CN110653348B - 一种钛基非晶纳米管及其制备方法 - Google Patents
一种钛基非晶纳米管及其制备方法 Download PDFInfo
- Publication number
- CN110653348B CN110653348B CN201810698988.1A CN201810698988A CN110653348B CN 110653348 B CN110653348 B CN 110653348B CN 201810698988 A CN201810698988 A CN 201810698988A CN 110653348 B CN110653348 B CN 110653348B
- Authority
- CN
- China
- Prior art keywords
- nanotube
- amorphous
- strip
- preparation
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/11—Making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/10—Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Molecular Biology (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种钛基非晶纳米管及其制备方法。该纳米管通过电弧熔炼得到Ti基合金锭,并通过单辊甩带得到非晶条带,在乙二醇电解液中通过恒电位极化得的非晶纳米管。本发明的制备方法采用一步阳极氧化法、通过调控电解液的成分得到整齐均匀的非晶纳米管。本发明的纳米管利用电化学方法催化检测葡萄糖,得出该纳米管具有高的灵敏度、低检出限。
Description
技术领域
本发明涉及一种钛基非晶纳米管及其制备方法,属于非晶合金纳米结构制备领域。
背景技术
纳米管结构金属材料是继碳纳米管发现后发展起来的新型纳米结构材料。由于金属纳米管结构材料具有纳米材料的优异性能,比如表面效应、量子尺寸效应以及体积效应等,而被广泛研究。TiO2纳米管是一种新型的无机功能型材料,由于其独特的多孔结构和半导体特性,在光催化、染料敏化电池以及传感器等方面均有应用。基于钛基晶态合金制备TiO2纳米管主要有模板法、水热合成法以及阳极氧化法。由于阳极氧化法工艺简单、易操作控制、成本低、效率高,制备出的纳米管高度有序、排列整齐、易于工业化被广泛应用。
相比于晶态合金,非晶态结构因为其具有长程无序、短程有序的结构,在形成纳米管结构时,无序排列的纳米管可能会进一步增大比表面积,增加反应活性位点,促进反应过程中的催化氧化。然而,以非晶态合金材料作为前驱体制备纳米结构用作催化氧化葡萄糖的报道很少,主要原因为:对于大多数合金体系而言,其非晶形成能力有限甚至形不成非晶态;其次,非晶态合金具有强的耐腐蚀性,在制备纳米结构材料的过程中受限。
以TiO2纳米管为衬底,通过复合其它纳米结构金属材料,比如Cu及其氧化物、纳米Ag颗粒等来催化氧化葡萄糖的报道很多。其共同点都是先制备出TiO2纳米管,然后再利用电化学沉积等方法在纳米管表面修饰具有更好催化氧化效果的金属极其氧化物来检测葡萄糖。这些方法不仅工艺复杂,成本高,不易于工业化生产,而且其部分复合材料在检测葡萄糖的灵敏度等性能也差。所以如何通过合金成分设计原位制备出具有催化效果的非晶态纳米管结构材料成为未来关注和发展的新研究方向。
发明内容
本发明的目的在于提供一种钛基非晶纳米管及其制备方法。
实现本发明的目的提供技术方案如下:以钛基合金为前驱体,通过单辊甩带以及恒电位极化得到非晶纳米管结构,包括以下步骤:
将Ti60Cu40合金锭放入石英管中加热融化,利用高速旋转的铜辊急冷甩带得到非晶条带;
对非晶条带在乙二醇电解液中进行恒电位极化处理,然后将条带在去离子水超声振荡至少5s后请无水乙醇清洗,得到非晶纳米管。
进一步的,步骤(1)中的Ti60Cu40选择高纯度的Ti、Cu金属作为原材料,将其放置在电弧熔炼炉内熔炼制备合金锭,具体过程如下:称量好的Ti,Cu纯度分别为99.99wt%,99.99wt%放置在熔炼炉内,抽真空至3E-3Pa,然后充入保护气氩气,通过电弧反复熔炼4-5次得到合金锭。
进一步的,步骤(2)中,通过调节石英管管口大小以及到铜辊表面的距离,利用感应加热,3500r/min的铜辊甩带得到的非晶条带。
进一步的,步骤(3)中,乙二醇电解液包含0.2wt%NH4F+2.0vol%H2O。
进一步的,电解条件为:恒电压15V,极化时间4h。
与其它纳米管复合材料相比,本发明的显著优点为:
1、本发明通过一步阳极氧化法制备出了非晶纳米管复合材料,操作工艺简单,易于实现大规模生产
2、本发明通过原位加入Cu形成Ti、Cu的氧化物复合非晶纳米管材料,使铜的氧化物活性位点均匀广泛的分布在样品中
3、本发明形成的纳米管处于非晶态,具备了抗腐蚀性的同时可以进一步提高催化能力纳米管在检测葡萄糖时具有宽的线性范围10μM-0.2mM,高的灵敏度约403.9μA·cm-2·mM-1,低的检出限1.40μM(信噪比为3)。
附图说明
图1显示原始非晶条带以及阳极极化后纳米管条带的XRD图谱。
图2显示纳米管的表面形貌和断面形貌的SEM图。
图3显示纳米管明场像形貌、高分辨以及选区衍射TEM图。
图4显示纳米管在催化氧化不同浓度葡萄糖时的CV图。
图5显示纳米管对葡萄糖的传感特性CA图。
图6显示纳米管的抗干扰性检测图。
图7显示在0.2wt%NH4F+1.0vol%H2O的乙二醇电解液中纳米管SEM形貌图。
图8显示在0.15wt%NH4F+2.0vol%H2O的乙二醇电解液中纳米管SEM形貌图。
具体实施方式
下面结合实施例及附图对本发明进一步说明
实施例
将纯度为99.99%的Ti和Cu按照配比称量好各自所需质量放入电弧熔炼炉,在高纯氩气的氛围内将合金反复熔炼5次,同时打开磁力搅拌,确保合金元素混合均匀;取出合金锭,打磨去除表面的氧化层放入石英管中5g,在高纯氩气的氛围下甩带制备出宽约1mm,厚度约20μm的条带;截取一小部分与镍丝焊接,用普通指甲油涂抹焊接处,并保证条带外露的表面积为0.3cm2;将准备好的样品作为阳极,铂片作为对电极置入约50ml乙二醇电解液中0.2wt%NH4F+2.0vol%H2O利用电化学工作站施加恒电压15V极化4h,取出放在去离子水中超声清洗5s,然后无水乙醇清洗,得到非晶纳米管。
如图1所示为恒电位极化前后条带的XRD图,可以看出其均处于非晶态;如图2为纳米管表面和侧面形貌,纳米管整齐均匀,其管径约22nm,管长约360nm。如图3为纳米管TEM图,其结果与前面的测试结果一致,管壁厚约6nm,纳米管依旧为非晶态。
将备好的样品作为阳极,铂片作为对电极,饱和甘汞电极作为参比电极放在0.1M的NaOH溶液中,利用循环伏安法在0-0.75V的范围内以50mv/s的扫速测试不同浓度葡萄糖(0mM、0.5mM、1mM、5mM、10mM)的CV曲线。如图4,随着葡萄糖浓度的增加,其氧化还原反应随之增大,峰电流密度也增加。
取相同条件下制备的纳米管样品,在同样的溶液中利用计时电流法在0.6V电压下,通过向溶液中滴加不同浓度的葡萄糖测试得到i-t阶梯曲线,并对葡萄糖浓度与相应电流密度进行点线拟合。如图5,纳米管在检测葡萄糖时具有宽的线性范围10μM-0.2mM,高的灵敏度约403.9μA·cm-2·mM-1,低的检出限1.40μM(信噪比为3)。相同的方法测试纳米管抗干扰性,分别滴加葡萄糖、尿酸和抗坏血酸(浓度比10:1:1),如图6,该非晶纳米管对葡萄糖有良好的选择性,对其它物质有良好的抗干扰性。
对比例
将纯度为99.99%的Ti和Cu按照配比称量好各自所需质量放入电弧熔炼炉,在高纯氩气的氛围内将合金反复熔炼5次,同时打开磁力搅拌,确保合金元素混合均匀;取出合金锭,打磨去除表面的氧化层放入石英管中5g,在高纯氩气的氛围下甩带制备出宽约1mm,厚度约20μm的条带;截取一小部分与镍丝焊接,用普通指甲油涂抹焊接处,并保证条带外露的表面积为0.3cm2;将准备好的样品作为阳极,铂片作为对电极置入约50ml乙二醇电解液中0.2wt%NH4F+1.0vol%H2O利用电化学工作站施加恒电压15V极化4h,取出放在去离子水中超声清洗5s,然后无水乙醇清洗,得到非晶纳米管。如图7所示,也有纳米管的形成,但其表面出现氧化物覆盖层遮挡了部分纳米管。对比例
将纯度为99.99%的Ti和Cu按照配比称量好各自所需质量放入电弧熔炼炉,在高纯氩气的氛围内将合金反复熔炼5次,同时打开磁力搅拌,确保合金元素混合均匀;取出合金锭,打磨去除表面的氧化层放入石英管中5g,在高纯氩气的氛围下甩带制备出宽约1mm,厚度约20μm的条带;截取一小部分与镍丝焊接,用普通指甲油涂抹焊接处,并保证条带外露的表面积为0.3cm2;将准备好的样品作为阳极,铂片作为对电极置入约50ml乙二醇电解液中0.15wt%NH4F+2.0vol%H2O利用电化学工作站施加恒电压15V极化4h,取出放在去离子水中超声清洗5s,然后无水乙醇清洗,得到非晶纳米管。如图8所示,有纳米管的形成,但其表面也出现氧化物覆盖层遮挡了部分纳米管,同时有纳米管层的脱落。
Claims (2)
1.一种基于钛基非晶纳米管的制备方法,其特征在于,即以钛基合金为前驱体,通过单辊甩带以及恒电位极化得到非晶纳米管结构,包括以下步骤:
(1)将Ti60Cu40合金锭放入石英管中加热融化,利用高速旋转的铜辊急冷甩带得到非晶条带;
(2)对非晶条带在乙二醇电解液中进行恒电位极化处理,然后将条带在去离子水超声振荡至少5s后用无水乙醇清洗,得到非晶纳米管;
步骤(1)中的Ti60Cu40选择高纯度的Ti、Cu金属作为原材料,将其放置在电弧熔炼炉内熔炼制备合金锭,具体过程如下:称量好纯度分别为99.99wt%的Ti和Cu,放置在熔炼炉内,抽真空至3E-3Pa,然后充入保护气氩气,通过电弧反复熔炼4-5次得到合金锭;
步骤(1)中,通过调节石英管管口大小以及到铜辊表面的距离,利用感应加热,3500r/min的铜辊甩带得到非晶条带;
步骤(2)中,乙二醇电解液包含0.2wt%NH4F+2.0vol%H2O,电解条件为:恒电压15V,极化时间4h。
2.一种基于权利要求1所述基于钛基非晶纳米管的制备方法制得的钛基非晶纳米管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810698988.1A CN110653348B (zh) | 2018-06-29 | 2018-06-29 | 一种钛基非晶纳米管及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810698988.1A CN110653348B (zh) | 2018-06-29 | 2018-06-29 | 一种钛基非晶纳米管及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110653348A CN110653348A (zh) | 2020-01-07 |
CN110653348B true CN110653348B (zh) | 2021-12-31 |
Family
ID=69027655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810698988.1A Active CN110653348B (zh) | 2018-06-29 | 2018-06-29 | 一种钛基非晶纳米管及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110653348B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646672A (zh) * | 2020-12-18 | 2022-06-21 | 南京理工大学 | 用于提高葡萄糖传感性能的纳米复合电极材料及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346027A (zh) * | 2013-07-08 | 2013-10-09 | 山东大学 | 一种基于纳米多孔钛骨架的超级电容器材料的制备工艺 |
CN103409657A (zh) * | 2013-07-08 | 2013-11-27 | 北京航空航天大学 | 一种(Zr100-tTit)xCuyRz块体非晶合金及制备方法及在无酶葡萄糖传感器电极上的应用 |
CN103924280A (zh) * | 2014-04-29 | 2014-07-16 | 张家港格林台科环保设备有限公司 | 一种钼碳共掺杂氧化钛纳米管阵列薄膜材料及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI673729B (zh) * | 2015-03-31 | 2019-10-01 | 日商信越化學工業股份有限公司 | R-Fe-B系燒結磁石及其製造方法 |
CN104946921B (zh) * | 2015-05-14 | 2017-01-04 | 大连理工大学 | 一种强永磁性纳米多孔Fe-Pt合金及其制备方法 |
CN105648478A (zh) * | 2016-01-13 | 2016-06-08 | 大连理工大学 | 一种具有电氧化催化性能的磁性纳米多孔Fe-Pt合金的制备方法 |
CN108054022A (zh) * | 2017-12-07 | 2018-05-18 | 安徽工业大学 | 一种表层多孔结构镍钴氧化物的非晶合金复合电极及其制备方法 |
-
2018
- 2018-06-29 CN CN201810698988.1A patent/CN110653348B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346027A (zh) * | 2013-07-08 | 2013-10-09 | 山东大学 | 一种基于纳米多孔钛骨架的超级电容器材料的制备工艺 |
CN103409657A (zh) * | 2013-07-08 | 2013-11-27 | 北京航空航天大学 | 一种(Zr100-tTit)xCuyRz块体非晶合金及制备方法及在无酶葡萄糖传感器电极上的应用 |
CN103924280A (zh) * | 2014-04-29 | 2014-07-16 | 张家港格林台科环保设备有限公司 | 一种钼碳共掺杂氧化钛纳米管阵列薄膜材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110653348A (zh) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity | |
Du et al. | Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film | |
Hu et al. | Capture and electrochemical conversion of CO 2 to ultrathin graphite sheets in CaCl 2-based melts | |
Liu et al. | Co 3 O 4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H 2 O 2 detection | |
Zhang et al. | One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation | |
Li et al. | Topotactic Transformation of Single‐Crystalline Precursor Discs into Disc‐Like Bi2S3 Nanorod Networks | |
Jiang et al. | Improvement of sensitive Ni (OH) 2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane | |
Periasamy et al. | Synthesis of copper nanowire decorated reduced graphene oxide for electro-oxidation of methanol | |
Bayansal et al. | Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures | |
Wang et al. | Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation | |
Nazir et al. | Synthesis of one-dimensional RuO2 nanorod for hydrogen and oxygen evolution reaction: An efficient and stable electrocatalyst | |
Wang et al. | Pulsed laser deposition of amorphous molybdenum disulfide films for efficient hydrogen evolution reaction | |
Gao et al. | Non-enzymatic amperometric detection of hydrogen peroxide using grass-like copper oxide nanostructures calcined in nitrogen atmosphere | |
Yang et al. | Synthesis, characterization, and electrochemical performances of core-shell Ni (SO 4) 0.3 (OH) 1.4/C and NiO/C nanobelts | |
Abbas et al. | Decorated carbon nanofibers with mixed nickel− manganese carbides for methanol electro-oxidation in alkaline solution | |
Wen et al. | Flake-like Cu2O on TiO2 nanotubes array as an efficient nonenzymatic H2O2 biosensor | |
Ke et al. | Fabrication of Pt-ZnO composite nanotube modified electrodes for the detection of H2O2 | |
Ray et al. | Redox mediated synthesis of hierarchical Bi 2 O 3/MnO 2 nanoflowers: a non-enzymatic hydrogen peroxide electrochemical sensor | |
Kaedi et al. | Ethanol electrooxidation on high-performance mesoporous ZnFe 2 O 4-supported palladium nanoparticles | |
Zhu et al. | Easy one pot synthesis of NiO/Nitrogen doped carbon spheres for highly sensitive enzyme free amperometric glucose sensors | |
Ge et al. | An investigation into the carbon nucleation and growth on a nickel substrate in LiCl–Li 2 CO 3 melts | |
Shen et al. | Magnéli phase Ti 8 O 15 nanowires as conductive carbon-free energy materials to enhance the electrochemical activity of palladium nanoparticles for direct ethanol oxidation | |
Yang et al. | Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride | |
Zhao et al. | Rational design of galvanically replaced Pt-anchored electrospun WO 3 nanofibers as efficient electrode materials for methanol oxidation | |
Kang et al. | Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |