CN110654085B - 一种基于磁性能变化的应变测量芯片及其测量装置和测试方法 - Google Patents

一种基于磁性能变化的应变测量芯片及其测量装置和测试方法 Download PDF

Info

Publication number
CN110654085B
CN110654085B CN201910929837.7A CN201910929837A CN110654085B CN 110654085 B CN110654085 B CN 110654085B CN 201910929837 A CN201910929837 A CN 201910929837A CN 110654085 B CN110654085 B CN 110654085B
Authority
CN
China
Prior art keywords
film
inductance
measuring
coil
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910929837.7A
Other languages
English (en)
Other versions
CN110654085A (zh
Inventor
朱正吼
陈杰
张琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dayou Scientfic & Technical Co ltd
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201910929837.7A priority Critical patent/CN110654085B/zh
Publication of CN110654085A publication Critical patent/CN110654085A/zh
Application granted granted Critical
Publication of CN110654085B publication Critical patent/CN110654085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/18Layered products comprising a layer of natural or synthetic rubber comprising butyl or halobutyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明涉及微应变的测量领域,具体涉及一种基于磁性能变化的应变测量芯片及其测量装置和测试方法,测量芯片由磁性合金薄膜和丁基橡胶(IIR)薄膜压制而成,磁性合金薄膜为铁基非晶合金薄膜,薄膜厚度为30μm~100μm;丁基橡胶薄膜由IIR树脂和炭黑组成,炭黑的含量为10wt%~50wt%,薄膜厚度0.1mm~1mm;并利用该测量芯片用于测量应变的测量装置中。本发明使用的装置制备工艺简便,制作成本低;所测材料省去了焊接引线的麻烦,且信号响应快、测量准确性,稳定性大大提高;测量方法简单,易操作,灵敏度较高;测试结果可以更为直观准确的反映磁性合金的应变值。

Description

一种基于磁性能变化的应变测量芯片及其测量装置和测试 方法
技术领域
本发明涉及微应变的测量领域,具体涉及一种基于磁性能变化的应变片及其测量装置和测试方法。
背景技术
磁性铁基非晶合金薄膜是由快速凝固技术制成的一种新型薄膜材料,由于其具有高磁导率而被广泛应用于电感和传感器等电子领域。现有将磁性铁基非晶合金薄膜应用于测量应力,但仅使用磁性铁基非晶合金薄膜无法用于测量应变。
目前,在应变测量中广泛使用硅应变片,由于应变片在使用中需要粘接引线,操作难度大,误差大,存在着因测量装置不完善带来的诸多问题。
发明内容
本发明的目的在于针对上述问题,提供了一种基于磁性能变化的微应变测试方法,使得测试操作简单,无需焊接引线,信号响应快,测量准确,重复稳定性好。
为实现上述目的,本发明采用的技术方案是:
本发明提供一种基于磁性能变化的应变测量芯片,
所述测量芯片由磁性合金薄膜和丁基橡胶薄膜(IIR)压制而成,所述磁性合金薄膜为铁基非晶合金薄膜,薄膜厚度为30μm~100μm;所述丁基橡胶薄膜由IIR树脂和炭黑组成,炭黑的含量为10wt%~50wt%,薄膜厚度0.1mm~1mm。
本发明还提供了一种采用上述测量芯片测定微应变的测试装置,所述测试装置由测量芯片、电感线圈和数字电桥连接,所述测量芯片由磁性合金薄膜和丁基橡胶薄膜压制而成,所述测量芯片置于电感线圈的顶部,丁基橡胶薄膜为下层,所述电感线圈与数字电桥串联;所述测量芯片直径为Φ10mm~Φ30mm,所述电感线圈的外径=测量芯片直径-5mm,线圈高度10mm,线圈匝数N≥10。
本发明还提供了利用上述测量芯片测定微应变的测试方法,其测试方法步骤如下:
(1)测试装置准备:测试使用的测量装置包括电感线圈、测量芯片和数字电桥连接,按上述提供的测试装置准备;
(2)在测量装置的磁性合金薄膜上逐步加载,IIR薄膜产生应变,电感线圈的电感发生变化,同时利用数字电桥完成对测试装置闭合回路电感数据的实时采集;
(3)根据采集的电感数据,绘制线圈电感值随时间的曲线图“Ls---t”,与标准的“Ls---ε”比较,推定出“ε---t”曲线,式中Ls为线圈电感值,t为加载时间,ε为应变值。
与现有技术相比,本发明的有益效果是:
1、本发明提供的测量芯片,增加了丁基橡胶薄膜层,增大了弹性模量,从而可以增大测量范围;
2、所测材料省去了焊接引线的麻烦,且信号响应快、测量准确性,稳定性大大提高;该装置制备工艺简便,制作成本低;
3、测量方法简单,易操作,灵敏度较高。
附图说明
图1为本发明使用的测量装置的结构示意图,其中1-磁性合金薄膜,2-丁基橡胶薄膜,3-电感线圈;
图2为IIR薄膜厚度为180μm的Ls---t曲线;
图3为IIR薄膜厚度为250μm的Ls---t曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
1、制备测量芯片,磁性合金薄膜选择Fe78Si13B9非晶合金薄膜,直径为Φ10mm,厚度为35μm;丁基橡胶薄膜由IIR树脂和10wt%炭黑制成,薄膜厚度180μm,直径为Φ10mm;将磁性合金薄膜和丁基橡胶薄膜在1Mpa压力下压制成测量芯片;
2、测试装置准备,将测量芯片置于电感线圈的顶部,测量芯片的丁基橡胶薄膜为下层,与电感线圈顶部接触,电感线圈与TH-2816B型数字电桥串联;电感线圈的外径5mm,线圈高度10mm,线圈匝数为10,如图1所示;
3、在测量装置的磁性合金薄膜上逐步加载,IIR薄膜产生应变,电感线圈的电感发生变化,同时利用数字电桥完成对测试装置闭合回路电感数据的实时采集;
4、绘制线圈电感值随时间的曲线图“Ls---t”(如图2所示),与标准的“Ls---ε”比较,推定出“ε---t”曲线,式中Ls为线圈电感值,t为加载时间,ε为应变值。
调整Fe78Si13B9非晶合金薄膜的厚度为30μm、25μm、22μm;按上述步骤方法测量磁性合金薄膜的应变值。
图2显示,当IIR薄膜厚度为180μm时,不同厚度的Fe78Si13B9非晶合金薄膜对Ls值影响大。“Ls---t”曲线在应力0~0.2Mpa范围内呈线性变化,重复性好,“Ls---t”曲线斜率大,灵敏度高,表明传感器性能稳定性好,灵敏度高。
实施例2
1、制备测量芯片,磁性合金薄膜选择Fe73.5Cu1Nb3Si13.5B9非晶合金薄膜,直径为Φ30mm,厚度为35μm;丁基橡胶薄膜由IIR树脂和50wt%炭黑制成,薄膜厚度250μm,直径为Φ30mm;将磁性合金薄膜和丁基橡胶薄膜在1Mpa压力下压制成测量芯片;
2、测试装置准备,将测量芯片置于电感线圈的顶部,测量芯片的丁基橡胶薄膜为下层,与电感线圈顶部接触,电感线圈与TH-2816B型数字电桥串联;电感线圈的外径495mm,线圈高度10mm,线圈匝数为50;
3、在测量装置的磁性合金薄膜上逐步加载,IIR薄膜产生应变,电感线圈的电感发生变化,同时利用数字电桥完成对测试装置闭合回路电感数据的实时采集;
4、绘制线圈电感值随时间的曲线图“Ls---t”(如图3所示),与标准的“Ls---ε”比较,推定出“ε---t”曲线,式中Ls为线圈电感值,t为加载时间,ε为应变值。
调整Fe73.5Cu1Nb3Si13.5B9非晶合金薄膜的厚度为30μm、25μm、22μm;按上述步骤方法测量磁性合金薄膜的应变值。
图3显示,当IIR薄膜厚度为250μm时,不同厚度的Fe73.5Cu1Nb3Si13.5B9非晶合金薄膜对Ls值影响大。“Ls---t”曲线在应力0~0.1Mpa范围内呈线性变化,重复性好,“Ls---t”曲线斜率大,灵敏度高。与图2情况相比,当IIR薄膜厚度为250μm时,“Ls---t”的应力范围缩小了50%,但传感器性能稳定性仍然好,灵敏度高。
尽管已经对本发明的技术方案做了较为详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例做出修改或者采用等同的替代方案,这对本领域的技术人员而言是显而易见,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (3)

1.一种基于磁性能变化的应变测量芯片,其特征在于,所述测量芯片由磁性合金薄膜和丁基橡胶(IIR)薄膜压制而成,所述磁性合金薄膜为铁基非晶合金薄膜,薄膜厚度为30μm~100μm;所述丁基橡胶薄膜由IIR树脂和炭黑组成,炭黑的含量为10wt%~50wt%,薄膜厚度0.1mm~1mm。
2.一种利用权利要求1所述的测量芯片测定微应变的测试装置,所述测试装置由测量芯片、电感线圈和数字电桥连接,所述测量芯片由磁性合金薄膜和丁基橡胶薄膜压制而成,所述测量芯片置于电感线圈的顶部,丁基橡胶薄膜为下层,所述电感线圈与数字电桥串联;所述测量芯片直径为Φ10mm~Φ30mm,所述电感线圈的外径=测量芯片直径-5mm,线圈高度10mm,线圈匝数N≥10。
3.一种利用权利要求1所述的测量芯片测定微应变的测试方法,其测试方法步骤如下:
(1)测试装置准备:测试使用的测量装置包括电感线圈、测量芯片和数字电桥连接,按上述提供的测试装置准备;
(2)在测量装置的磁性合金薄膜上逐步加载,IIR薄膜产生应变,电感线圈的电感发生变化,同时利用数字电桥完成对测试装置闭合回路电感数据的实时采集;
(3)根据采集的电感数据,绘制线圈电感值随时间的曲线图“Ls---t”,与标准“Ls---ε”比较,推定出“ε---t”曲线,式中Ls为线圈电感值,t为加载时间,ε为应变值。
CN201910929837.7A 2019-09-28 2019-09-28 一种基于磁性能变化的应变测量芯片及其测量装置和测试方法 Active CN110654085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910929837.7A CN110654085B (zh) 2019-09-28 2019-09-28 一种基于磁性能变化的应变测量芯片及其测量装置和测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910929837.7A CN110654085B (zh) 2019-09-28 2019-09-28 一种基于磁性能变化的应变测量芯片及其测量装置和测试方法

Publications (2)

Publication Number Publication Date
CN110654085A CN110654085A (zh) 2020-01-07
CN110654085B true CN110654085B (zh) 2021-01-05

Family

ID=69039640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910929837.7A Active CN110654085B (zh) 2019-09-28 2019-09-28 一种基于磁性能变化的应变测量芯片及其测量装置和测试方法

Country Status (1)

Country Link
CN (1) CN110654085B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117128848B (zh) * 2023-10-26 2024-03-29 中国科学技术大学 基于裂纹间隙磁阻调制的双向弯曲传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140067660A (ko) * 2012-11-27 2014-06-05 삼성전기주식회사 무접점 전력 전송 장치의 자성체 시트
EP3361487B1 (en) * 2015-10-05 2021-09-22 Amogreentech Co., Ltd. Magnetic sheet, module comprising same, and portable device comprising same
CN106197764B (zh) * 2016-07-11 2019-02-26 南昌大学 一种铁基非晶合金带材压磁效应的测试方法

Also Published As

Publication number Publication date
CN110654085A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
CN101936791B (zh) 数字压力计
CN110374857B (zh) 一种隔膜压缩机油压和气压监测装置及方法
CN205561747U (zh) 钢筋混凝土及金属构件变形测量的电阻应变式位移传感器
CN110654085B (zh) 一种基于磁性能变化的应变测量芯片及其测量装置和测试方法
CN205537488U (zh) 一种电涡流位移传感器
WO2022028193A1 (zh) 应变检测装置及其制造方法
CN113432772A (zh) 物体表面冲击波测量高灵敏薄膜传感器及制作方法
CN201754115U (zh) 数字压力计
CN108036804A (zh) 一种用于电阻应变片输出调节的装置
CN108225628B (zh) 一种汽车前罩盖缓冲垫动态载荷的测量方法
CN210426421U (zh) 一种测试任意阻值应变计灵敏系数的系统
CN207991561U (zh) 一种用于电阻应变片输出调节的装置
CN105865684B (zh) 一种树脂基复合材料的全面残余应力低温检测法
CN116121721B (zh) 一种纳米应变薄膜、轮辐力传感器及其制备方法
Wu Transverse sensitivity of bonded strain gages: A method for determining the transverse-sensitivity values of strain gages, using a special test apparatus, is described by the author
CN101887106A (zh) 一种霍尔芯片磁通量测试装置
CN106197764A (zh) 一种铁基非晶合金带材压磁效应的测试方法
CN116007831A (zh) 一种复合式mems真空规及其制作方法
CN110411332B (zh) 一种测试电阻应变计灵敏系数的系统及方法
CN112798152A (zh) 带有温度补偿单元的磁弹性传感器
CN114459668A (zh) 基于应变、温度传感器的非接触压力测量方法及系统
Kaufman Investigation of strain gages for use at cryogenic temperatures: Paper reports the results of an investigation undertaken to study the performance characteristics of a number of commercially available strain gages from room temperature to 36° R and for resistance measurements to 7° R
CN206583403U (zh) 一种大应变监检测装置
CN110375639A (zh) 一种改性碳纤维应变传感器件及其制备方法
CN202433131U (zh) 一种检验螺栓载荷的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220513

Address after: 336000 Yichun Economic and Technological Development Zone, Yichun City, Jiangxi Province

Patentee after: DAYOU SCIENTFIC & TECHNICAL Co.,Ltd.

Address before: 999 No. 330000 Jiangxi province Nanchang Honggutan University Avenue

Patentee before: Nanchang University