一种CoTe纳米线-石墨烯复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QING PENG ET AL: ""Synthesis of Uniform CoTe and NiTe Semiconductor Nanocluster Wires through a Novel Coreduction Method"", 《INORGANIC CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298813A (zh) * 2020-03-04 2020-06-19 青岛科技大学 一种电催化氮还原催化剂的方法
CN111298813B (zh) * 2020-03-04 2023-01-10 青岛科技大学 一种电催化氮还原催化剂的方法
CN114291798A (zh) * 2021-12-07 2022-04-08 常州大学 微波法合成碲化钴纳米棒电催化剂及其应用
CN114291798B (zh) * 2021-12-07 2023-07-25 常州大学 微波法合成碲化钴纳米棒电催化剂及其应用

Similar Documents

Publication Publication Date Title
Arunachalam et al. Research progress in rare earths and their composites based electrode materials for supercapacitors
Yin et al. Phase-controlled synthesis of polymorphic MnO 2 structures for electrochemical energy storage
Cui et al. Preparation and properties of Co 3 O 4 nanorods as supercapacitor material
Venkatachalam et al. Hexagonal-like NiCo 2 O 4 nanostructure based high-performance supercapacitor electrodes
Wang et al. Biomass carbon/polyaniline composite and WO 3 nanowire-based asymmetric supercapacitor with superior performance
WO2011112532A1 (en) Electrical energy storage device containing an electroactive separator
EP3270392A1 (en) Pseudocapacitive materials for supercapacitor electrodes
Yao et al. Mesoporous MnO2 nanosphere/graphene sheets as electrodes for supercapacitor synthesized by a simple and inexpensive reflux reaction
CN111689523B (zh) 金属铬掺杂δ-MnO2纳米片的制备方法
Liu et al. Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes
JP2016531068A (ja) Co2活性化ココナッツ炭を含有する高電圧edlc電極
Zhou et al. Mn3O4 nanoparticles on activated carbonitride by soft chemical method for symmetric coin cell supercapacitors
Wang et al. Synthesis of hollow NiO nanostructures and their application for supercapacitor electrode
Wang et al. Construction of flower-like ZnCo 2 S 4/ZnCo 2 O 4 arrays on Ni foam for high-performance asymmetric supercapacitors
Du et al. One-pot synthesis of CoNiO 2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors
Wang et al. Synthesis of a flower-like Co-doped Ni (OH) 2 composite for high-performance supercapacitors
CN110676064A (zh) 一种超级电容器电极用CoTe纳米线的制备方法
Gnana Sundara Raj et al. Pseudocapacitive performance of Mn 3 O 4–SnO 2 hybrid nanoparticles synthesized via ultrasonication approach
Gurusamy et al. Morphology-controlled synthesis of one-dimensional zinc molybdate nanorods for high-performance pseudocapacitor electrode application
Sarr et al. Effect of neutral electrolytes on vanadium dioxide microspheres-based electrode materials for asymmetric supercapacitors
Rahat et al. A comprehensive review of carbon nanotube-based metal oxide nanocomposites for supercapacitors
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
Yang et al. In situ hydrothermal growth of manganese hexacyanoferrate with Ni foam as the sacrificing template for high-performance asymmetrical supercapacitor
KR20130047885A (ko) 산화수산화니켈-탄소나노튜브 나노복합체 전극의 제조 방법
Xue et al. Synthesis of nanofiber-composed dandelion-like CoNiAl triple hydroxide as an electrode material for high-performance supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200110

WD01 Invention patent application deemed withdrawn after publication