CN110673566B - 一种污水混合收集管网的多层智慧监管系统与运行方法 - Google Patents

一种污水混合收集管网的多层智慧监管系统与运行方法 Download PDF

Info

Publication number
CN110673566B
CN110673566B CN201911012837.7A CN201911012837A CN110673566B CN 110673566 B CN110673566 B CN 110673566B CN 201911012837 A CN201911012837 A CN 201911012837A CN 110673566 B CN110673566 B CN 110673566B
Authority
CN
China
Prior art keywords
sewage
monitoring
pipe network
water
enterprise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911012837.7A
Other languages
English (en)
Other versions
CN110673566A (zh
Inventor
李彭
于晨晖
邵嘉慧
何义亮
任龙飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201911012837.7A priority Critical patent/CN110673566B/zh
Publication of CN110673566A publication Critical patent/CN110673566A/zh
Application granted granted Critical
Publication of CN110673566B publication Critical patent/CN110673566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31123Multi mode network controller, monitor, control, configuration, maintenance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

本发明公开了一种污水混合收集管网的多层智慧监管系统和工作方法,采取由云平台控制的企业—管网—污水厂的三级联动监控反馈应急体系,对工业聚集区工业废水和生活污水混合的污水排放体系进行多层实时监控,通过对企业排水的污水水质、水量,污水管网的重要监测点的污水水质、水量和液位情况,以及污水处理厂进水的污水水质、水量进行实时监测,并利用模型方法,构建整个污水系统的水质水量模型,从而对监测到的风险情况及时评估、并给出相应的应急方案,由应用系统的应急设施对污水进行必要的调控,包括暂时蓄存和回流混合,以保证下游污水厂进水正常,稳定运行。

Description

一种污水混合收集管网的多层智慧监管系统与运行方法
技术领域
本发明涉及市政排水管网运行管理领域,特别是涉及工业废水与生活污水混合收集管网的智慧化管理方法与系统。
背景技术
工业聚集区是指以制造业为主体的工业综合体,工业类别通常包括印染、纺织、医药、机加工等多种行业,在空间上分布相对分散,但属于整体布局紧凑的地域空间。工业聚集区内产生的污水主要由工业废水和生活污水两部分组成。根据规模、数量及类别,工业聚集区内的污水排放特征如下:1.工业废水占比高;2.水质、水量波动大;3.废水水质复杂且可生化性较低;4.监管难度高。因其特殊的污水排放特点,下游污水厂在实际的运营维护管理中,就会面临极大的风险和较高的难度,尤其当发生企业纳管废水超排和偷排情况时,下游污水厂受到的冲击很可能是毁灭性的。因此,仅仅在污水厂进水时进行水质、水量的监测,已无法满足当前的运维需求。迫切需要对进厂前的整个污水管网系统都进行一定的管理,包括监测、应急和管理。
目前,针对工业聚集区污水系统的运行管理策略研究甚少,可应用的针对性策略也较少。根据现有情况,可供借鉴的排水体系运管措施是工业园区的监管模式和海绵城市的运管方法。
对于工业园区的监管策略通常采用“一厂一管”的模式,工业园区“一厂一管”适用于排水户均为企业,距离较短,管道建设成本可以接受。而工业聚集区工业废水和生活污水混合收集通常距离较远,单独建设管道成本较高。并且工业园区的污水根据企业排水性质,有相应的处理工艺,园区污水厂的运管体系相对明确,而工业聚集区混排体制下的污水厂多为城镇生活污水处理厂,基础工艺无法应对高负荷及有毒水质,稳定运行难度高。海绵城市多采用模型的方法构建的智慧水务平台对雨洪问题进行分析研究并提供相关管理方案。雨水管网更多的考虑水力学的平峰策略,较少考虑水质,通常不设置水质在线监测仪表。
因此,现有技术还有待于进一步提高和改进。
发明内容
有鉴于现有技术的上述缺陷,本发明提供了一种污水混合收集管网的多层智慧监管系统及工作方法,以对工业聚集区工业/生活混合纳水的污水系统,进行多层监控和必要的调控,保证污水处理厂的正常稳定运行。
为实现上述目的,本发明首先提供了一种污水混合收集管网的多层智慧监管系统,其中,包括由云平台监控运行的、对整个管网进行监控的、三层在线监控系统:用于监控企业纳管排水的企业纳管排水监测系统、用于监控污水管网的污水管网监测系统、和用于监控污水处理厂进水的污水处理厂进水监测系统;所述企业纳管排水包括用于暂存企业来水的企业排水池,所述企业排水池通过排放泵连接至进行水质检测和水量检测的第一监测站,接受化学指标监测和物理指标监测后,由第一阀门井通过不同的管道和阀门,分别排放至污水管网或用于暂存超标污水的第一调蓄池;所述污水管网包括进行水量检测的第二监测站,污水由所述第二监测站检测后,通过第二阀门井分配至用于暂时存放超标污水的第二调蓄池和用于将污水打入下游管网的泵站,污水通过所述下游管网汇聚至污水处理厂;所述污水处理厂包括进行水质检测和水量检测的第三监测站,经过所述第三监测站的检测后,所述污水由第三阀门井分配,排放至用于调节污水水质和水量的调节池或用于暂存超标污水的事故池;所述云平台数据连接各个监测站,并根据各个监测站反馈的数据,通过污水处理模型和水力学模型的模拟计算,动态化地控制各个阀门的连通模式。
优选地,所述物理指标包括污水的流量、液位、和温度指标;所述化学指标至少包括COD、氨氮、电导率、pH和重金属指标。
优选地,所述监测站里设置有至少一个检测装置,包括用于监测污水的物理指标的流量监测设备,所述流量监测设备包括流量仪和/或流量探头。
更优选地,还包括用于检测污水中的化学指标的水质监测设备,包括水质监测站。
优选地,所述云平台为管理与控制信息化平台,包括用于分析和下达指令、以控制各个阀门的可编程逻辑控制器,所述可编程逻辑控制器数据连接所述监测装置和所述阀门。
更优选地,所述可编程逻辑控制器采用分级制的方式,各个所述检测装置分别由各自的节点可编程逻辑控制器连接并控制,各个所述节点可编程逻辑控制器再由一台总可编程逻辑控制器连接并控制。
更优选地,所述监测装置与所述可编程逻辑控制器之间的连接,由通用分组无线服务提供分级数据传输的方式完成。
本发明还公开了所述的多层智慧监管系统的运行方法,包括以下步骤:
a.污水在所述管网中,流经所述三层在线监控系统,接受各个监测站的检测;
b.检测合格的污水排放进入下游管网;
c.检测不合格的污水排放进入超标污水暂存设备,接受进一步处理;
d.所述超标污水暂存设备中的污水,分次多时段地混入至新流进的污水中,返回同层的监测站。
优选地,步骤c中,若由所述企业纳管排水监测系统发现有一项化学指标不合格,则还包括由监控探头联动的自动采样系统进行采样并进行实验室分析。
优选地,步骤c中,若由所述污水管网监测系统发现有一项化学指标不合格,则发出警报,并控制所述第二阀门井关闭通往所述泵站的管道,及打开通往所述第二调蓄池的管道
优选地,步骤d中,所述第一调蓄池中储存的污水达到最大设计容积后,由潜水泵打回企业的调节池。
技术效果:本发明公开了一种污水混合收集管网的多层智慧监管系统和工作方法,采取由云平台控制的企业—管网—污水厂的三级联动监控反馈应急体系,对工业聚集区工业废水和生活污水混合的污水排放体系进行多层实时监控,通过对企业排水的污水水质、水量,污水管网的重要监测点的污水水质、水量和液位情况,以及污水处理厂进水的污水水质、水量进行实时监测,并利用模型方法,构建整个污水系统的水质水量模型,从而对监测到的风险情况及时评估、并给出相应的应急方案,由应用系统的应急设施对污水进行必要的调控,包括暂时蓄存和回流混合,以保证下游污水厂进水正常,稳定运行。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的污水混合收集管网的多层智慧监管系统的整体结构图;
图2是本发明的企业纳管排水监测系统的整体结构图;
图3是本发明的企业纳管排水监测系统的流程图;
图4是本发明的水质监测站内部设备示意图;
图5是本发明的污水管网水质水量监测系统流程图。
图中,10.管道连接、20.数据连接、100.企业纳管排水监测系统、110.第一调蓄池、111.企业调节池、120.检查井、130.监测水箱、140.流量计、150.取样瓶、155.采样器、160.在线仪表、161.COD监测仪、162.探头信息汇总点、163.数据整合器、170.显示器、180.企业排水池、200.污水管网监测系统、210.第二调蓄池、220.泵站、300.污水处理厂进水监测系统、310.事故池、320.调节池、400.云平台、410.智能监控平台、500.管网、501.进水管道、510.监测站、520.阀门、530.水泵、531.蠕动泵。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
本发明公开了一种污水混合收集管网的多层智慧监管系统及工作方法,所述多层智慧监管系统为企业-污水管网-污水处理厂的三层在线监控系统,覆盖整个污水处理系统的管网的多个重要节点,如图1所示,具体包括用于监控企业纳管排水的企业纳管排水监测系统100、用于监控污水管网的污水管网监测系统200、和用于监控污水处理厂进水的污水处理厂进水监测系统300。
并且,所述多层智慧监管系统由一云平台400监控运行,所述云平台400优选为管理与控制信息化平台,数据连接至一智能监控平台410,从而可以对污水流动的整个管网500进行监控。所述管网500主要被分为依次连接的三个部分,加上相应的设备,分别形成:企业纳管排水监测系统100、污水管网监测系统200、和污水处理厂进水监测系统300,各个系统之间,通过管道连接10,实现污水的依次流动,并且各个系统分别通过独立的数据连接20与所述云平台400沟通交流。.具体请参见图1。
所述管网500上分布连接有一系列的监测站510,用于对所述管网中流动的污水进行实时的取样检测和监控,并将取样检测的结果上传至所述云平台400,并根据检测的结果,所示云平台400通过污水处理模型和水力学模型的模拟计算,动态化地下发控制指令,控制一系列的阀门520,例如阀门井,开启不同的连通模式,在一系列的水泵530的驱动下,将污水排放至不同的目的地。
基本上,所述监测站510监测的污水指标可分为两部分:监测污水水量用的物理指标和检测污水水质用的化学指标。其中,所述物理指标包括污水的流量、液位、和温度指标,以流量为代表,由流量检测设备检测,所述流量监测设备包括流量仪和/或流量探头;所述化学指标,表征污水质量(水质),至少包括COD(化学需氧量,Chemical Oxygen Demand)、氨氮、电导率、pH和重金属指标等,由水质监测设备,包括水质监测站和泵站水质监测站。从而根据检测的结果可以将污水实时分为两部分,检测合格的污水继续排放至下游管网中,直至进入污水处理厂,进行净化处理;而检测不合格的污水则暂时存放至各个系统的超标污水暂存设备中,用于回流混入新的污水来流,例如在非高峰时段,或处理合格后。
需要说明的是,本发明中的合格,是指污水满足污水处理厂的最低要求,可以排入污水处理厂进行净化处理,而非可以排放入自然界中。
所述企业纳管排水监测系统100的具体结构,如图2所示,企业来水暂存于企业排水池180中,然后部分通过管道连接10,进入检测水箱130,并接受在线仪表160的检测,检测结果,经过数据连接20,无线上传至站内PLC(Programmable Logic Controller,可编程逻辑控制器)中,同时,在所述检测水箱130的下游,还设有流量计140,以检测污水的流量,并且,流量结果也发送至所述站内PLC中。发送至所述站内PLC中的所有检测数据,包括污水流量的物理指标和污水水质的化学指标,经过站内GPRS(General Packet Radio Service,通用分组无线服务)发送至远程主控站的远程GPRS,在接受后,由远程PLC与主控机沟通,对检测数据进行分析,产生相应的控制指令,再原路返回至站内PLC,所述站内PLC则根据检测结果,控制相应的各个阀门520,例如阀门井等,开闭,以控制污水的流向:将超标的不合格污水排入超标污水暂存设备,即第一调蓄池110中。并取少量的污水排入取样瓶150中,供进一步检测;而将合格的污水,经过管道连接10,排入下游的污水管网中,最终汇聚至污水处理厂。
具体如图3的流程图所示,在企业纳管排水监测系统100中,当企业污水排放后,首先进入监测间,由监测站510,具体为第一监测站,例如水质监测室,实时采样检测,所述检测包括水质检测和流量检测。在接受化学指标监测和物理指标监测后,根据检测的结果,污水在流过阀门520时,由所述云平台400控制,排往不同的目的地。其中,检测合格的污水,包括污水水质正常和污水流量正常,就被排往检查井120中,并继续向下游的管网500排放,乃至送入污水处理厂进行处理。而检测不合格的污水,例如有某一项出现超标,包括污水水质超标或流量超标,都由所述云平台400控制所述阀门520,具体为第一阀门井,关闭通往所述检查井120的通道,并开启通往第一调蓄池110的通道,污水即被排往所述企业纳管排水监测系统100的超标污水暂存设备,即第一调蓄池110中,暂时储存,供后续使用。并且,若超标是出在水质检测上的,即有至少一项所述化学指标出现超标,则由监控探头联动的自动采样系统启动,对污水进行采样,并送实验室分析,找出具体超标原因,以切断超标事故再次发生的可能。
当所述第一调蓄池110中储存的污水达到最大设计容积后,一潜水泵将启动,将所储存的污水回排至企业调节池111,由企业自己再进行处理,直至超标消失,满足排放标准。
而在很少的情况下,所述污水中还可能会检测出有毒物质,则就需要取样,并转交专业单位进行处理。
本发明的监测站510,可以为独立的检测机构,例如水质监测站,也可以为某个单位内部机构,如检测间内的一个独立房间,水质监测室,其内部设备布置基本类似,如图4所示,官网500内的污水,送入监测站510的采样器155内,由一台小量的水质采样泵,即蠕动泵531驱动,采样送进进水管道501,经过设置在所述进水管道501上的在线仪表160的检测探头,检测其化学成分,检测到的数据汇总至探头信息汇总点162;而经过所述检测探头检测的污水,再由第二台蠕动泵531驱动,接受COD监测仪161的监测,所有的监测数据都汇总至数据整合器163,然后在显示屏170上实时显示;乃至上传至云平台400,接受汇总和比较处理。
污水经过所述企业纳管排水监测系统100后,进入管网500中,接受污水管网监测系统200通过数据连接20进行监测和调控,通过管道连接10,排往不同的目的地,直至最后通过管道连接10送至污水处理厂。
如图5所示,经过所述企业纳管排水监测系统100监控完成后的污水,排往所述检查井120后,再通过所述管道连接10,继续排放至所述管网500中,接受污水管网监测系统200的监测和控制。污水管网监测系统200在所述管网500的多个监测点上设置检测探头,检测污水的流量和水质信息,从而既可以实时检查出管道500自身的问题,例如漏损、堵塞等发生,和水量、液位的异常变化。又可以实时监测水质的异常变化,并根据整体监测点的情况协助溯源,找到违规排放企业的位置。
具体地,污水从所述检查井120排出,首先接受监测站510的检测,检测流量是否超标。若不合格,则由所述云平台400控制所述阀门520的连通模式,排放至所述第二调蓄池210中。若合格,则由阀门520,如闸门井,在所述云平台400的控制下开启排出连通模式,即从闸门井流过一泵站,接受水泵530的驱动,继续流经下一道检测系统,检测污水中相关物质的含量,即污水水质,是否异常。若含量正常,则继续排往污水处理厂,若含量异常,例如某种物质超标,则也由所述云平台400控制所述阀门520的连通模式,发出警报,同时排放至所述超标污水暂存设备中,在所述污水管网监测系统200中为第二调蓄池210。
在所述管网500的各个监测点上,监测及执行操作的标准如表一所示:
Figure BDA0002244720320000061
Figure BDA0002244720320000071
表一:污水管网中的各个监测点上的监测标准和操作方式(重金属以镍为例)
所述第二调蓄池210中暂存的超标污水,主要为流量超标,当达到最大设计容积后,或排水高峰期过后,在所述云平台400的控制下,开启相应的水泵530,将污水分批分段地排放返回至整个管网系统,与新的污水来流混合,继续各种检测和处理过程。即为滚动式处理污水,以确保处理后的污水符合下游的污水处理厂的要求,并避免浪费水资源,并对污水进行峰谷调节,确保下游的污水处理厂正常运作。
处理合格的污水,继续沿所述管网500排入污水处理厂,并且在污水处理厂内,进行污水处理之前,由污水处理厂进水监测系统300再进行一次污水监测,与企业纳管排水监测系统的工作方法类似,主要利用用于调节污水水质和水量的调节池320和用于暂存超标污水的事故池310对污水进行调蓄,以达到“平峰”的作用。
具体地,如图1所示,所述污水处理厂包括进行水质检测和水量检测的第三监测站,经过所述第三监测站的检测后,污水由阀门520分配,排放至用于调节污水水质和水量的调节池320或用于暂存超标污水的事故池310。
污水首先进入第三监测站,在其中对污水的水质和流量进行检测,都达标则由第三阀门井分配,直接排往所述调节池320。若出现某一项超标,则在所述云平台400的调控下,所述第三阀门井关闭所述调节池320的通路,开启所述事故池310的通路,将超标污水排入所述事故池310中进行调蓄。若是水量发生超标,则由调节池320完成“平峰”作用,若是水质发生超标,则由监控探头联动的自动采样系统进行采样并进行实验室分析,以查找原因。
并且,当事故池310中储存的污水达到最大设计容积后,或事故池310中的水质(常规指标)浓度达标时,会由水泵打回调节池320再进行处理。若出现有毒物质时,事故池310中储存的污水则备样外运,由专业单位进行处理,并对来水的企业进行回溯并探查事故原因。
本发明的三层在线监控系统,所述企业纳管排水监测系统100、所述污水管网监测系统200、和所述污水处理厂进水监测系统300,都与一信息化平台,即本发明的云平台400进行数据连接,以交换数据,包括上传各个所述监测站510中的检测探头的检测结果,包括污水流量和污水水质的检测结果,并下发执行指令,具体包括各个阀门520的启闭模式。
所述云平台400为管理与控制信息化平台,包括设置在所述管网500上的关键节点监测装置和PLC。
其中,所述监测点监测装置,作为整个管网500的信号通道的起始端,设置于所述管网500的各个监测点上,包括分别设置于三个系统内的水质监测站510和流量计140,而所述流量计140又可以设置为流量仪或流量探头。所述监测点监测装置一般不超过30分钟采集一次管网500的数据信息;并立刻发送至PLC系统,加以数据分析,以保证实时性。所述PLC再在相关的模型计算后,反馈相应的指令,控制所述管网500上的各个阀门520和各个水泵530启闭,以控制污水流向。
所述模型计算,首先需要构建管网500的数值模型,可以采用例如SWMM、InfoworksICM等工具构建,同时对污水在管网500中的水质和流量进行模拟。借助于所述数值模型,以各个监测设备上传的数据作为基础数据,就可以实现对所述管网500中的污水流动进行实时模拟和分析,从而通过污水处理模型和水力学模型的综合模拟计算,就能动态化地制定针对不同企业排放浓度和排放水量的限制标准,当发生污水超标的时候,就可以关闭该企业的纳管排放闸门,并启动管网500或污水厂进水应急调蓄设施。
而所述PLC就用于分析和下达指令、以控制所述污水的流向和流量。
具体地,所述PLC采用分级制的方式,各个所述监测点分别由各自的节点PLC连接并控制,各个所述节点PLC再接受一台总PLC连接并控制。在整个的管网500中,PLC负责接受并处理各个所述监测点监测装置所采集的数据,进行信号的分析以及指令的下达,以此来控制监测点上阀门520或者水泵530的启闭。由于本发明管网500覆盖内容较广,一台PLC可能无法有效完成信息传输的任务。因此采用分级制PLC的方式,即在不同节点的控制终端分别设立一台PLC来控制该节点的相关操作,而对这些节点PLC指令的下达将会由一台总PLC来进行。各台PLC之间可以采用有线或无线的数据传送方式,都是现有的成熟技术,在此不加详述。使用分级制PLC的方法,可以充分发挥PLC运行速度快、输入输出模块齐全等特点,同时也使整个管网500的系统可靠性大大提高,构成多层智慧监管系统。
并且,所述监测点与所述PLC之间的连接,以及各个PLC之间的数据传输,都是由GPRS提供分级数据传输的方式完成的。和PLC的分级制方式类似,GPRS系统也采取分级制,即各个节点将信息传输至节点GPRS系统后,再汇总至总GPRS系统,从而可以提高数据传输的效率以及可靠性。
综上所述,本发明公开了一种污水混合收集管网的多层智慧监管系统和工作方法,采取由云平台400控制的企业—管网—污水厂的三级联动监控反馈应急体系,对工业聚集区工业废水和生活污水混合的污水排放体系进行多层实时监控,通过对企业排水的污水水质、水量,污水管网的重要监测点的污水水质、水量和液位情况,以及污水处理厂进水的污水水质、水量进行实时监测,并利用模型方法,构建整个污水系统的水质水量模型,从而对监测到的风险情况及时评估、并给出相应的应急方案,由应用系统的应急设施对污水进行必要的调控,包括暂时蓄存和回流混合,以保证下游污水厂进水正常,稳定运行。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种污水混合收集管网的多层智慧监管系统,其特征在于,包括由云平台监控运行的、对整个管网进行监控的、三层在线监控系统:用于监控企业纳管排水的企业纳管排水监测系统、用于监控污水管网的污水管网监测系统、和用于监控污水处理厂进水的污水处理厂进水监测系统;
所述企业纳管排水包括用于暂存企业来水的企业排水池,所述企业排水池通过排放泵连接至进行水质检测和水量检测的第一监测站,接受化学指标监测和物理指标监测后,由第一阀门井通过不同的管道和阀门,分别排放至污水管网或用于暂存超标污水的第一调蓄池;
所述污水管网包括进行水量检测的第二监测站,污水由所述第二监测站检测后,通过第二阀门井分配至用于暂时存放超标污水的第二调蓄池和用于将污水打入下游管网的泵站,污水通过所述下游管网汇聚至污水处理厂;
所述污水处理厂包括进行水质检测和水量检测的第三监测站,经过所述第三监测站的检测后,所述污水由第三阀门井分配,排放至用于调节污水水质和水量的调节池或用于暂存超标污水的事故池,所述调节池在所述污水水量超标时实现平峰作用;
所述云平台数据连接各个监测站,并根据各个监测站反馈的数据,通过污水处理模型和水力学模型的模拟计算,远程下发执行指令,动态化地控制各个阀门的连通模式。
2.根据权利要求1所述的多层智慧监管系统,其特征在于,所述物理指标包括污水的流量、液位、和温度指标;所述化学指标至少包括COD、氨氮、电导率、pH和重金属指标。
3.根据权利要求1或2所述的多层智慧监管系统,其特征在于,所述监测站里设置有至少一个检测装置,包括用于监测污水的物理指标的流量监测设备,所述流量监测设备包括流量仪和/或流量探头;还包括用于检测污水中的化学指标的水质监测设备,包括水质监测站。
4.根据权利要求3所述的多层智慧监管系统,其特征在于,所述云平台为管理与控制信息化平台,包括用于分析和下达指令、以控制各个阀门的可编程逻辑控制器,所述可编程逻辑控制器数据连接所述监测装置和所述阀门。
5.根据权利要求4所述的多层智慧监管系统,其特征在于,所述可编程逻辑控制器采用分级制的方式,各个所述检测装置分别由各自的节点可编程逻辑控制器连接并控制,各个所述节点可编程逻辑控制器再由一台总可编程逻辑控制器连接并控制。
6.根据权利要求4或5所述的多层智慧监管系统,其特征在于,所述监测装置与所述可编程逻辑控制器之间的连接,由通用分组无线服务提供分级数据传输的方式完成。
7.根据权利要求1-6任一所述的多层智慧监管系统的运行方法,其特征在于,包括以下步骤:
a.污水在所述管网中,流经所述三层在线监控系统,接受各个监测站的检测;
b.检测合格的污水排放进入下游管网;
c.检测不合格的污水排放进入超标污水暂存设备,接受进一步处理;
d.所述超标污水暂存设备中的污水,分次多时段地混入至新流进的污水中,返回同层的监测站。
8.根据权利要求7所述的多层智慧监管系统的运行方法,其特征在于,步骤c中,若由所述企业纳管排水监测系统发现有一项化学指标不合格,则还包括由监控探头联动的自动采样系统进行采样并进行实验室分析。
9.根据权利要求7所述的多层智慧监管系统的运行方法,其特征在于,步骤c中,若由所述污水管网监测系统发现有一项化学指标不合格,则发出警报,并控制所述第二阀门井关闭通往所述泵站的管道,及打开通往所述第二调蓄池的管道。
10.根据权利要求7所述的多层智慧监管系统的运行方法,其特征在于,步骤d中,所述第一调蓄池中储存的污水达到最大设计容积后,由潜水泵打回企业的调节池。
CN201911012837.7A 2019-10-23 2019-10-23 一种污水混合收集管网的多层智慧监管系统与运行方法 Active CN110673566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911012837.7A CN110673566B (zh) 2019-10-23 2019-10-23 一种污水混合收集管网的多层智慧监管系统与运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911012837.7A CN110673566B (zh) 2019-10-23 2019-10-23 一种污水混合收集管网的多层智慧监管系统与运行方法

Publications (2)

Publication Number Publication Date
CN110673566A CN110673566A (zh) 2020-01-10
CN110673566B true CN110673566B (zh) 2022-06-07

Family

ID=69083702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911012837.7A Active CN110673566B (zh) 2019-10-23 2019-10-23 一种污水混合收集管网的多层智慧监管系统与运行方法

Country Status (1)

Country Link
CN (1) CN110673566B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111489052A (zh) * 2020-03-10 2020-08-04 上海水顿智能科技有限公司 一种利用水质水量进行截流排水调度的方法
CN111707307B (zh) * 2020-05-06 2022-06-07 杭州睿疆科技有限公司 一种管道物料移动的监测方法、装置、系统和计算机设备
CN111815121B (zh) * 2020-06-17 2023-02-28 中建三局绿色产业投资有限公司 一种基于swmm模型的排水深隧系统运行管理评价方法
CN111596028A (zh) * 2020-07-02 2020-08-28 上海交通大学 一种针对分散式污水排放源的水质在线监测系统
CN111931321A (zh) * 2020-07-31 2020-11-13 贵州优特云科技有限公司 一种市政管网监控系统及方法
CN113003629A (zh) * 2021-03-08 2021-06-22 湖南金龙智造科技股份有限公司 智能化的污水处理装置、方法及系统
CN115057575A (zh) * 2021-04-22 2022-09-16 阮氏化工(常熟)有限公司 一种智能化综合污水处理系统
CN113240542A (zh) * 2021-04-25 2021-08-10 江苏迦楠环境科技有限公司 一种污水管网可视化系统
CN113296550A (zh) * 2021-05-08 2021-08-24 东营市天诚建材有限公司 一种雨水排放市政监控系统
CN113607726A (zh) * 2021-08-03 2021-11-05 广东新大禹环境科技股份有限公司 一种重金属废水的水质监测系统装置及水质监测方法
CN113562889A (zh) * 2021-09-02 2021-10-29 东莞市汇晟环保科技有限公司 一种一体化污水处理设备
CN113860401A (zh) * 2021-10-11 2021-12-31 海澜智云科技有限公司 一种污水混合收集管网的多层智慧监管系统和工作方法
CN114240127B (zh) * 2021-12-14 2022-06-21 云南省设计院集团有限公司 基于水质水量诊断分析的城镇污水提质增效评估方法
CN113931283B (zh) * 2021-12-16 2022-08-16 北京清源华建环境科技有限公司 一种应对来源污水超标超量的污水处理方法
CN114444259B (zh) * 2021-12-20 2022-09-23 浙江仁欣环科院有限责任公司 一种雨污管网溯源追踪系统及方法
CN114003013B (zh) * 2022-01-04 2022-04-15 北京清源华建环境科技有限公司 一种分层互联的智慧排水管网系统的控制系统
CN114858999B (zh) * 2022-05-31 2024-04-26 厦门华夏国际电力发展有限公司 一种排水管网径流水质的分析监控方法及系统
CN116739128B (zh) * 2023-01-12 2024-04-05 山东迈源建设集团有限公司 一种污水管网堵塞预测系统
CN116128144B (zh) * 2023-02-15 2024-02-13 北京清环智慧水务科技有限公司 一种城市排水管网分区联动管理方法及系统
CN116380822A (zh) * 2023-06-05 2023-07-04 未名环境分子诊断(常熟)有限公司 一种污水连续监测方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100509649C (zh) * 2007-07-12 2009-07-08 沈阳化工学院 集成管网、污水厂和河流于一体的水处理与控制实验系统
CN102681498B (zh) * 2011-03-15 2014-03-12 中国科学院沈阳自动化研究所 污水处理过程优化运行方法
CN102890792A (zh) * 2011-07-20 2013-01-23 北京源汇远科技有限公司 市政排水管网决策评估方法
CN103546536A (zh) * 2013-08-28 2014-01-29 北京清控人居环境研究院有限公司 污水处理厂物联网系统
KR101553770B1 (ko) * 2014-04-18 2015-09-16 전상훈 하수관거 통합 제어시스템
CN104950855A (zh) * 2015-06-19 2015-09-30 湖南正泰水务有限公司 一种村镇污水厂及泵站运营监控管理系统及方法
TWI648223B (zh) * 2015-10-29 2019-01-21 富鈞水資股份有限公司 污水處理監控系統
CN106774127A (zh) * 2016-12-29 2017-05-31 南京大学盐城环保技术与工程研究院 一种工业园区企业废水纳管的智能化监控系统及监控方法
CN206817179U (zh) * 2017-05-03 2017-12-29 南京朗坤自动化有限公司 排水管网在线监测系统
CN108983713A (zh) * 2018-06-26 2018-12-11 江苏省环境科学研究院 一种工业园区用智能管控废水分质收集系统及其应用方法
CN108996574A (zh) * 2018-09-06 2018-12-14 湖州德环环保科技有限公司 一种企业污水单独控制方法
CN109269576A (zh) * 2018-11-19 2019-01-25 山信软件股份有限公司 一种用于石油化工企业污水排放检测实现方法

Also Published As

Publication number Publication date
CN110673566A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110673566B (zh) 一种污水混合收集管网的多层智慧监管系统与运行方法
CN201781578U (zh) 污水处理监控系统
CN107741738A (zh) 一种污水处理过程监控智能预警云系统及污水处理监测预警方法
CN107176628B (zh) 一种用于污水系统的调度控制系统和方法
AU2020104126A4 (en) Waste Water Management System for Smart Cities through IoT based Technology
CN105527915A (zh) 一种火电厂实时水务监测系统及监测方法
CN103135537B (zh) 在线水质监测仪远程质控系统
KR102211284B1 (ko) IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템
CN107516167A (zh) 城市排水一体化运行智能调度管理系统
CN103645706A (zh) 一种具有通讯多媒体的净水器
CN110825011A (zh) 污染源在线水平衡监测系统
CN113902172A (zh) 一种污水处理方法、系统、装置及介质
CN106097155B (zh) 一种基于移动互联网的客车给排水智能监控与管理系统
CN103399539A (zh) 基于异网通讯的城市内涝监控与信息服务系统及监控方法
CN111221286A (zh) 智能物联排水系统及其控制方法
TWM606693U (zh) 智慧污水下水道系統
CN212620879U (zh) 一种市政污水管网健康状况的监控设备
CN211735657U (zh) 一种污水排放系统及污水监测系统
CN109613191A (zh) 一种全生命周期城市污水处理监测方法
CN211293724U (zh) 污染源在线水平衡监测系统
CN203849606U (zh) 一种企业雨水排放口监控系统
CN116007685B (zh) 一种污水管网底泥沉积点位的智能识别方法及识别系统
CN110639363A (zh) 一种电镀园区废水废气智能化监测系统
CN217034574U (zh) 一种城市污水监测管控平台
CN203164698U (zh) 在线水质监测仪远程质控系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant