CN110646534A - 一种纺织品中大麻二酚的检测方法 - Google Patents

一种纺织品中大麻二酚的检测方法 Download PDF

Info

Publication number
CN110646534A
CN110646534A CN201910908205.2A CN201910908205A CN110646534A CN 110646534 A CN110646534 A CN 110646534A CN 201910908205 A CN201910908205 A CN 201910908205A CN 110646534 A CN110646534 A CN 110646534A
Authority
CN
China
Prior art keywords
extraction
sample
detecting
detection method
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910908205.2A
Other languages
English (en)
Other versions
CN110646534B (zh
Inventor
张驰
吴肖肖
梅秀明
蒋迪尧
乔玲
韩冰
纪晗旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Product Quality Supervision and Inspection Institute
Original Assignee
Nanjing Product Quality Supervision and Inspection Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Product Quality Supervision and Inspection Institute filed Critical Nanjing Product Quality Supervision and Inspection Institute
Priority to CN201910908205.2A priority Critical patent/CN110646534B/zh
Publication of CN110646534A publication Critical patent/CN110646534A/zh
Application granted granted Critical
Publication of CN110646534B publication Critical patent/CN110646534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/045Standards internal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种纺织品中大麻二酚的检测方法,该方法包括:(1)预处理:取待检样品,加入提取溶剂提取,获得待检试样;所述提取过程的温度不低于提取溶剂的沸点;(2)检测:将步骤(1)获得的待检试样用液相色谱‑串联质谱检测;本发明通过对提取溶剂和提取方式的选择,以及提取时间、提取温度的优化,建立了一种操作简单、定性、定量结果准确的高灵敏检测方法,既可以满足加入了功能性成分大麻二酚的纺织品的检测,也可以用于未添加功能成分的纺织品检测。

Description

一种纺织品中大麻二酚的检测方法
技术领域
本发明涉及纺织品检测研究领域,特别是一种液相色谱-串联质谱检测纺织品中大麻二酚的方法。
背景技术
大麻二酚(CBD)是大麻的主要非精神活性成分,具有抗惊厥、镇静、催眠、抗焦虑、抗精神病、抗炎和神经保护的性质。它是一种主要的植物大麻素,占大麻植物提取物的40%,与体内内源性大麻素系统的多种生理靶点结合。研究表明,大麻二酚能阻碍四氢大麻酚对人体神经系统影响,且不会引起神经中枢系统的改变。
国内外文献资料显示,大麻二酚现有检测方法的研究主要集中在唾液、血液、毛发等生物样品和食品中。经调研发现,将植物中提取的大麻二酚人工添加到纺织品中,可提高产品的抗菌、抑菌性能,改善消费者皮肤发炎及自我修复能力。但是该领域研究刚刚起步,因此,与之对应的纺织品中的大麻二酚检测技术尚未有公开报道。
据了解,由于天然纤维和人造纤维材质有明显的差异,故在大麻二酚的添加过程中,不同的材质加入大麻二酚的条件和温度有明显区别。因此,纺织样品中大麻二酚含量检测的提取条件可能不同于常规唾液、血液、饮料等液体样品。此外,毛发虽为固体样品,但是资料显示,毛发的检测通过将样品制备为粉末,再用超声法常温提取。纺织品作为纤维很难处理成粉末,因此,采用相同的方法,无法达到高效提取纺织品中的大麻二酚。
发明内容
本发明的目的在于提供一种纺织品中大麻二酚的检测方法,为纺织品中功能成分检测供有效的技术支撑。
本发明的技术方案具体步骤如下:
一种纺织品中大麻二酚的检测方法,包括以下步骤:
(1)预处理:取待检样品,加入提取溶剂提取,获得待检试样;所述提取过程的温度不低于提取溶剂的沸点;
(2)检测:将步骤(1)获得的待检试样用液相色谱-串联质谱检测;
进一步地,步骤(1)所述提取溶剂为甲醇,提取时间为0.5h-4h;
进一步地,步骤(1)所述提取溶剂为乙腈,提取时间为0.5h-4h;
进一步地,步骤(1)所述提取的方式为回流提取、水浴加热提取、加速溶剂萃取仪提取或超声提取等方式。
进一步地,步骤(1)所述待检样品包括纯天然纺织品和含人造纤维纺织品,所述纯天然纺织品的提取溶剂为甲醇,所述含人造纤维纺织品的提取溶剂为乙腈。
进一步地,所述含人造纤维纺织品的提取方式为回流提取。
进一步地,步骤(2)所述液相色谱-串联质谱法检测,通过二级离子碎片的丰度比定性,内标法定量,内标为甲氧那明。
进一步地,步骤(2)所述液相色谱串联质谱检测步骤中,所用的色谱条件如下:
色谱柱:C18(3.5μm,2.1×100mm);
流动相:A:水溶液(5mM乙酸铵+1%(V/V)甲酸);B:甲醇;
梯度程序:0~2.0min,10%B;2.0~3.0min,10%~50%B;3.0~4.0min,50%~85%B;4.0~6.0min,85%B;6.0~7.0min,85%~98%B;8.0~9.0min,98%~10%B;
进样量:2μL;流速:0.4mL/min;柱温:35℃。
进一步地,步骤(2)所述液相色谱串联质谱检测步骤中,所用的质谱条件如下:
离子化模式:电喷雾双喷离子源,正离子模式(Dual AJS ESI+);
质谱扫描方式:多反应监测(MRM);
雾化器压力:45psi;
气体温度:350℃;气体流速:5L/min;
鞘气(N2)温度:300℃;鞘气(N2)流速:11L/min;
毛细管电压:4000V;碎裂电压:135V;
母离子、定量子离子、定性子离子质荷比如下:大麻二酚:315.3→259.3,193.1;甲氧那明:180.1→121.1。
大麻二酚与甲氧那明的母离子、定量离子、定性离子质荷比、驻留时间及碰撞能量如下:
Figure BDA0002213142770000031
本发明具有以下有益效果:
本发明提供了一种不同材质纺织品中大麻二酚的检测方法,通过对提取溶剂和提取方式的选择,以及提取时间、提取温度的优化,建立了一种操作简单、定性、定量结果准确的高灵敏检测方法,本发明的检出方法的检出限为0.01mg/kg,标准曲线在0.5ng/mL~100ng/mL之间,线性关系良好,相关系数大于0.999,加标回收率为93%-98%,相对标准偏差为5.69%,灵敏度和精准度较高,本发明的检测方法既可以满足加入了功能性成分大麻二酚的纺织品的检测,也可以用于未添加功能成分的纺织品检测。
附图说明
图1为纺织样品检测结果的总离子流图;
图2为纺织样品中大麻二酚的提取含量随温度的变化;
图3为回流和超声不同提取方式对提取效率的影响;
图4为甲醇和乙腈提取溶剂对提取效率的影响;
图5为回流提取时间对提取效率的影响。
具体实施方式
为使本发明更加容易理解,下面结合具体实施例对本发明技术方案作进一步的阐述。这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1
用甲醇为溶剂配制大麻二酚标准品浓度为0.5ng/mL~100ng/mL系列标准溶液,加入适量内标甲氧那明溶液,进液相色谱串联质谱检测,建立内标法标准曲线。
取空白竹纤维样品,剪碎至约5mm×5mm,充分混匀。用天平称量0.5g(精确至0.1mg)碎片样品,加入大麻二酚标准溶液,加标量分别为0.5mg/kg、4mg/kg和12mg/kg,加入适量内标甲氧那明溶液,加入40mL甲醇,70℃条件下回流提取60min,冷却,转移至容量瓶中定容到50mL,混匀,液相色谱串联质谱检测,计算加标回收率。
检测结果:标准曲线在0.5ng/mL~100ng/mL之间线性关系良好,相关系数大于0.999。在空白竹纤维样品中加入的大麻二酚标样量分别为0.5mg/kg、5mg/kg和15mg/kg,加标回收率分别为97.82%、97.36%和93.13%。图1为大麻二酚与甲氧那明的总离子流图。
实施例2
取空白竹纤维样品,剪碎至约5mm×5mm,充分混匀。用天平称量0.5g(精确至0.1mg)碎片样品,加入适量内标甲氧那明溶液,将标样浓度稀释至一定低浓度,按照实施例1的检测条件,当信噪比(S/N)为3时对应的浓度为检出限。
检测结果:当称样量为0.5g,定容体积为50mL时,大麻二酚的方法检出限为0.01mg/kg。
实施例3
取空白磨毛聚酯纤维样品,剪碎至约5mm×5mm,充分混匀。用天平称量0.5g(精确至0.1mg)碎片样品,加入适量甲氧那明内标和5.0mg/kg的大麻二酚标准溶液,加入40mL乙腈,90℃条件下回流提取60min,冷却,定容至50mL,混匀。取1mL提取溶液过微孔滤膜,用LC-MS/MS检测,重复检测空白样品6次,计算检测结果的平均值和相对标准偏差。检测结果见表1。
表1检测结果
Figure BDA0002213142770000041
实施例4
以磨毛聚酯样品为待检样品,选用甲醇为提取溶剂。用剪刀将磨毛聚酯纤维剪碎至约5mm×5mm,称量0.2g样品,加入适量甲氧那明内标,加入25mL甲醇(甲醇沸点为64.5℃),分别在40℃、50℃、60℃和70℃条件下超声30min,转移定容,进LC-MS/MS检测。
检测结果:图2为不同提取温度下的提取效率比较图,由图2可知,磨毛聚酯纤维中大麻二酚的提取含量在温度达到甲醇沸点时达到最大值。
实施例5
准备两组待检样品,每组待检样品均包括竹、棉、涤棉和绒布四种不同材质的样品,每组的四种待检样品均剪碎至约5mm×5mm,并分别用天平称量0.5g(精确至0.1mg)碎片样品,每组的四种不同材质的样品中均加入40mL甲醇溶剂,其中一组置于70℃水浴条件下回流提取1h,另一组置于70℃超声提取1h,比较两种不同的提取方式对不同材质纤维中大麻二酚的提取效率。
检测结果:图3为两种不同提取方式下提取效率比较图。从实验结果看出,对于竹纤维和棉纤维,回流提取和超声提取效率差别不大,对于涤棉和绒布,回流提取效率明显高于超声提取。
实施例6
准备两组待检样品,每组待检样品均包括棉、竹、磨毛聚酯、聚酯和绒布五种不同材质的样品,每组的五种待检样品均剪碎至约5mm×5mm,并分别用天平称量0.5g(精确至0.1mg)碎片样品,其中一组的提取溶剂为甲醇,另一组的提取溶剂为乙腈,将两组待检样品均置于90℃水浴条件下回流提取1h,比较不同提取溶剂对不同材质纤维中大麻二酚的提取效率。
检测结果:图4为两种不同溶剂下的提取效率比较图。对于纯天然纺织品的棉纤维、竹纤维,甲醇提取效率明显高于乙腈提取效率;对于以人造纤维为主的磨毛聚酯、聚酯和绒布样品,乙腈提取效率明显高于甲醇。
实施例7
准备棉、竹、磨毛聚酯和聚酯四种不同材质的待检样品,每种待检样品均剪碎至约5mm×5mm,并分别用天平称量0.5g(精确至0.1mg)碎片样品,在棉、竹纤维中加入甲醇提取溶剂,在磨毛聚酯和聚酯中加入乙腈提取溶剂,将四种待检样品均置于90℃水浴条件下回流提取0.5h、1h、2h和4h。比较不同提取时间对回流提取效率的影响。
检测结果:图5为不同提取时间下的提取效率比较图。回流时间1h提取效率整体高于0.5h,回流提取2h比回流提取1h提取效率并无明显增加,4h提取效率有些微下降,因此综合考虑提取效率与检测时间,回流时间为1h时提取效率最高。

Claims (9)

1.一种纺织品中大麻二酚的检测方法,其特征在于,包括以下步骤:
(1)预处理:取待检样品,加入提取溶剂提取,获得待检试样; 所述提取过程的温度不低于提取溶剂的沸点;
(2)检测:将步骤(1)获得的待检试样用液相色谱-串联质谱检测。
2. 根据权利要求1所述的检测方法,其特征在于,步骤(1)所述提取溶剂为甲醇,提取时间为0.5 h-4 h。
3. 根据权利要求1所述的检测方法,其特征在于,步骤(1)所述提取溶剂为乙腈,提取时间为0.5 h-4 h。
4.根据权利要求1所述的检测方法,其特征在于,步骤(1)所述提取的方式可以为回流提取、水浴加热提取、加速溶剂萃取仪提取或超声提取等方式。
5.根据权利要求1所述的检测方法,其特征在于,步骤(1)所述待检样品包括纯天然纺织品和含人造纤维纺织品,所述纯天然纺织品的提取溶剂为甲醇,所述含人造纤维纺织品的提取溶剂为乙腈。
6.根据权利要求5所述的检测方法,其特征在于,所述含人造纤维纺织品的提取方式为回流提取。
7.根据权利要求1所述的检测方法,其特征在于,步骤(2)所述液相色谱-串联质谱法检测,通过二级离子碎片的丰度比定性,内标法定量,内标为甲氧那明。
8.根据权利要求1所述的检测方法,其特征在于,步骤(2)所述液相色谱串联质谱检测步骤中,所用的色谱条件如下:
色谱柱:C18 (3.5µm,2.1×100 mm);
流动相:A:水溶液(5mM乙酸铵+1%(V/V)甲酸);B:甲醇;
梯度程序:0~2.0 min,10% B;2.0~3.0 min,10%,50% B;3.0~4.0 min,50%~85% B;4.0~6.0 min,85% B;6.0~7.0 min,85%~98% B;8.0~9.0min,98%~10% B;
进样量:2 µL;流速:0.4 mL/min;柱温:35℃。
9.根据权利要求1所述的检测方法,其特征在于,步骤(2)所述液相色谱串联质谱检测步骤中,所用的质谱条件如下:
离子化模式:电喷雾双喷离子源,正离子模式(Dual AJS ESI+);
质谱扫描方式:多反应监测(MRM);
雾化器压力:45 psi;
气体温度:350℃;气体流速:5 L/min;
鞘气(N2)温度:300℃;鞘气(N2)流速:11 L/min;
毛细管电压:4000 V;碎裂电压:135 V;
母离子、定量子离子、定性子离子质荷比如下:大麻二酚:315.3→259.3,193.1;甲氧那明:180.1→121.1。
CN201910908205.2A 2019-09-24 2019-09-24 一种纺织品中大麻二酚的检测方法 Active CN110646534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910908205.2A CN110646534B (zh) 2019-09-24 2019-09-24 一种纺织品中大麻二酚的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910908205.2A CN110646534B (zh) 2019-09-24 2019-09-24 一种纺织品中大麻二酚的检测方法

Publications (2)

Publication Number Publication Date
CN110646534A true CN110646534A (zh) 2020-01-03
CN110646534B CN110646534B (zh) 2022-06-28

Family

ID=69011203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910908205.2A Active CN110646534B (zh) 2019-09-24 2019-09-24 一种纺织品中大麻二酚的检测方法

Country Status (1)

Country Link
CN (1) CN110646534B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574332A (zh) * 2020-04-14 2020-08-25 周宇平 一种用于提纯大麻二酚的结晶工艺
CN111592448A (zh) * 2020-04-20 2020-08-28 周宇平 一种从工业大麻中分离纯化次大麻二酚的工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105514A1 (en) * 2014-12-23 2016-06-30 Biotech Institute, Llc A reliable and robust method for the analysis of cannabinoids and terpenes in cannabis
CN107589203A (zh) * 2017-09-21 2018-01-16 黑龙江省科学院大庆分院 一种利用spe‑hplc同时检测汉麻中三种大麻酚类化合物的方法
WO2018063498A1 (en) * 2016-09-30 2018-04-05 Shimadzu Corporation Method for analyzing active ingredients of cannabis and control program for liquid chromatograph
CN109725080A (zh) * 2019-01-02 2019-05-07 中国农业科学院麻类研究所 大麻二酚、大麻二酚酸、四氢大麻酚中一种或几种物质的定性定量检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105514A1 (en) * 2014-12-23 2016-06-30 Biotech Institute, Llc A reliable and robust method for the analysis of cannabinoids and terpenes in cannabis
WO2018063498A1 (en) * 2016-09-30 2018-04-05 Shimadzu Corporation Method for analyzing active ingredients of cannabis and control program for liquid chromatograph
CN107589203A (zh) * 2017-09-21 2018-01-16 黑龙江省科学院大庆分院 一种利用spe‑hplc同时检测汉麻中三种大麻酚类化合物的方法
CN109725080A (zh) * 2019-01-02 2019-05-07 中国农业科学院麻类研究所 大麻二酚、大麻二酚酸、四氢大麻酚中一种或几种物质的定性定量检测方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
JUAN C. DOMÍNGUEZ-ROMERO ET AL: "Screening and quantitation of multiclass drugs of abuse and pharmaceuticals in hair by fast liquid chromatography electrospray time-of-flight mass spectrometry", 《JOURNAL OF CHROMATOGRAPHY B》 *
JUAN C.DOMÍNGUEZ-ROMERO ET AL: "Screening and confirmation capabilities of liquid chromatography-time-of-flight mass spectrometry for the determination of 200 multiclass sport drugs in urine", 《TALANTA》 *
JUSTIN L. POKLIS ET AL: "Disposition of Cannabichromene, Cannabidiol, and Δ9-Tetrahydrocannabinol and its Metabolites in Mouse Brain following Marijuana Inhalation Determined by High-Performance Liquid Chromatography–Tandem Mass Spectrometry", 《JOURNAL OF ANALYTICAL TOXICOLOGY》 *
NADINE ROTH ET AL: "Development and validation of an LC-MS/MS method for quantification of Δ9-tetrahydrocannabinolic acid A (THCA-A), THC, CBN and CBD in hair", 《J. MASS SPECTROM.》 *
NEUS JORNET-MARTÍNEZ ET AL: "Analysis of Contact Traces of Cannabis by In-Tube Solid-Phase Microextraction Coupled to Nanoliquid Chromatography", 《MOLECULES》 *
QINGFANG MENG ET AL: "A reliable and validated LC-MS/MS method for the simultaneous quantification of 4 cannabinoids in 40 consumer products", 《PLOS ONE》 *
代勇 等: "唾液中大麻毒品液相小体积提取HPLC检测", 《化学研究与应用》 *
孙维来 等: "基于超高效液相色谱-质谱联用技术对大麻植物中3种成分及化学表型分析", 《分析化学》 *
王全林 等: "超高效液相色谱-串联质谱法测定火麻食品中特征大麻酚", 《理化检验(化学分册)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574332A (zh) * 2020-04-14 2020-08-25 周宇平 一种用于提纯大麻二酚的结晶工艺
CN111592448A (zh) * 2020-04-20 2020-08-28 周宇平 一种从工业大麻中分离纯化次大麻二酚的工艺

Also Published As

Publication number Publication date
CN110646534B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
Nahar et al. A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019)
Suryawanshi et al. Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabetic
CN110646534B (zh) 一种纺织品中大麻二酚的检测方法
Antignac et al. Collision‐induced dissociation of corticosteroids in electrospray tandem mass spectrometry and development of a screening method by high performance liquid chromatography/tandem mass spectrometry
Du et al. Rapid simultaneous determination of isoflavones in Radix puerariae using high‐performance liquid chromatography–triple quadrupole mass spectrometry with novel shell‐type column
Shen et al. Rapid determination of caffeoylquinic acid derivatives in Cynara scolymus L. by ultra‐fast liquid chromatography/tandem mass spectrometry based on a fused core C18 column
Liao et al. Rapid screening and identification of caffeic acid and its esters in Erigeron breviscapus by ultra‐performance liquid chromatography/tandem mass spectrometry
Li et al. Analysis of nine compounds from Alpinia oxyphylla fruit at different harvest time using UFLC-MS/MS and an extraction method optimized by orthogonal design
Gao et al. Analysis of chemical composition of nectars and honeys from Citrus by extractive electrospray ionization high resolution mass spectrometry
Xu et al. Analysis of saikosaponins in rat plasma by anionic adducts‐based liquid chromatography tandem mass spectrometry method
CN110579555B (zh) 一种拟靶向代谢组学分析的离子对挑选方法
Li et al. Fast screening of flavonoids from switchgrass and Mikania micrantha by liquid chromatography hybrid-ion trap time-of-flight mass spectrometry
Dong et al. Structural analysis of monoterpene glycosides extracted from Paeonia lactiflora Pall. using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry
WO2024040840A1 (zh) 肠道微生物相关代谢物质谱数据库的构建方法及其应用
Sun et al. Simultaneous analysis of 11 main active components in C irsium setosum based on HPLC‐ESI‐MS/MS and combined with statistical methods
Li et al. Ultrasound/microwave‐assisted extraction and comparative analysis of bioactive/toxic indole alkaloids in different medicinal parts of G elsemium elegans Benth by ultra‐high performance liquid chromatography with MS/MS
CN112114079B (zh) 一种同时检测使君子中9种化学成分的方法
CN109212054B (zh) 一种高效液相色谱-质谱法测定番茄碱的方法
Arráez-Román et al. Identification of phenolic compounds from pollen extracts using capillary electrophoresis–electrospray time-of-flight mass spectrometry
CN106353434A (zh) 一种定量测定烟草中Amadori化合物的分析方法
Guo et al. Fast characterization of constituents in HuangKui capsules using UPLC–QTOF-MS with collision energy and MassFragment software
Shen et al. Analysis of biologically active constituents in Centella asiatica by microwave-assisted extraction combined with LC–MS
Dong et al. Screening of lignan patterns in Schisandra species using ultrasonic assisted temperature switch ionic liquid microextraction followed by UPLC-MS/MS analysis
Xu et al. Microwave‐accelerated derivatization prior to GC‐MS determination of sex hormones
Gaskell et al. Analyses of steroids in saliva using highly selective mass spectrometric techniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant