CN110653489B - Multi-galvanometer rapid calibration method - Google Patents

Multi-galvanometer rapid calibration method Download PDF

Info

Publication number
CN110653489B
CN110653489B CN201910880933.7A CN201910880933A CN110653489B CN 110653489 B CN110653489 B CN 110653489B CN 201910880933 A CN201910880933 A CN 201910880933A CN 110653489 B CN110653489 B CN 110653489B
Authority
CN
China
Prior art keywords
galvanometer
target
coordinate
calibration method
target array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910880933.7A
Other languages
Chinese (zh)
Other versions
CN110653489A (en
Inventor
范美极
杨东辉
袁佐鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Bright Laser Technologies Co Ltd
Original Assignee
Xian Bright Laser Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Bright Laser Technologies Co Ltd filed Critical Xian Bright Laser Technologies Co Ltd
Priority to CN201910880933.7A priority Critical patent/CN110653489B/en
Publication of CN110653489A publication Critical patent/CN110653489A/en
Application granted granted Critical
Publication of CN110653489B publication Critical patent/CN110653489B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Abstract

The invention discloses a multi-galvanometer quick calibration method.A target array is shot on a galvanometer correction plate by light beams emitted by a plurality of galvanometer control light path emitters of a galvanometer control system; placing the galvanometer correction plate on a contact scanner, and operating the contact scanner to acquire a target array image; the image processing module acquires relative coordinate values and rotation and translation quantities of the target arrays of the vibrating mirrors by utilizing the acquired target array images; the multi-galvanometer rapid calibration method provided by the invention can be used for shooting the target arrays of a plurality of galvanometers at one time, then collecting the target array images by using a low-cost contact scanner, processing the collected images by using the image processing module, outputting splicing information between a plurality of single-galvanometer compensation files and the multi-galvanometers, realizing calibration of the galvanometers with low cost, high efficiency and high precision, and being suitable for any galvanometer arrangement.

Description

Multi-galvanometer rapid calibration method
Technical Field
The invention belongs to the technical field of additive manufacturing, and particularly relates to a quick calibration method for a multi-galvanometer.
Background
In the technical field of additive manufacturing, a vibrating mirror is generally used for controlling a light (laser and the like) path to irradiate powder (metal, resin and the like) to solidify so as to realize the formation of complex parts; environmental changes such as temperature, humidity and vibration, mechanical abrasion of a motor and the like cause the step loss of the vibrating mirror motor, deviation is generated after a certain time, and the forming quality of parts is influenced, so that error compensation needs to be performed on the vibrating mirror in time to reduce the deviation.
In the process of using the galvanometer to perform high-precision laser processing, strict requirements on the processing precision of the galvanometer are often required, so that the galvanometer needs to be corrected in precision. In the technical field of additive manufacturing, in order to achieve the purposes of high efficiency and large breadth, a plurality of galvanometers are adopted to control optical path equipment; the galvanometer calibration of the multi-galvanometer equipment has the problems of complex operation, long time consumption and the need of an expensive measuring instrument for assistance.
Disclosure of Invention
The invention aims to provide a method for quickly calibrating a multi-galvanometer, which solves the problems of complex operation and long consumed time in the splicing calibration process of the multi-galvanometer in the prior art.
The technical scheme adopted by the invention is a quick calibration method for a multi-galvanometer, which is implemented according to the following steps:
step 1: a plurality of galvanometer control light path emitters of the galvanometer control system emit light beams which strike a target array on a galvanometer correction plate;
all the galvanometers use the target positions of respective light-emitting original points as original points, and the scanning X, Y directions of the respective galvanometers as X and Y axes to form a plurality of cross coordinate systems, and the working range of the multi-galvanometer is the collection of the areas covered by the target arrays in the plurality of cross coordinate systems;
one of the vibrating mirrors is selected as a reference vibrating mirror, and the coordinates of the original points of the other vibrating mirrors in the coordinate system of the reference vibrating mirror are marked as p0、p1、p2… …, standard coordinates of the target arrays of the galvanometers in the respective cross coordinate systems are marked as m0、m1、m2… …, the maximum allowable target array deviation is designated as L, the maximum allowable galvanometer translation deviation is designated as M, and the maximum allowable galvanometer rotation deviation is designated as A.
Step 2, placing the galvanometer correction plate on a contact scanner, and operating the contact scanner to acquire a target array image;
step 3, the image processing module acquires relative coordinate values and rotation and translation quantities of the target arrays of the vibrating mirrors by using the target array images acquired in the step 2;
step 3.1: and identifying the positions of all the cross points of the parallel oblique lines in the image, simultaneously selecting any point as an origin, taking the lower right direction as the positive direction of an X axis, taking the upper right direction as the positive direction of a Y axis, taking the interval length of the parallel oblique lines as a unit to form a grid coordinate system, and storing all the integral point coordinates and the image pixels to a set S.
Step 3.2: identifying the target array (target array) of each galvanometer in the imageRow preset interval is between 5mm and 10 mm), the position of the target of the light-emitting original point of the target array of each vibrating mirror is taken as the original point, the scanning X, Y direction of the vibrating mirror is taken as the positive direction of an X axis and the positive direction of a Y axis, the interval of the target array is taken as a unit to form a plurality of target array coordinate systems, and all integral point coordinates and image pixels of the vibrating mirrors in the target array coordinate systems are respectively stored to a set S00、S01、S02……。
Step 3.3: calculating set S from set S00、S01、S02… … in the grid coordinate system, and converting the actual coordinates into coordinate values in the cross coordinate system with the target position of the light-emitting origin of each galvanometer as the origin, and storing in the set S0、S1、S2… …, respectively.
Step 3.4: calculate the set S0、S1、S2… … and the angle between the positive X-axis direction of the grid coordinate system is denoted as A00、A01、A02… …, the angle relative to the reference galvanometer is denoted A0、A1、A2……;
Step 3.5: calculating the coordinate of the origin of each galvanometer in the coordinate system of the reference galvanometer, and combining the coordinate with the coordinate p0、p1、p2… … calculate the coordinate of each galvanometer to be shifted, and is marked as P0、P1、P2……
Wherein p is0、p1、p2… … is the coordinate of the origin of each galvanometer in the coordinate system of the reference galvanometer;
step 4, go through S0、S1、S2… …, respectively and m0、m1、m2… …, performing deviation value operation, if the deviation value is larger than the maximum allowable deviation value L, indicating that the current galvanometer needs to be corrected, and generating a current galvanometer coordinate compensation file.
Traverse P0、P1、P2… …, if the component of the offset of a galvanometer in the X-axis direction or the Y-axis direction is larger than the maximum value M of the allowed translation deviation, it indicates that the galvanometer needs to be moved currentlyAnd translating to generate a current galvanometer translation compensation file.
Traverse A0、A1、A2… …, if the rotation angle of a vibrating mirror is larger than the allowable rotation deviation A, indicating that the current vibrating mirror is rotating to generate a current vibrating mirror angle compensation file;
step 5, if the generated compensation file is not modified in the step 4, ending the process; and if the compensation file is generated, the galvanometer control system 2 leads each compensation file in the step 4 into an image processing module.
The present invention is also characterized in that,
the contact type scanner comprises a light-transmitting glass flat plate, wherein two groups of parallel oblique lines fixed at intervals are arranged on outer side lines of the light-transmitting glass flat plate, and the two groups of parallel oblique lines are vertically intersected to form a plurality of uniformly arranged cross points.
The target arrays are equally spaced.
The target arrays are preset at intervals of between 5mm and 10 mm.
The maximum allowable deviation L of the target array ranges from 0.03 mm to 0.08 mm.
The maximum value M range of the allowed translation deviation of the galvanometer is 0.02-0.05 mm.
The maximum allowable rotation deviation value A of the galvanometer is within the range of 0.002-0.005 degrees.
The resolution of the contact scanner is between 600dpi and 2400 dpi.
The method for rapidly calibrating the multi-galvanometer provided by the invention can be used for shooting the target arrays of the multi-galvanometer at one time, then collecting the target array images by using a low-cost contact scanner, processing the collected images by using the image processing module, outputting splicing information between a plurality of single-galvanometer compensation files and the multi-galvanometer, and realizing the calibration of the galvanometers at low cost, high efficiency and high precision. Any mode of arrangement of the galvanometers is applicable, including but not limited to 1 x 2, 2 x 3 and other arrangements of the galvanometers.
Drawings
FIG. 1 is a schematic diagram of a module structure of a galvanometer calibration system in a multi-galvanometer fast calibration method of the present invention;
FIG. 2 is a schematic view of a scanner transparent glass plate in the multi-galvanometer rapid calibration method of the present invention;
FIG. 3 is a schematic diagram of a workflow of a multi-galvanometer fast calibration method of the present invention;
FIG. 4 is a schematic diagram of a galvanometer target array in a multi-galvanometer fast calibration method of the present invention;
FIG. 5 is a detailed image of an embodiment of a multi-galvanometer fast calibration method of the present invention.
In the figure, 1, an optical path emitter, 2, a galvanometer control system, 3, a galvanometer correction system, 31, a galvanometer correction plate, 32, a contact scanner and 33, an image processing module.
Detailed Description
The multi-galvanometer calibration method provided by the invention uses a contact scanner to acquire images of target arrays on a calibration plate projected by a plurality of galvanometers, and outputs compensation information of the plurality of galvanometers and splicing information among the galvanometers to calibrate the galvanometers after the acquired target arrays are processed by an image processing module; the galvanometer can be corrected with low cost, high efficiency and high precision without auxiliary measuring equipment.
Fig. 1 shows a module structure of the galvanometer correction system provided by the invention, and the working principle of the module structure is detailed as follows.
The galvanometer correction system 3 comprises a galvanometer correction plate 31, a contact scanner 32 and an image processing module 33, wherein the light path emitter 1 emits light paths, and the galvanometer control system 2 controls a plurality of galvanometer light paths to emit target arrays to be sintered on the galvanometer correction plate 31; a contact scanner 32 (with a resolution of 600dpi to 2400 dpi) is used to acquire images of the target array on the galvanometer calibration plate 31; the image processing module 33 is configured to process the acquired image and generate a galvanometer compensation file and stitching information.
The galvanometer correcting plate 31 is used as a hardware carrier of the galvanometer target array, and is required to be a flat-plate-shaped material which has good flatness and is not easy to deform, and the material has obvious color change after receiving irradiation of a light path controlled by the galvanometer.
The contact scanner 32 is used as an image acquisition module in the system, and a commercially available contact scanner is selected, wherein the scanner is provided with a light-transmitting glass flat plate for placing an object to be scanned; as part of the system of the present invention, the transparent glass plate of the contact scanner 32 needs to be modified to some extent, and two groups of parallel oblique lines fixed at intervals are arranged on the outer side (the side contacting with the object to be scanned) of the transparent glass plate, and the two groups of parallel lines are intersected vertically, and fig. 2 is a schematic diagram of the parallel oblique lines of the patterns on the transparent glass plate of the scanner.
Fig. 3 shows a flowchart of a method for fast calibrating a galvanometer according to the present invention, which is detailed as follows:
step 1: the plurality of galvanometer control optical path emitters 1 of the galvanometer control system 2 direct the plurality of optical paths onto the galvanometer correction plate 31. FIG. 4 is a schematic diagram of a target array on a galvanometer calibration plate, with equal spacing of the target arrays of each galvanometer, and with the target arrays of multiple galvanometers intersecting but not coincident; all the galvanometers form a plurality of cross coordinate systems by taking the positions of the targets of the respective light-emitting origins as the origins and the scanning X, Y directions of the respective galvanometers as X and Y axes, and the working range of the multi-galvanometer is the collection of the areas covered by the target arrays in the coordinate systems.
One of the vibrating mirrors is selected as a reference vibrating mirror, and the coordinates of the original points of the other vibrating mirrors in the coordinate system of the reference vibrating mirror are marked as p0、p1、p2… …, the standard coordinate of the target arrays of the galvanometers in the respective cross coordinate systems is marked as m0、m1、m2… …, marking the maximum allowable deviation of the target array as L (generally 0.03-0.08 mm), marking the maximum allowable translational deviation of the galvanometer as M (0.02-0.05mm), and marking the maximum allowable rotational deviation of the galvanometer as A (0.002-0.005 deg);
generally, a galvanometer at the bottom right corner is selected as a reference galvanometer;
step 2: placing the galvanometer correction plate 31 on a contact scanner 32, and operating the scanner to acquire images by using software; figure 5 shows an image of a case of the invention in which the target array and parallel diagonal lines are clearly visible.
And step 3: the image processing module 33 acquires the relative coordinate values and the rotation and translation values of the target arrays of the galvanometers by using the image acquired in step S2, and the specific steps are as follows:
1. and identifying the positions of all parallel oblique line cross points in the image, simultaneously selecting any point as an origin, taking the lower right direction as the positive direction of an X axis, taking the upper right direction as the positive direction of a Y axis, forming a parallel oblique line cross point coordinate system by taking the interval length of the parallel oblique lines as a unit, and storing all integral point coordinates and image pixels to a set S.
2. Respectively identifying a target array of each galvanometer in the image, forming a plurality of target array coordinate systems by taking the X, Y direction of scanning the galvanometer as the positive X-axis direction and the positive Y-axis direction and taking the interval of the target arrays as a unit by taking the position of the target of the light-emitting origin of each galvanometer as the origin, and respectively storing all integral point coordinates and image pixels of the galvanometers in the target array coordinate systems to a set S00、S01、S02……。
3. Calculating set S from set S00、S01、S02… … in the grid coordinate system, converting into coordinate values in the cross coordinate system with the central point of each galvanometer as the origin, and storing in the set S0、S1、S2… …, respectively.
4. Calculate the set S0、S1、S2… … and the angle between the positive X-axis direction of the grid coordinate system is denoted as A00、A01、A02… …, the angle relative to the reference galvanometer is denoted A0、A1、A2……。
5. Calculating the coordinate of the origin of each galvanometer in the coordinate system of the reference galvanometer, and combining the coordinate with the coordinate p0、p1、p2… … calculate the coordinate of each galvanometer to be shifted, and is marked as P0、P1、P2……。
And 4, step 4: traverse S0、S1、S2… …, respectively and m0、m1、m2… … calculating deviation value, if the deviation value is larger than the maximum allowable deviation value L, indicating the current mirrorAnd (5) correcting coordinates to generate a current galvanometer coordinate compensation file.
Traverse P0、P1、P2… …, if the component of the offset of a galvanometer in the X-axis direction or the Y-axis direction is larger than the maximum value M of the allowed translation deviation, it indicates that the galvanometer needs to be translated currently, and generates a current galvanometer translation compensation file.
Traverse A0、A1、A2… …, if the rotation angle of a vibrating mirror is larger than the allowable rotation deviation A, indicating that the current vibrating mirror is rotating to generate a current vibrating mirror angle compensation file;
step 5, if the generated compensation file is not modified in the step 4, ending the process; and if the compensation file is generated, the galvanometer control system 2 leads each compensation file in the step 4 into an image processing module.
In step S6, the galvanometer control system 2 is caused to import a newly generated galvanometer compensation file
The above is a method for rapidly calibrating a multi-galvanometer provided by the invention, and an embodiment of the invention in the field of metal additive manufacturing is provided below.
The optical path emitter 1 adopts two lasers, the correcting plate 31 adopts a glass plate pasted with photographic paper, the contact scanner 32 adopts a common flat-plate scanner, the resolution ratio of the common flat-plate scanner is between 600dpi and 2400dpi, parallel oblique lines on a glass part of the scanner are engraved by laser, and the interval is between 5mm and 10 mm; fig. 5 shows that the difference between the actual coordinates of the extracted target array and the measurement result using the high-precision measurement instrument is no greater than 0.05mm for the acquired image of the dual-galvanometer using an embodiment of the present invention.
The advantages of using this calibration method to calibrate multiple galvanometers are as follows:
1) the price is low: expensive auxiliary measuring equipment is not needed to be purchased, only a common scanner is needed to be purchased,
2) the precision is high: compared with high-precision optical imaging instrument, the error is not more than 0.05mm
3) The operation is simple: except for the usual scanner, no other mechanical structure,
4) the operation is quick: the correction is performed for no more than 30 minutes once.

Claims (7)

1. A multi-galvanometer quick calibration method is characterized by comprising the following specific operation steps:
step 1: beams emitted by a plurality of galvanometer control light path emitters (1) of the galvanometer control system (2) are shot out of a target array on a galvanometer correction plate (31);
all the galvanometers use the target positions of the respective light-emitting original points as original points, and the scanning X, Y directions of the respective galvanometers as X and Y axes to form a plurality of cross coordinate systems, and the working range of the multi-galvanometer is the collection of the areas covered by the target arrays in the plurality of cross coordinate systems;
one of the vibrating mirrors is selected as a reference vibrating mirror, and the coordinates of the original points of the other vibrating mirrors in the coordinate system of the reference vibrating mirror are marked as p0、p1、p2..., the standard coordinate of the target array of galvanometers in the respective cross coordinate system is marked m0、m1、m2.., recording the maximum allowable deviation of the target array as L, the maximum allowable translational deviation of the galvanometer as M, and the maximum allowable rotational deviation of the galvanometer as A;
step 2, placing the galvanometer correction plate (31) on a contact scanner (32), and operating the contact scanner (32) to acquire a target array image;
step 3, the image processing module (33) acquires the relative coordinate values and the rotation and translation quantities of the target arrays of the vibrating mirrors by using the target array image acquired in the step 2
Step 3.1: identifying the positions of all parallel oblique line cross points in the image, simultaneously selecting any point as an origin, taking the lower right direction as the positive direction of an X axis, taking the upper right direction as the positive direction of a Y axis, taking the interval length of the parallel oblique lines as a unit to form a grid coordinate system, and storing all integral point coordinates and image pixels to a set S;
the contact scanner comprises a light-transmitting glass flat plate, wherein two groups of parallel oblique lines which are fixed at intervals are arranged on the outer side lines of the light-transmitting glass flat plate, and the two groups of parallel oblique lines are vertically intersected to form a plurality of uniformly arranged cross points;
step 3.2: respectively identify each imageThe target array of the vibrating mirrors, the position of the target of the light-emitting original point of the target array of each vibrating mirror is taken as the original point, the scanning X, Y direction of the vibrating mirrors is taken as the positive direction of the X axis and the positive direction of the Y axis, a plurality of target array coordinate systems are formed by taking the interval of the target arrays as a unit, and all integral point coordinates and image pixels of the vibrating mirrors in the target array coordinate systems are respectively stored to a set S00、S01、S02......;
Step 3.3: calculating set S from set S00、S01、S02... actual coordinates in a grid coordinate system are converted into coordinate values in a cross coordinate system with the target position of the light-emitting origin of each galvanometer as the origin, and the coordinate values are stored in a set S0、S1、S2.... medium;
step 3.4: calculate the set S0、S1、S2... the included angle between the positive direction of X axis and the positive direction of X axis in the grid coordinate system is recorded as A00、A01、A02..., the angle relative to the reference galvanometer is recorded as A0、A1、A2......;
Step 3.5: calculating the coordinate of the origin of each galvanometer in the coordinate system of the reference galvanometer, and combining the coordinate with the coordinate p0、p1、p2... calculate the coordinates of each galvanometer to be shifted, and record the coordinates as P0、P1、P2......
Wherein p is0、p1、p2... coordinates of the origin of each galvanometer in a reference galvanometer coordinate system;
step 4, go through S0、S1、S2.., respectively mixing with m0、m1、m2... performing deviation value operation, if the deviation value is larger than the maximum allowable deviation value L, indicating that the current galvanometer needs to be corrected, and generating a current galvanometer coordinate compensation file;
traverse P0、P1、P2.., if the offset component of a galvanometer in the X-axis direction or the Y-axis direction is larger than the maximum allowable translation deviation value M, it indicates that the galvanometer needs to be translated currently to generate the current galvanometerA galvanometer translation compensation file;
traverse A0、A1、A2.., if the rotation angle of a certain galvanometer is larger than the allowed rotation deviation A, indicating that the current galvanometer needs to be rotated to generate a current galvanometer angle compensation file;
step 5, if the generated compensation file is not modified in the step 4, ending the process; and if the compensation files are generated, the galvanometer control system (2) leads each compensation file in the step (4) into an image processing module.
2. The calibration method for the multi-galvanometer fast calibration method of claim 1, wherein the target arrays are equally spaced.
3. The calibration method of claim 2, wherein the preset spacing of the target arrays is between 5mm and 10 mm.
4. The calibration method of claim 1, wherein the maximum allowable deviation L of the target array is in a range of 0.03-0.08 mm.
5. The calibration method of claim 1, wherein the maximum allowable translational deviation M of the galvanometer is in the range of 0.02-0.05 mm.
6. The calibration method for the fast calibration method of the multi-galvanometer mirror according to claim 1, wherein the maximum allowable rotational deviation A of the galvanometer mirror is in the range of 0.002 to 0.005 °.
7. The calibration method for the multi-galvanometer fast calibration method according to claim 1, wherein the resolution of the contact scanner is between 600dpi and 2400 dpi.
CN201910880933.7A 2019-09-18 2019-09-18 Multi-galvanometer rapid calibration method Active CN110653489B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910880933.7A CN110653489B (en) 2019-09-18 2019-09-18 Multi-galvanometer rapid calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910880933.7A CN110653489B (en) 2019-09-18 2019-09-18 Multi-galvanometer rapid calibration method

Publications (2)

Publication Number Publication Date
CN110653489A CN110653489A (en) 2020-01-07
CN110653489B true CN110653489B (en) 2021-06-29

Family

ID=69038124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910880933.7A Active CN110653489B (en) 2019-09-18 2019-09-18 Multi-galvanometer rapid calibration method

Country Status (1)

Country Link
CN (1) CN110653489B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112077451B (en) * 2020-08-31 2023-03-07 广州新可激光设备有限公司 Segmentation splicing correction method of laser marking system
CN112414674A (en) * 2020-10-20 2021-02-26 天津镭明激光科技有限公司 Rapid processing method for multi-galvanometer laser splicing calibration
CN113146055B (en) * 2021-02-24 2023-12-08 芜湖伦丰电子科技有限公司 Laser engraving method of capacitive touch screen
CN113560602B (en) * 2021-08-09 2023-06-13 中国航空制造技术研究院 Splicing area forming precision compensation method for multi-laser powder bed material-increasing workpiece
CN114054941A (en) * 2021-10-29 2022-02-18 西安铂力特增材技术股份有限公司 Galvanometer calibration plate and device and galvanometer calibration method
CN114211003B (en) * 2021-12-03 2023-06-30 湖南华曙高科技股份有限公司 Multi-laser system overlap correction method for additive manufacturing equipment
CN114379081A (en) * 2021-12-16 2022-04-22 华南理工大学 Double-laser double-vibrating-mirror same-breadth calibration platform and calibration method thereof
CN114485482B (en) * 2022-03-04 2023-06-16 南京铖联激光科技有限公司 Calibration module of galvanometer scanning system
CN115041705B (en) * 2022-08-16 2022-11-11 季华实验室 Multi-laser triaxial galvanometer calibration method, system, equipment and readable storage medium
CN115922069B (en) * 2023-03-15 2023-06-02 镭神泰克科技(苏州)有限公司 Vibrating mirror local correction compensation method based on double vibrating lenses

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264488A (en) * 1985-09-17 1987-03-23 Nec Corp Laser beam machine
JPH0335892A (en) * 1989-06-30 1991-02-15 Nec Corp Laser beam machine
JP2001147399A (en) * 1999-11-18 2001-05-29 Nec Corp Laser beam machining device and adjusting method therefor
CN1484190A (en) * 2002-09-18 2004-03-24 中国人民解放军国防科学技术大学 Method for exactly calibrating and modifying scanner by using normal scanner in precision measurement
CN101513693A (en) * 2009-03-17 2009-08-26 深圳市大族激光科技股份有限公司 Oscillating mirror correcting system and correcting method thereof
CN102152007A (en) * 2011-03-15 2011-08-17 北京金橙子科技有限公司 Precision vibration mirror correction system and method
CN104259656A (en) * 2014-08-20 2015-01-07 湖南华曙高科技有限责任公司 Laser galvanometer calibration system and calibration method thereof
CN104475970A (en) * 2014-12-01 2015-04-01 大族激光科技产业集团股份有限公司 Laser equipment and laser scanning galvanometer array calibrating method
CN108406095A (en) * 2018-01-15 2018-08-17 大族激光科技产业集团股份有限公司 A kind of bearing calibration of laser galvanometer and means for correcting
CN109738164A (en) * 2019-01-18 2019-05-10 深圳市鹏鼎自动化技术有限公司 A kind of laser index carving galvanometer high-precision correction system and method
CN109732228A (en) * 2018-12-12 2019-05-10 武汉帝尔激光科技股份有限公司 A kind of laser galvanometer accuracy correcting method, apparatus and system
CN109773332A (en) * 2018-12-29 2019-05-21 大族激光科技产业集团股份有限公司 A kind of bearing calibration and more galvanometers correction system of more galvanometer systems
CN109877319A (en) * 2018-12-29 2019-06-14 西安铂力特增材技术股份有限公司 A kind of more galvanometer laser precision splicing calibration methods

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264488A (en) * 1985-09-17 1987-03-23 Nec Corp Laser beam machine
JPH0335892A (en) * 1989-06-30 1991-02-15 Nec Corp Laser beam machine
JP2001147399A (en) * 1999-11-18 2001-05-29 Nec Corp Laser beam machining device and adjusting method therefor
CN1484190A (en) * 2002-09-18 2004-03-24 中国人民解放军国防科学技术大学 Method for exactly calibrating and modifying scanner by using normal scanner in precision measurement
CN101513693A (en) * 2009-03-17 2009-08-26 深圳市大族激光科技股份有限公司 Oscillating mirror correcting system and correcting method thereof
CN102152007A (en) * 2011-03-15 2011-08-17 北京金橙子科技有限公司 Precision vibration mirror correction system and method
CN104259656A (en) * 2014-08-20 2015-01-07 湖南华曙高科技有限责任公司 Laser galvanometer calibration system and calibration method thereof
CN104475970A (en) * 2014-12-01 2015-04-01 大族激光科技产业集团股份有限公司 Laser equipment and laser scanning galvanometer array calibrating method
CN108406095A (en) * 2018-01-15 2018-08-17 大族激光科技产业集团股份有限公司 A kind of bearing calibration of laser galvanometer and means for correcting
CN109732228A (en) * 2018-12-12 2019-05-10 武汉帝尔激光科技股份有限公司 A kind of laser galvanometer accuracy correcting method, apparatus and system
CN109773332A (en) * 2018-12-29 2019-05-21 大族激光科技产业集团股份有限公司 A kind of bearing calibration and more galvanometers correction system of more galvanometer systems
CN109877319A (en) * 2018-12-29 2019-06-14 西安铂力特增材技术股份有限公司 A kind of more galvanometer laser precision splicing calibration methods
CN109738164A (en) * 2019-01-18 2019-05-10 深圳市鹏鼎自动化技术有限公司 A kind of laser index carving galvanometer high-precision correction system and method

Also Published As

Publication number Publication date
CN110653489A (en) 2020-01-07

Similar Documents

Publication Publication Date Title
CN110653489B (en) Multi-galvanometer rapid calibration method
CN110681990A (en) Galvanometer correction system and correction method thereof
CN205219744U (en) Laser 3D printer and galvanometer scanning calbiration system thereof
JP4111166B2 (en) 3D shape input device
CN108072319B (en) Rapid calibration system and calibration method for motion platform
US20200324465A1 (en) Calibration of scanning systems
CN104259656B (en) Laser galvanometer calibration system and calibration steps thereof
CN111077668A (en) Correction method of large-format laser scanning system
JP2018526667A (en) Method for determination and compensation of geometric imaging errors
CN106553338A (en) Laser 3D printing machine and its vibration mirror scanning calibration system and method
JPH06122230A (en) Method and device for enhancing accuracy of scanner system
CN112371998B (en) Error calibration system and method for laser galvanometer of selective laser melting equipment
CN1667377A (en) Method and apparatus for measuring beam spot of scanning light
US7274469B2 (en) Method and apparatus for calibrating laser 3D digitizing sensor
WO2018168757A1 (en) Image processing device, system, image processing method, article manufacturing method, and program
CN210451366U (en) Galvanometer correction system
JP2005321794A (en) Method for calibrating write head for producing printing plate
JP2003211346A (en) Precision analyzing instrument for machine tool
US20080299470A1 (en) Adjusting the calibration of an imaging system
CN115041705B (en) Multi-laser triaxial galvanometer calibration method, system, equipment and readable storage medium
CN111981979A (en) Galvanometer laser splicing calibration device and splicing calibration method
WO2009139026A1 (en) Method for creating drive pattern for galvano-scanner system
US20200016692A1 (en) Calibrated laser printing method
JPH0886622A (en) Apparatus for measuring shape
CN114260560B (en) A3-format scanner-based regional scanning large-format galvanometer correction system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant