CN110642524B - 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法 - Google Patents

一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法 Download PDF

Info

Publication number
CN110642524B
CN110642524B CN201911055343.7A CN201911055343A CN110642524B CN 110642524 B CN110642524 B CN 110642524B CN 201911055343 A CN201911055343 A CN 201911055343A CN 110642524 B CN110642524 B CN 110642524B
Authority
CN
China
Prior art keywords
glass
titanium dioxide
microstructure
hydrogel
nanosecond laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911055343.7A
Other languages
English (en)
Other versions
CN110642524A (zh
Inventor
蔡玉奎
刘战强
罗煕淳
唐一平
万熠
宋清华
王兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201911055343.7A priority Critical patent/CN110642524B/zh
Priority to US17/255,145 priority patent/US11952307B2/en
Priority to PCT/CN2019/129537 priority patent/WO2021082261A1/zh
Publication of CN110642524A publication Critical patent/CN110642524A/zh
Application granted granted Critical
Publication of CN110642524B publication Critical patent/CN110642524B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laser Beam Processing (AREA)
  • Micromachines (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,包括以下步骤:(1)将二氧化钛纳米颗粒水凝胶滴至玻璃样件表面;(2)将另一片玻璃压在水凝胶表面,使得水凝胶均匀分布在两片玻璃之间,然后水平静置一段时间,使得二氧化钛纳米颗粒水凝胶晾干;(3)将玻璃片分开得到具有均匀二氧化钛纳米颗粒涂层的玻璃;(4)利用波长1064nm的红外纳秒激光器进行微结构加工;(5)后处理,将步骤3所得样件分别用丙酮、无水乙醇、去离子水超声清洗10分钟,以去除表面粘附的二氧化钛纳米颗粒,得到具有微结构的玻璃样件;解决了石英玻璃对于1064nm的红外纳秒激光吸收率很低,无法实现材料去除的问题。

Description

一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微 结构的方法
技术领域
本发明属于激光加工技术领域,公开了一种利用红外纳秒激光在玻璃表面制备微结构的方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
石英玻璃具有优异的物理化学性能,在生物医疗、航空航天等领域中具有广泛应用,例如石英玻璃制备的微流控芯片具有透光度好、化学稳定性及生物兼容性好的优点。然而由于玻璃的高硬脆及低断裂韧性的特点,其表面微孔及微流道的制造一直存在难题,传统的磨料喷射加工适用于玻璃切割,而难以应用于玻璃表面微结构制造。化学刻蚀加工玻璃微结构存在化学污染和加工效率低的缺陷。激光加工作为一种非接触式加工方法,具有工艺简单,污染小,图案直写不需要掩膜等优点。目前玻璃加工常采用10.6μm的CO2激光器用于玻璃切割或准分子激光用于钻孔及微结构加工。但准分子激光器平均功率较低,导致加工效率低,成本高。红外纳秒激光是目前应用最广泛的激光类型之一,而石英玻璃是很好的透红外材料,对于1064nm的红外纳秒激光吸收率很低,无法实现材料去除。
发明内容
为了克服上述问题,本发明提供了一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,针对石英玻璃无法吸收红外纳秒的激光的特点,本发明通过涂覆二氧化钛纳米颗粒涂层,增加了玻璃与二氧化钛纳米颗粒涂层界面处的红外纳秒激光吸收率,从而实现微结构的制造。本发明解决了石英玻璃对于1064nm的红外纳秒激光吸收率低,无法加工的问题。
为实现上述技术目的,本发明采用的技术方案如下:
一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,包括:
将二氧化钛纳米颗粒水凝胶滴至玻璃样件表面;
然后将另一片玻璃压在所述二氧化钛纳米颗粒水凝胶表面,使二氧化钛纳米颗粒水凝胶均匀分布在两片玻璃之间、水平静置至二氧化钛纳米颗粒水凝胶固化;
将两片玻璃分开,得到具有均匀二氧化钛纳米颗粒涂层的玻璃;
采用激光进行微结构加工;
后处理,即得具有微结构的玻璃样件。
本申请研究发现:水凝胶有一定的粘度,滴在玻璃表面无法全部铺展开,利用另一片玻璃的压力可以实现均匀涂覆,且一次可以涂覆两块玻璃。而经实验,其他涂覆方式难以保证整个玻璃表面的均匀性。
在一些实施例中,所述玻璃为石英玻璃,通过增加二氧化钛纳米颗粒涂层与玻璃基体界面处的红外纳秒激光吸收率,实现了微结构的高效低成本制造。
在一些实施例中,所述激光为红外纳秒激光。目前短波长的激光(例如532nm)不需要涂层就能直接加工玻璃,但激光器成本较高。红外激光为最常见和普及的激光器,因此,本发明的目的在于使用红外纳秒激光实现玻璃微结构制造。
在一些实施例中,所述红外纳秒激光的波长为1064nm,激光加工的参数为激光平均功率为2W~10W,脉冲频率为20~200kHz,扫描速度为1000~2000mm/min,提高了加工效率和加工精度。
厚度会影响激光的吸收率,二氧化钛涂层过厚的话激光能量绝大部分被涂层吸收,无法在玻璃表面形成微结构,因此,在一些实施例中,所述二氧化钛纳米颗粒水凝胶的浓度为35~40%、所述玻璃表面单位面积上的二氧化钛纳米颗粒水凝胶的体积为0.1-0.2μL/mm2
其中,对于40mm×20mm的玻璃片所用的35%二氧化钛纳米颗粒水凝胶为30微升,效果较好。
在一些实施例中,水平静置的时间为5~10min,以使二氧化钛纳米颗粒水凝胶充分固化。
在一些实施例中,所述后处理的具体步骤为:分别用丙酮、无水乙醇、去离子水对玻璃样品进行超声清洗,去除表面粘附的二氧化钛纳米颗粒。
本发明还提供了任一上述的方法制备的具有微结构的玻璃样件。
本发明的有益效果在于:
(1)二氧化钛纳米颗粒无毒、粘附力强、具有良好的不透明性、白度和光亮度。
(2)二氧化钛纳米颗粒涂层与玻璃基体界面处的红外纳秒激光吸收率增加,实现了微结构的高效低成本制造。
(3)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明实施例1的二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法示意图;
图2为经过本发明实施例1制备方法加工后的玻璃微结构;
图3为经过本发明实施例1制备方法加工后的玻璃微流道;
图4为经过本发明实施例1制备方法加工后的玻璃微流道局部形貌图;
其中,1、40mm×20mm石英玻璃样件1,2、质量分数为35%的二氧化钛纳米颗粒水凝胶,3、移液器,4、40mm×20mm石英玻璃样件2,5、红外纳秒激光脉冲,6、激光器所用聚焦镜。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,针对目前玻璃加工常采用的准分子激光器加工效率低,成本高,以及石英玻璃对于1064nm的红外纳秒激光吸收率很低,无法实现材料去除的问题。因此,本发明提出二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法包括以下步骤:
步骤(1):将二氧化钛纳米颗粒水凝胶滴至玻璃样件表面;
步骤(2):将另一片玻璃压在水凝胶表面,使得水凝胶均匀分布在两片玻璃之间,然后水平静置一段时间,使得二氧化钛纳米颗粒水凝胶晾干,
步骤(3)将玻璃片分开得到具有均匀二氧化钛纳米颗粒涂层的玻璃;
步骤(4):利用波长1064nm的红外纳秒激光器进行微结构加工。
步骤(5):后处理,将步骤3所得样件分别用丙酮、无水乙醇、去离子水超声清洗10分钟,以去除表面粘附的二氧化钛纳米颗粒,得到具有微结构的玻璃样件。
优选的,步骤(1)中对于40mm×20mm的玻璃片所用的35%二氧化钛纳米颗粒水凝胶为30微升,玻璃表面单位面积上的二氧化钛纳米颗粒水凝胶的体积为0.1-0.2μL/mm2
优选的,步骤(2)中静置时间为5分钟。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1:
步骤(1):参见附图1步骤1将30微升质量分数35%二氧化钛纳米颗粒水凝胶(阿法埃莎Alfa Aesar,Titanium(IV)oxide https://www.alfa.com/en/catalog/044517/)滴至40mm×20mm的玻璃样件表面,玻璃表面单位面积上的二氧化钛纳米颗粒水凝胶的体积为0.18μL/mm2
步骤(2):参见附图1步骤2,将另一片40mm×20mm玻璃压在水凝胶表面,使得水凝胶均匀分布在两片玻璃之间,然后水平静置5分钟,使得二氧化钛纳米颗粒水凝胶晾干;
步骤(3):参见附图1步骤3,将玻璃片分开得到具有均匀二氧化钛纳米颗粒涂层的玻璃;
步骤(4):参见附图1步骤4,利用波长1064nm的红外纳秒激光器进行微结构加工;激光烧蚀的参数为激光平均功率为5W,脉冲频率为100kHz,扫描速度为2000mm/min。
步骤(5):后处理,将步骤3所得样件分别用丙酮、无水乙醇、去离子水超声清洗10分钟,以去除表面粘附的二氧化钛纳米颗粒,得到具有微结构的玻璃样件。附图2为最终加工的微沟槽三维形貌图,附图3为最终加工的微流道整体图片,附图4为微流道局部形貌图。
由附图2、4可以看出,微沟槽和微流道表面无裂纹产生,加工效果较好。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (7)

1.一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,其特征在于,包括:
将二氧化钛纳米颗粒水凝胶滴至玻璃样件表面;
然后将另一片玻璃压在所述二氧化钛纳米颗粒水凝胶表面,使二氧化钛纳米颗粒水凝胶均匀分布在两片玻璃之间、水平静置至二氧化钛纳米颗粒水凝胶固化;
将两片玻璃分开,得到具有均匀二氧化钛纳米颗粒涂层的玻璃;
采用激光进行微结构加工;
后处理,即得具有微结构的玻璃样件;
所述玻璃为石英玻璃;
所述激光为红外纳秒激光;
所述红外纳秒激光的波长为1064nm,激光加工的参数为激光平均功率为2W~10W,脉冲频率为20~200kHz,扫描速度为1000~2000mm/min。
2.如权利要求1所述的二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,其特征在于,单位面积上的二氧化钛纳米颗粒水凝胶的体积为0.1-0.2μL/mm2
3.如权利要求1所述的二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,其特征在于,所述二氧化钛纳米颗粒水凝胶的浓度为35~40%。
4.如权利要求1所述的二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,其特征在于,所述水平静置的时间为5~10分钟。
5.如权利要求1所述的二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法,其特征在于,所述后处理的具体步骤为:分别用丙酮、无水乙醇、去离子水对玻璃样品进行超声清洗,去除表面粘附的二氧化钛纳米颗粒。
6.权利要求1-5任一项所述的方法制备的具有微结构的玻璃样件。
7.权利要求6所述的具有微结构的玻璃样件在生物医疗或航空航天领域的应用。
CN201911055343.7A 2019-10-31 2019-10-31 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法 Active CN110642524B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911055343.7A CN110642524B (zh) 2019-10-31 2019-10-31 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法
US17/255,145 US11952307B2 (en) 2019-10-31 2019-12-28 Method for preparing microstructure on surface of glass by titanium oxide nanoparticle-assisted infrared nanosecond laser
PCT/CN2019/129537 WO2021082261A1 (zh) 2019-10-31 2019-12-28 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911055343.7A CN110642524B (zh) 2019-10-31 2019-10-31 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法

Publications (2)

Publication Number Publication Date
CN110642524A CN110642524A (zh) 2020-01-03
CN110642524B true CN110642524B (zh) 2020-06-30

Family

ID=69014136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911055343.7A Active CN110642524B (zh) 2019-10-31 2019-10-31 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法

Country Status (3)

Country Link
US (1) US11952307B2 (zh)
CN (1) CN110642524B (zh)
WO (1) WO2021082261A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548023B (zh) * 2020-05-12 2022-06-17 大连交通大学 一种利用红光纳秒激光对玻璃表面微细加工的方法
CN112372144A (zh) * 2020-10-29 2021-02-19 江苏大学 一种激光透明材料镀层/刻蚀的方法及装置
CN114433046B (zh) * 2021-12-22 2023-12-26 东南大学 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用
CN115466918B (zh) * 2022-09-06 2024-04-16 哈尔滨工程大学 晶须/纤维表面织构化纳米凸点结构改性方法及其强韧化应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583991A (zh) * 2012-03-12 2012-07-18 深圳光韵达光电科技股份有限公司 一种激光切割玻璃的方法
CN104386920A (zh) * 2014-10-18 2015-03-04 中山市创科科研技术服务有限公司 一种铁掺杂二氧化钛纳米薄膜玻璃及制备方法
CN107382044A (zh) * 2017-06-15 2017-11-24 江苏大学 一种透明薄玻璃激光透射焊接的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20023710U1 (de) 2000-10-30 2006-02-23 Pösl, Rudolf, Dipl.-Ing. Farbige Muster
JP4053810B2 (ja) * 2002-04-18 2008-02-27 株式会社オハラ 異常分散性を有する光学ガラス
FR2868770B1 (fr) 2004-04-09 2006-06-02 Saint Gobain Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique modifiee pour pouvoir absorber des photons du visible
DE102005041242A1 (de) * 2005-08-31 2007-03-01 Merck Patent Gmbh Verfahren zur Strukturierung von Oberflächen von Substraten
US8173038B2 (en) * 2008-04-18 2012-05-08 Corning Incorporated Methods and systems for forming microstructures in glass substrates
CN102888598A (zh) 2012-10-12 2013-01-23 浙江大学 一种二氧化钛基选择吸收薄膜的制备方法
US9515286B2 (en) 2013-05-10 2016-12-06 Corning Incorporated Laser welding transparent glass sheets using low melting glass or thin absorbing films
CN103803485A (zh) * 2013-12-29 2014-05-21 北京工业大学 激光直写玻璃表面制备光学微结构的方法
CN105789031A (zh) * 2016-03-11 2016-07-20 中国建筑材料科学研究总院 激光直写用掩膜及其刻蚀方法
CN109809701A (zh) 2017-11-20 2019-05-28 陈晓霞 一种复合反光隔热玻璃

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583991A (zh) * 2012-03-12 2012-07-18 深圳光韵达光电科技股份有限公司 一种激光切割玻璃的方法
CN104386920A (zh) * 2014-10-18 2015-03-04 中山市创科科研技术服务有限公司 一种铁掺杂二氧化钛纳米薄膜玻璃及制备方法
CN107382044A (zh) * 2017-06-15 2017-11-24 江苏大学 一种透明薄玻璃激光透射焊接的方法

Also Published As

Publication number Publication date
US11952307B2 (en) 2024-04-09
US20210371329A1 (en) 2021-12-02
CN110642524A (zh) 2020-01-03
WO2021082261A1 (zh) 2021-05-06

Similar Documents

Publication Publication Date Title
CN110642524B (zh) 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法
Song et al. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser
Hof et al. Micro-hole drilling on glass substrates—A review
Ke et al. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates
Li et al. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity
Yong et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (< 100 µm) for bubble/gas manipulation
CN104439708B (zh) 一种超疏水高粘附金属表面及其制备方法
CN106583930A (zh) 基于飞秒激光直写钛片实现湿润性可逆转化的方法
Qin et al. Superhydrophobic polytetrafluoroethylene surfaces with accurately and continuously tunable water adhesion fabricated by picosecond laser direct ablation
Chen et al. A short review on functionalized metallic surfaces by ultrafast laser micromachining
CN111673285B (zh) 纳秒激光辐照诱导非晶碳表面形成微纳米多层结构的方法
CN106392332B (zh) 一种改善医用植入物表面细胞粘附性的激光纹理化方法
Yang et al. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency
He et al. Lotus-leaf-like microstructures on tungsten surface induced by one-step nanosecond laser irradiation
Yen et al. Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass
Lee et al. Wettability of microstructured Pyrex glass with hydrophobic and hydrophilic properties
Liang et al. Femtosecond laser-patterned slippery surfaces on PET for liquid patterning and blood resistance
Orazi et al. Ultrafast laser micromanufacturing of microfluidic devices
Lin et al. Micro/nano-structuring of medical stainless steel using femtosecond laser pulses
Lu et al. Experiments of drilling micro-holes on superalloy with thermal barrier coatings by using femtosecond laser
Zhu et al. Fabrication and applications of surface micro/nanostructures by femtosecond laser
Shanu et al. Micromachining of alumina ceramic for microsystems applications: a systematic review, challenges and future opportunities
NL2029781B1 (en) Method for preparing microstructure on surface of glass by titanium oxide nanoparticle-assisted infrared nanosecond laser
Ragutkin et al. Creation of Hydrophobic Functional Surfaces of Structural Materials on the Basis of Laser Ablation (Overview)
Aono et al. Non-textured laser modification of silica glass surface: Wettability control and flow channel formation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant