CN110647202B - 稳压器 - Google Patents

稳压器 Download PDF

Info

Publication number
CN110647202B
CN110647202B CN201910547634.1A CN201910547634A CN110647202B CN 110647202 B CN110647202 B CN 110647202B CN 201910547634 A CN201910547634 A CN 201910547634A CN 110647202 B CN110647202 B CN 110647202B
Authority
CN
China
Prior art keywords
voltage
output terminal
source
output
phase compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910547634.1A
Other languages
English (en)
Other versions
CN110647202A (zh
Inventor
原田范行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Publication of CN110647202A publication Critical patent/CN110647202A/zh
Application granted granted Critical
Publication of CN110647202B publication Critical patent/CN110647202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

稳压器,其特征在于,在构成相位补偿电路的辅助晶体管的栅极与误差放大器的输出端子之间具有偏移电压源,即使在输入输出电压差较小的情况下,也能够稳定地进行相位补偿动作。

Description

稳压器
技术领域
本发明涉及稳压器,更详细而言,涉及稳压器的相位补偿电路。
背景技术
图3是示出现有的稳压器的电路图。
例如,如专利文献1所示,现有的稳压器200具有误差放大器21、基准电压源22、输出晶体管23、分压电路24、电阻25、电容器26、辅助晶体管27、输入端子101以及输出端子102。
在误差放大器21的反相输入端子上连接有基准电压源22的输出端子,在非反相输入端子上连接有分压电路24的输出端子。输出晶体管23的源极与输入端子101连接,漏极与输出端子102连接,栅极与误差放大器21的输出端子连接。分压电路24连接于输出端子102与接地端子103之间。电阻25和电容器26连接于输出端子102与分压电路24的输出端子之间。辅助晶体管27的源极与输入端子101连接,漏极与电阻25和电容器26之间的连接点连接,栅极与误差放大器21的输出端子连接。
像以上那样构成的稳压器200通过如下方式进行相位补偿,即,由电阻25、电容器26和辅助晶体管27构成相位补偿电路,将通过流过辅助晶体管27的电流和电阻25生成的相位补偿信号作为反馈信号经由电容器26返回误差放大器21的非反相输入端子。
稳压器200为了得到期待的相位补偿效果,当输出晶体管23在饱和区域进行动作时,辅助晶体管27也需要在饱和区域进行动作。因此,必须使辅助晶体管27的源极漏极间电压Vds比过驱动电压(Vgs-Vth)大。
专利文献1:日本特开2002-32133号公报
但是,在现有技术的稳压器中,辅助晶体管27的源极漏极间电压Vds成为比输入输出端子之间的电压下降与电阻25的压降相对应的电压后的值。因此,为了得到期待的相位补偿效果,需要使输入输出端子之间的电压差增大与电阻25的压降相对应的电压,以使辅助晶体管27在饱和区域进行动作,因此在输入输出电压差较小的情况下,难以稳定地进行动作。
发明内容
本发明提供具有即使在输入输出电压差较小的情况下也稳定地进行动作的相位补偿电路的稳压器。
本发明的一个实施例的稳压器的特征在于,该稳压器具有:输出晶体管,该输出晶体管的源极与输入端子连接,漏极与输出端子连接;分压电路,其连接于所述输出端子与接地端子之间;误差放大器,在该误差放大器的一个输入端子连接有所述分压电路的输出端子,在该误差放大器的另一个输入端子连接有基准电压源的输出端子,该误差放大器的输出端子与所述输出晶体管的栅极连接;相位补偿电路,其连接于所述输出端子与所述分压电路的输出端子之间;以及辅助晶体管,该辅助晶体管的源极与所述输入端子连接,漏极与所述相位补偿电路连接,所述辅助晶体管的栅极经由偏移电压源与所述误差放大器的输出端子连接。
根据本发明的稳压器,由于在构成相位补偿电路的辅助晶体管的栅极处具有偏移电压源,因此即使在输入输出电压差较小的情况下,相位补偿电路也能够稳定地进行动作。
附图说明
图1是示出本发明的实施方式的稳压器的电路图。
图2是示出本发明的实施方式的稳压器的相位补偿电路的一例的电路图。
图3是示出现有的稳压器的电路图。
标号说明
11:误差放大器;12:基准电压源;14:分压电路;18:偏移电压源。
具体实施方式
图1是示出本发明的实施方式的稳压器的电路图。
本实施方式的稳压器100具有误差放大器11、基准电压源12、输出晶体管13、分压电路14、电阻15、电容器16、辅助晶体管17、偏移电压源18、输入端子101以及输出端子102。
在误差放大器11的反相输入端子上连接有基准电压源12的输出端子,在非反相输入端子上连接有分压电路14的输出端子。输出晶体管13的源极与输入端子101连接,漏极与输出端子102连接,栅极与误差放大器11的输出端子连接。分压电路14连接于输出端子102与接地端子103之间。电阻15和电容器16连接于输出端子102与分压电路14的输出端子之间。辅助晶体管17的源极与输入端子101连接,漏极连接于电阻15与电容器16之间的连接点。偏移电压源18连接于误差放大器11的输出端子与辅助晶体管17的栅极之间。
稳压器100利用误差放大器11对通过分压电路14将输出端子102的输出电压Vout进行分压而得的反馈电压与基准电压源12的基准电压进行比较,根据该比较结果对输出晶体管13的栅极电压进行控制,从而使输出端子102的输出电压Vout保持为期望的电压。
电阻15、电容器16、偏移电压源18和辅助晶体管17构成相位补偿电路。相位补偿信号通过流过辅助晶体管17的电流和电阻15而生成。误差放大器11通过使相位补偿信号经由电容器16向误差放大器11的非反相输入端子反馈,来进行相位补偿。
若将输入电压设为Vin,将输出电压设为Vout,将阈值电压设为Vth,将栅极源极间电压设为Vgs,则通过数学式(1)来表示用于使输出晶体管13在饱和区域进行动作的条件。
(Vin-Vout)≧(Vgs-Vth) (1)
同样地,若将偏移电压源18的偏移电压设为ΔVos,将阈值电压设为Vth,将电阻15的电阻值设为Rm,将流过电阻15的电流设为Im,则通过数学式(2)来表示用于使辅助晶体管17在饱和区域进行动作的条件。
(Vin-Vout-Im×Rm)≧(Vgs-ΔVos-Vth) (2)
根据数学式(1)和数学式(2),通过将偏移电压ΔVos设定为电阻15的压降(Im×Rm)以上,能够使辅助晶体管在与输出晶体管相同的输入输出电压差下在饱和区域进行动作。因此,相位补偿电路能够在更宽的输入输出电压的条件下得到期望的相位补偿效果。
图2是示出本发明的实施方式的稳压器的相位补偿电路的偏移电压源18的一例的电路图。
偏移电压源18使用串联连接于输入端子101与误差放大器11的输出端子之间的电流源和电阻而构成。在偏移电压源18中,电流源与电阻之间的连接点的输出端子与辅助晶体管17的栅极连接。
在像图2那样的偏移电压源18中,若将电流源的电流值设为Ib,将电阻的电阻值设为Rb,则通过数学式(3)来表示偏移电压ΔVos。
ΔVos=Ib×Rb (3)
在像图2那样构成的偏移电压源18中,能够通过微调等方法调整电流源的电流值和电阻的电阻值,从而能够将偏移电压ΔVos设为期望的值。
像以上说明的那样,根据本发明的实施方式的稳压器的相位补偿电路,能够在更宽的输入输出电压条件下得到期待的相位补偿效果,因此能够得到稳定的输出电压Vout。
另外,对于偏移电压源18的电阻而言,即使使用使栅极以恒压偏置的MOS晶体管,也具有同样的效果。若将晶体管的导通电阻值设为Ron,则通过数学式(4)来表示该情况下的偏移电压ΔVos。
ΔVos=Ib×Ron (4)
另外,对于偏移电压源18的电阻而言,即使使用二极管、栅极与源极共同的MOS晶体管,也具有同样的效果。若将二极管的正向电压设为Vf,则通过数学式(5)来表示该情况下的偏移电压ΔVos。
ΔVos=Vf (5)。

Claims (4)

1.一种稳压器,其特征在于,该稳压器具有:
输出晶体管,该输出晶体管的源极与输入端子连接,漏极与输出端子连接;
分压电路,其连接于所述输出端子与接地端子之间;
误差放大器,在该误差放大器的一个输入端子连接有所述分压电路的输出端子,在该误差放大器的另一个输入端子连接有基准电压源的输出端子,该误差放大器的输出端子与所述输出晶体管的栅极连接;以及
相位补偿电路,其连接于所述输出端子与所述分压电路的输出端子之间,包含电阻、电容器、偏移电压源和辅助晶体管,
所述辅助晶体管的源极与所述输入端子连接,漏极与所述电阻和所述电容器连接,栅极经由所述偏移电压源与所述误差放大器的输出端子连接,
所述偏移电压源将偏移电压设定为大于或等于基于所述电阻的电压下降的值,
通过流过所述辅助晶体管的电流和所述电阻而生成相位补偿信号,该相位补偿信号被反馈到所述误差放大器的所述输入端子。
2.根据权利要求1所述的稳压器,其特征在于,
所述偏移电压源是被从电流源提供电流的电阻元件。
3.根据权利要求1所述的稳压器,其特征在于,
所述偏移电压源是栅极被提供偏置电压的MOS晶体管。
4.根据权利要求1所述的稳压器,其特征在于,
所述偏移电压源是二极管元件。
CN201910547634.1A 2018-06-27 2019-06-24 稳压器 Active CN110647202B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122105 2018-06-27
JP2018122105A JP7079158B2 (ja) 2018-06-27 2018-06-27 ボルテージレギュレータ

Publications (2)

Publication Number Publication Date
CN110647202A CN110647202A (zh) 2020-01-03
CN110647202B true CN110647202B (zh) 2022-04-08

Family

ID=69009354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910547634.1A Active CN110647202B (zh) 2018-06-27 2019-06-24 稳压器

Country Status (5)

Country Link
US (1) US10915124B2 (zh)
JP (1) JP7079158B2 (zh)
KR (1) KR102669037B1 (zh)
CN (1) CN110647202B (zh)
TW (1) TWI819007B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146227B1 (en) 2019-09-06 2021-10-12 Northrop Grumman Systems Corporation Open-loop tracking control module to control input range swing for radiation-hardened devices
US11209849B1 (en) * 2019-09-06 2021-12-28 Northrop Grumman Systems Corporation Dynamic tracking regulator to protect radiation-hardened devices
TWI800223B (zh) * 2021-11-17 2023-04-21 香港商科奇芯有限公司 低通濾波電路
CN116136701A (zh) 2021-11-17 2023-05-19 科奇芯有限公司 电压调节电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338559A (ja) * 1998-05-22 1999-12-10 Nec Ic Microcomput Syst Ltd 定電圧回路
CN102609023A (zh) * 2012-03-12 2012-07-25 北京经纬恒润科技有限公司 一种内建模拟电源电路
JP2013114384A (ja) * 2011-11-28 2013-06-10 Denso Corp 位相補償回路および半導体集積回路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032133A (ja) 2000-05-12 2002-01-31 Torex Device Co Ltd 安定化電源回路
JP3683869B2 (ja) 2002-06-17 2005-08-17 東光株式会社 定電圧回路
JP2004062374A (ja) * 2002-07-26 2004-02-26 Seiko Instruments Inc ボルテージ・レギュレータ
US6842068B2 (en) * 2003-02-27 2005-01-11 Semiconductor Components Industries, L.L.C. Power management method and structure
US6765374B1 (en) * 2003-07-10 2004-07-20 System General Corp. Low drop-out regulator and an pole-zero cancellation method for the same
JP4097635B2 (ja) * 2004-08-02 2008-06-11 松下電器産業株式会社 電流検出回路及びそれを用いたスイッチング電源
US7030595B2 (en) * 2004-08-04 2006-04-18 Nanopower Solutions Co., Ltd. Voltage regulator having an inverse adaptive controller
US20060273771A1 (en) * 2005-06-03 2006-12-07 Micrel, Incorporated Creating additional phase margin in the open loop gain of a negative feedback amplifier system
KR101514459B1 (ko) * 2007-11-09 2015-04-22 세이코 인스트루 가부시키가이샤 볼티지 레귤레이터
WO2009098545A1 (en) * 2008-02-04 2009-08-13 Freescale Semiconductor, Inc. Low drop-out dc voltage regulator
US8115463B2 (en) 2008-08-26 2012-02-14 Texas Instruments Incorporated Compensation of LDO regulator using parallel signal path with fractional frequency response
CN103760941A (zh) * 2013-11-25 2014-04-30 苏州贝克微电子有限公司 一种稳定的低压降稳压器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338559A (ja) * 1998-05-22 1999-12-10 Nec Ic Microcomput Syst Ltd 定電圧回路
JP2013114384A (ja) * 2011-11-28 2013-06-10 Denso Corp 位相補償回路および半導体集積回路
CN102609023A (zh) * 2012-03-12 2012-07-25 北京经纬恒润科技有限公司 一种内建模拟电源电路

Also Published As

Publication number Publication date
US20200004284A1 (en) 2020-01-02
JP2020004032A (ja) 2020-01-09
TW202001471A (zh) 2020-01-01
TWI819007B (zh) 2023-10-21
CN110647202A (zh) 2020-01-03
JP7079158B2 (ja) 2022-06-01
KR20200001484A (ko) 2020-01-06
US10915124B2 (en) 2021-02-09
KR102669037B1 (ko) 2024-05-27

Similar Documents

Publication Publication Date Title
CN110647202B (zh) 稳压器
JP6822727B2 (ja) 浮動電圧基準を用いる低ドロップアウト電圧レギュレータ
US9665111B2 (en) Low dropout voltage regulator and method
US9645594B2 (en) Voltage regulator with dropout detector and bias current limiter and associated methods
KR101288316B1 (ko) 선형 조정기 및 그 방법
US9411345B2 (en) Voltage regulator
US8742819B2 (en) Current limiting circuitry and method for pass elements and output stages
US20140253076A1 (en) Voltage regulator
CN101223488A (zh) 具有新动态补偿的标准cmos低噪音高psrr低漏失调整器
US9323262B2 (en) Voltage regulator
JP2017506032A (ja) バッファ回路および方法
EP2767838A1 (en) Static offset reduction in a current conveyor
US8674671B2 (en) Constant-voltage power supply circuit
US20140253068A1 (en) Voltage regulator
US9946276B2 (en) Voltage regulators with current reduction mode
US10007283B2 (en) Voltage regulator
CN109391234B (zh) 差动放大电路
CN110888487A (zh) 一种低压差线性稳压器及电子设备
US7358713B2 (en) Constant voltage source with output current limitation
KR101089896B1 (ko) 저전압 강하 레귤레이터
EP3594773A1 (en) Voltage regulation circuit
US11507123B2 (en) Constant voltage circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Nagano

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: ABLIC Inc.

CP02 Change in the address of a patent holder