CN110635043B - Organic hole transport layer, perovskite solar cell and preparation method thereof - Google Patents
Organic hole transport layer, perovskite solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN110635043B CN110635043B CN201910919968.7A CN201910919968A CN110635043B CN 110635043 B CN110635043 B CN 110635043B CN 201910919968 A CN201910919968 A CN 201910919968A CN 110635043 B CN110635043 B CN 110635043B
- Authority
- CN
- China
- Prior art keywords
- solar cell
- perovskite solar
- transport layer
- btcv
- hole transport
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005525 hole transport Effects 0.000 title claims abstract description 66
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000000178 monomer Substances 0.000 claims abstract description 32
- 238000004528 spin coating Methods 0.000 claims abstract description 28
- 150000003384 small molecules Chemical class 0.000 claims abstract description 24
- 239000011521 glass Substances 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 238000012986 modification Methods 0.000 claims abstract description 15
- 230000004048 modification Effects 0.000 claims abstract description 15
- 238000000137 annealing Methods 0.000 claims abstract description 14
- 239000003960 organic solvent Substances 0.000 claims abstract description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 53
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 33
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 28
- 239000002904 solvent Substances 0.000 claims description 28
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 27
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 claims description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- 239000002243 precursor Substances 0.000 claims description 19
- OLOCFGKPPDVKIM-UHFFFAOYSA-N C=CC1=CC=C(C=C1)CN2C3=CC=CC=C3C4=C2C=C(C=C4)Br Chemical compound C=CC1=CC=C(C=C1)CN2C3=CC=CC=C3C4=C2C=C(C=C4)Br OLOCFGKPPDVKIM-UHFFFAOYSA-N 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 17
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 13
- 238000004140 cleaning Methods 0.000 claims description 12
- PJRGCJBBXGNEGD-UHFFFAOYSA-N 2-bromo-9h-carbazole Chemical compound C1=CC=C2C3=CC=C(Br)C=C3NC2=C1 PJRGCJBBXGNEGD-UHFFFAOYSA-N 0.000 claims description 11
- VJJZJBUCDWKPLC-UHFFFAOYSA-N 3-methoxyapigenin Chemical compound O1C2=CC(O)=CC(O)=C2C(=O)C(OC)=C1C1=CC=C(O)C=C1 VJJZJBUCDWKPLC-UHFFFAOYSA-N 0.000 claims description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- 238000004440 column chromatography Methods 0.000 claims description 9
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 8
- 239000012300 argon atmosphere Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 7
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical class [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 7
- 238000005086 pumping Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- QHJPGANWSLEMTI-UHFFFAOYSA-N aminomethylideneazanium;iodide Chemical group I.NC=N QHJPGANWSLEMTI-UHFFFAOYSA-N 0.000 claims description 4
- 239000010405 anode material Substances 0.000 claims description 4
- 239000010406 cathode material Substances 0.000 claims description 4
- -1 lead acetate Chemical compound 0.000 claims description 4
- 229940046892 lead acetate Drugs 0.000 claims description 4
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 claims description 4
- LLWRXQXPJMPHLR-UHFFFAOYSA-N methylazanium;iodide Chemical group [I-].[NH3+]C LLWRXQXPJMPHLR-UHFFFAOYSA-N 0.000 claims description 4
- QWANGZFTSGZRPZ-UHFFFAOYSA-N aminomethylideneazanium;bromide Chemical group Br.NC=N QWANGZFTSGZRPZ-UHFFFAOYSA-N 0.000 claims description 3
- NMVVJCLUYUWBSZ-UHFFFAOYSA-N aminomethylideneazanium;chloride Chemical group Cl.NC=N NMVVJCLUYUWBSZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 3
- VRNINGUKUJWZTH-UHFFFAOYSA-L lead(2+);dithiocyanate Chemical compound [Pb+2].[S-]C#N.[S-]C#N VRNINGUKUJWZTH-UHFFFAOYSA-L 0.000 claims description 3
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical group [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 claims description 3
- NQMRYBIKMRVZLB-UHFFFAOYSA-N methylamine hydrochloride Chemical group [Cl-].[NH3+]C NQMRYBIKMRVZLB-UHFFFAOYSA-N 0.000 claims description 3
- 238000002207 thermal evaporation Methods 0.000 claims description 3
- QDVBLRVMKXPVIK-UHFFFAOYSA-N C(=C)C1=CC=C(CN2C3=CC=CC=C3C=3C=CC(=CC2=3)C2=CC=C(S2)C=2SC(=CC=2)C2=CC=3N(C4=CC=CC=C4C=3C=C2)CC2=CC=C(C=C2)C=C)C=C1 Chemical compound C(=C)C1=CC=C(CN2C3=CC=CC=C3C=3C=CC(=CC2=3)C2=CC=C(S2)C=2SC(=CC=2)C2=CC=3N(C4=CC=CC=C4C=3C=C2)CC2=CC=C(C=C2)C=C)C=C1 QDVBLRVMKXPVIK-UHFFFAOYSA-N 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 238000004132 cross linking Methods 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 10
- 238000003786 synthesis reaction Methods 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000006116 polymerization reaction Methods 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 229920000144 PEDOT:PSS Polymers 0.000 description 7
- 239000003292 glue Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- KJOLVZJFMDVPGB-UHFFFAOYSA-N perylenediimide Chemical class C=12C3=CC=C(C(NC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)NC(=O)C4=CC=C3C1=C42 KJOLVZJFMDVPGB-UHFFFAOYSA-N 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 239000012296 anti-solvent Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/20—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
- H10K30/211—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明提供一种有机空穴传输层、钙钛矿太阳能电池及其制备方法,制备的太阳能电池器件结构自下而上包括:衬底、阳极、空穴传输层、光活性层、电子传输层、阴极修饰层和阴极;其中空穴传输层采用有机化学合成方法制备成有机小分子单体BTCV,通过将其溶解在有机溶剂中,然后再旋涂于玻璃衬底基片上,采用高温退火或者紫外灯照射使其发生聚合交联反应,形成网状空穴传输层,用于传输空穴,提高电池的光电转化效率,光电转化效率能够达到17.58%;有机小分子单体BTCV合成步骤简单,成本低廉,产率高且性质稳定,可进行商业化生产,大大降低了钙钛矿太阳能电池的成本。有机空穴传输材料小分子单体BTCV也可以应用于制备其他光伏器件。
The invention provides an organic hole transport layer, a perovskite solar cell and a preparation method thereof. The prepared solar cell device structure includes from bottom to top: a substrate, an anode, a hole transport layer, a photoactive layer, and an electron transport layer , cathode modification layer and cathode; wherein the hole transport layer is prepared into an organic small molecule monomer BTCV by organic chemical synthesis, by dissolving it in an organic solvent, and then spin-coating on a glass substrate substrate, using high temperature annealing or Ultraviolet lamp irradiation causes polymerization and crosslinking reaction to occur to form a network hole transport layer, which is used to transport holes and improve the photoelectric conversion efficiency of the battery. The photoelectric conversion efficiency can reach 17.58%; the organic small molecule monomer BTCV synthesis steps are simple, The low cost, high yield and stable properties allow for commercial production, which greatly reduces the cost of perovskite solar cells. The organic hole transport material, small molecule monomer BTCV, can also be applied to fabricate other photovoltaic devices.
Description
技术领域technical field
本发明属于半导体器件技术领域,具体涉及一种有机空穴传输层、钙钛矿太阳能电池及其制备方法。The invention belongs to the technical field of semiconductor devices, and particularly relates to an organic hole transport layer, a perovskite solar cell and a preparation method thereof.
背景技术Background technique
基于有机金属卤化物钙钛矿材料的太阳电池(pero-SCs)是未来能源发电的最有前途的候选材料之一,基于溶液加工的工艺简单,光电转换效率高,目前有机金属卤化物钙钛矿太阳能电池的光电转换效率(PCE)已经超过了20%。平面钙钛矿太阳能电池由于可以实现低温下的溶液加工,将低成本和层层加工技术完美的结合起来。Organometallic halide perovskite-based solar cells (pero-SCs) are one of the most promising candidates for future energy power generation. The photoelectric conversion efficiency (PCE) of ore solar cells has exceeded 20%. Planar perovskite solar cells combine low cost and layer-by-layer processing technology due to their low-temperature solution processing.
该类电池器件的结构最早是:玻璃/铟锡氧化物(ITO)/PEDOT:PSS/CH3NH3PbI3/C60/BCP/Al,PEDOT:PSS为空穴传输层,虽然PEDOT:PSS作为界面层被广泛的应用于有机电子设备,但是它的酸性、易吸水等缺点影响了器件的性能,而且PEDOT:PSS高昂的价格也限制了其在平面钙钛矿太阳能电池产业化的前景。Malinkiewicz等人采用poly-TPD作为空穴传输层,高的LUMO能级(-2.4eV)可以阻挡电子向阳极传输,但是,一些聚合物的空穴传输材料应用在平面钙钛矿太阳能电池中,poly-TPD的价格成本也较为昂贵,在制备平面钙钛矿太阳能电池时,要求位于下层的聚合物空穴传输必须能够抵抗极性的前驱体溶液的溶解,因此寻求一种稳定的空穴传输层材料对于制备平面钙钛矿太阳能电池至关重要。The earliest structure of this type of battery device is: glass/indium tin oxide (ITO)/PEDOT:PSS/CH 3 NH 3 PbI 3 /C 60 /BCP/Al, PEDOT:PSS is a hole transport layer, although PEDOT:PSS As an interface layer, it is widely used in organic electronic devices, but its acidity and easy water absorption affect the performance of the device, and the high price of PEDOT:PSS also limits its industrialization prospects in planar perovskite solar cells. Malinkiewicz et al. used poly-TPD as the hole transport layer. The high LUMO energy level (-2.4eV) can block electron transport to the anode. However, some polymer hole transport materials are used in planar perovskite solar cells. The cost of poly-TPD is also relatively expensive. In the preparation of planar perovskite solar cells, it is required that the polymer hole transport in the lower layer must be able to resist the dissolution of the polar precursor solution. Therefore, a stable hole transport is sought. Layer materials are crucial for the fabrication of planar perovskite solar cells.
因此,需要提供一种针对上述现有技术不足的改进技术方案。Therefore, it is necessary to provide an improved technical solution for the deficiencies of the above-mentioned prior art.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种有机空穴传输层、钙钛矿太阳能电池及其制备方法,以降低平面钙钛矿太阳能电池的成本,提高电池的能量转化效率。The purpose of the present invention is to provide an organic hole transport layer, a perovskite solar cell and a preparation method thereof, so as to reduce the cost of the planar perovskite solar cell and improve the energy conversion efficiency of the cell.
为了实现上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
一种钙钛矿太阳能电池的制备方法,所述制备方法包括以下步骤:A preparation method of a perovskite solar cell, the preparation method comprises the following steps:
步骤S1、将镀有阳极材料的玻璃衬底清洗干净并吹干,然后进行紫外光清洗处理,得到预处理后衬底基片;Step S1, cleaning and drying the glass substrate coated with the anode material, and then performing ultraviolet light cleaning treatment to obtain a pretreated substrate substrate;
步骤S2、在所述预处理后衬底基片上沉积BTCV的聚合物,形成有机空穴传输层;Step S2, depositing a polymer of BTCV on the pretreated substrate to form an organic hole transport layer;
步骤S3、在所述有机空穴传输层上旋涂钙钛矿前驱体溶液,然后加入氯苯溶剂继续旋涂,经过90-110℃退火处理后得到钙钛矿晶体薄膜,即光活性层;Step S3, spin-coating a perovskite precursor solution on the organic hole transport layer, then adding a chlorobenzene solvent to continue spin-coating, and annealing at 90-110° C. to obtain a perovskite crystal thin film, that is, a photoactive layer;
步骤S4、在所述光活性层上旋涂PCBM的氯苯溶液,形成电子传输层;Step S4, spin-coating the chlorobenzene solution of PCBM on the photoactive layer to form an electron transport layer;
步骤S5、在所述电子传输层上旋涂PDINO的甲醇溶液,形成阴极修饰层;Step S5, spin-coating a methanol solution of PDINO on the electron transport layer to form a cathode modification layer;
步骤S6、在真空下将阴极材料通过热蒸发蒸镀到所述阴极修饰层,得到钙钛矿太阳能电池。In step S6, the cathode material is evaporated onto the cathode modification layer by thermal evaporation under vacuum to obtain a perovskite solar cell.
在如上所述的钙钛矿太阳能电池的制备方法,优选,所述步骤S2中形成有机空穴传输层的具体步骤包括:In the above-mentioned preparation method of a perovskite solar cell, preferably, the specific steps of forming the organic hole transport layer in the step S2 include:
步骤s21、将有机小分子单体BTCV置于N,N-二甲基甲酰胺中,充分搅拌溶解,配制成BTCV溶液;Step s21, placing the organic small molecule monomer BTCV in N,N-dimethylformamide, fully stirring and dissolving to prepare a BTCV solution;
步骤s22、将所述BTCV溶液过滤后,在匀胶机上旋涂30-60秒,然后进行固化处理,形成交联网状的有机空穴传输层;Step s22, after filtering the BTCV solution, spin-coating on a glue spinner for 30-60 seconds, and then performing curing treatment to form a cross-linked organic hole transport layer;
优选地,所述BTCV溶液的浓度为0.5-1.5mg mL-1;Preferably, the concentration of the BTCV solution is 0.5-1.5 mg mL −1 ;
优选地,所述有机空穴传输层的厚度为10-20nm。Preferably, the thickness of the organic hole transport layer is 10-20 nm.
在如上所述的钙钛矿太阳能电池的制备方法,优选,步骤s22中,所述固化处理为在热台上130-170℃退火8-12min或者紫外灯照射25-35min。In the above-mentioned preparation method of a perovskite solar cell, preferably, in step s22, the curing treatment is annealing at 130-170° C. for 8-12 minutes on a hot stage or irradiating with an ultraviolet lamp for 25-35 minutes.
在如上所述的钙钛矿太阳能电池的制备方法,优选,所述有机小分子单体BTCV的具体制备方法包括:In the above-mentioned preparation method of perovskite solar cell, preferably, the specific preparation method of the organic small molecule monomer BTCV includes:
将2-溴咔唑、4-乙烯基苄基氯和丙酮加热至60-90℃后加入氢氧化钠和四丁基硫酸氢铵,搅拌后过滤,然后旋干溶剂后柱层析得到白色固体9-(4-乙烯苄基)-2-溴咔唑;After heating 2-bromocarbazole, 4-vinylbenzyl chloride and acetone to 60-90°C, add sodium hydroxide and tetrabutylammonium hydrogen sulfate, stir, filter, spin dry the solvent, and obtain a white solid by column chromatography 9-(4-vinylbenzyl)-2-bromocarbazole;
将9-(4-乙烯苄基)-2-溴咔唑、5,5’-二(三甲基锡)-2,2’-双噻吩、四三苯基膦钯、新蒸甲苯加入容器中,抽换气2-4次后在氩气氛围下加热至110-130℃反应,反应结束后冷却至室温,旋干溶剂并加入饱和氟化钾溶液,使用二氯甲烷萃取,旋干溶剂后柱层析,得到黄色固体5,5'-二[9-(4-乙烯苄基)-2-咔唑基]-2,2'-双噻吩,即所述有机小分子单体BTCV。Add 9-(4-vinylbenzyl)-2-bromocarbazole, 5,5'-bis(trimethyltin)-2,2'-bisthiophene, tetrakistriphenylphosphine palladium, and freshly distilled toluene into the container 2-4 times, heat to 110-130°C under argon atmosphere for reaction, cool to room temperature after the reaction, spin dry the solvent and add saturated potassium fluoride solution, extract with dichloromethane, spin dry the solvent After column chromatography,
在如上所述的钙钛矿太阳能电池的制备方法,优选,所述2-溴咔唑与所述4-乙烯基苄基氯的摩尔比为1:1。In the above-mentioned preparation method of a perovskite solar cell, preferably, the molar ratio of the 2-bromocarbazole to the 4-vinylbenzyl chloride is 1:1.
在如上所述的钙钛矿太阳能电池的制备方法,优选,所述9-(4-乙烯苄基)-2-溴咔唑与所述5,5’-二(三甲基锡)-2,2’-双噻吩的摩尔比为2:1。In the above-mentioned preparation method of perovskite solar cell, preferably, the 9-(4-vinylbenzyl)-2-bromocarbazole and the 5,5'-bis(trimethyltin)-2 , The molar ratio of 2'-bisthiophene is 2:1.
在如上所述的钙钛矿太阳能电池的制备方法,优选,步骤S3中,所述钙钛矿前驱体溶液的制备方法包括:In the above-mentioned preparation method of perovskite solar cell, preferably, in step S3, the preparation method of the perovskite precursor solution includes:
将供体A溶解在有机溶剂中,然后再加入供体B,搅拌后得到钙钛矿前驱体溶液;Dissolving donor A in an organic solvent, then adding donor B, and stirring to obtain a perovskite precursor solution;
其中,所述供体A为氯化铅、溴化铅、乙酸铅、硫氰酸铅或碘化铅;Wherein, described donor A is lead chloride, lead bromide, lead acetate, lead thiocyanate or lead iodide;
所述供体B为甲基氯化铵、甲脒盐酸盐、甲基溴化铵、甲脒氢溴酸盐、甲基碘化铵或甲脒氢碘酸盐;Described donor B is methylammonium chloride, formamidine hydrochloride, methylammonium bromide, formamidine hydrobromide, methylammonium iodide or formamidine hydroiodide;
优选地,所述有机溶剂为二甲基甲酰胺、二甲基亚砜或γ-丁内酯。Preferably, the organic solvent is dimethylformamide, dimethylsulfoxide or γ-butyrolactone.
在如上所述的钙钛矿太阳能电池的制备方法,优选,所述供体A与所述供体B的摩尔比为1:(1-5);In the above-mentioned preparation method of a perovskite solar cell, preferably, the molar ratio of the donor A to the donor B is 1:(1-5);
优选地,所述供体A和所述供体B在所述有机溶剂中总的质量百分含量为35~50wt%。Preferably, the total mass percentage of the donor A and the donor B in the organic solvent is 35-50 wt %.
一种以钙钛矿太阳能电池的制备方法制备的钙钛矿太阳能电池。A perovskite solar cell prepared by the preparation method of the perovskite solar cell.
一种有机空穴传输层在制备光伏器件中的应用;所述有机空穴传输层采用所述钙钛矿太阳能电池的制备方法制备。An application of an organic hole transport layer in preparing a photovoltaic device; the organic hole transport layer is prepared by the preparation method of the perovskite solar cell.
与最接近的现有技术相比,本发明提供的技术方案具有如下优异效果:Compared with the closest prior art, the technical solution provided by the present invention has the following excellent effects:
本发明采用有机小分子单体物质发生交联反应形成网状空穴传输层代替现有的空穴传输层,制备高效的平面钙钛矿太阳能电池,主要具有如下优异效果:The invention adopts the cross-linking reaction of organic small molecular monomer substances to form a network hole transport layer to replace the existing hole transport layer, and prepares a high-efficiency planar perovskite solar cell, which mainly has the following excellent effects:
1、提高了钙钛矿太阳能电池的性能;本发明采用有机小分子单体交联反应后得到的聚合物材料作为钙钛矿太阳能电池的空穴传输层,具有成膜性好、透光率高、具备与钙钛矿能级相匹配的HOMO能级和较高的LUMO能级等特点,该空穴传输层既可以很好的传输空穴又可以很好的阻挡电子,降低了界面处电子耦合或电荷复合的发生几率,从而提高钙钛矿太阳能电池的开路电压、短路电流密度和填充因子,最终实现钙钛矿太阳能电池光电转换效率的提高,利用本发明的制备方法制备的平面异质结钙钛矿电池的光电转化效率达到17.58%。1. The performance of the perovskite solar cell is improved; the present invention uses the polymer material obtained after the cross-linking reaction of the organic small molecule monomer as the hole transport layer of the perovskite solar cell, which has good film-forming properties and light transmittance. It has the characteristics of high HOMO energy level and high LUMO energy level matching the energy level of perovskite. The hole transport layer can not only transport holes but also block electrons well, reducing the interface The probability of occurrence of electronic coupling or charge recombination, thereby improving the open-circuit voltage, short-circuit current density and filling factor of the perovskite solar cell, and finally realizing the improvement of the photoelectric conversion efficiency of the perovskite solar cell. The photoelectric conversion efficiency of the mass junction perovskite cell reaches 17.58%.
2、降低了钙钛矿太阳能电池的成本;本发明通过制备有机小分子单体BTCV的溶液并将其直接旋涂在阳极衬底玻璃上,交联后制备成空穴传输层,操作简单,可以实现大面积薄膜制备。2. The cost of the perovskite solar cell is reduced; the present invention prepares a solution of an organic small molecule monomer BTCV and spin-coats it directly on the anode substrate glass, and then prepares a hole transport layer after cross-linking, and the operation is simple, Large-area thin film fabrication can be achieved.
同时,有机小分子单体BTCV的合成步骤简单,成本低廉,产率高且性质稳定,可以进行商业化生产,大大降低了钙钛矿太阳能电池的成本。At the same time, the synthetic steps of the organic small-molecule monomer BTCV are simple, low-cost, high-yield and stable in properties, which can be commercialized and greatly reduce the cost of perovskite solar cells.
相比于现有空穴传输材料,本发明利用有机小分子单体聚合物材料作为空穴传输层制备的钙钛矿太阳能电池具有更好的性能和更低的成本。Compared with the existing hole transport material, the perovskite solar cell prepared by using the organic small-molecule monomer polymer material as the hole transport layer of the present invention has better performance and lower cost.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:The accompanying drawings forming a part of the present application are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. in:
图1为本发明实施例1的钙钛矿太阳能电池的结构示意图;1 is a schematic structural diagram of a perovskite solar cell according to Example 1 of the present invention;
图2为本发明实施例制备钙钛矿太阳能电池的流程图;2 is a flow chart of preparing a perovskite solar cell according to an embodiment of the present invention;
图3为本发明实施例的空穴传输层材料BTCV的分子结构式;Fig. 3 is the molecular structural formula of the hole transport layer material BTCV according to the embodiment of the present invention;
图4为本发明实施例的空穴传输层材料BTCV的质谱图;Fig. 4 is the mass spectrum of the hole transport layer material BTCV according to the embodiment of the present invention;
图5为本发明实施例1和对照例1制备的钙钛矿太阳能电池的电流密度-电压特征曲线(正反扫)。5 is a current density-voltage characteristic curve (forward and reverse scan) of the perovskite solar cells prepared in Example 1 and Comparative Example 1 of the present invention.
具体实施方式Detailed ways
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments in the present invention, all other embodiments obtained by those of ordinary skill in the art fall within the protection scope of the present invention.
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。The present invention will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments. It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict.
本发明提供的一种钙钛矿太阳能电池,针对目前平面钙钛矿太阳能电池普遍使用的空穴传输材料PEDOT:PSS(3,4-乙撑二氧噻吩单体-聚苯乙烯磺酸盐聚合物)的不足,提供一种基于有机交联空穴传输层的平面钙钛矿太阳能电池及其制备方法,以降低平面钙钛矿太阳能电池的成本,提高电池的能量转化效率。The perovskite solar cell provided by the present invention is aimed at the hole transport material PEDOT:PSS (3,4-ethylenedioxythiophene monomer-polystyrene sulfonate polymerization) commonly used in current planar perovskite solar cells In order to reduce the cost of the planar perovskite solar cell and improve the energy conversion efficiency of the cell, a planar perovskite solar cell based on an organic cross-linked hole transport layer and a preparation method thereof are provided.
本发明的太阳能电池器件结构自下而上包括:衬底、阳极、空穴传输层、光活性层、电子传输层、阴极修饰层和阴极;其中空穴传输层采用厚度约10-20nm的有机空穴传输层材料,采用有机化学合成方法制备成有机小分子单体BTCV,通过将其溶解在有机溶剂中,然后再旋涂于玻璃衬底基片上,采用高温退火或者紫外灯照射使其发生聚合交联反应,形成网状空穴传输层,用于阻挡电子,传输空穴,抑制阳极与光活性层间的紧密接触,减少界面处载流子复合的几率,进而提高电池的光电转化效率。有机小分子单体BTCV合成步骤简单,成本低廉,产率高且性质稳定,可以进行商业化生产,大大降低了钙钛矿太阳能电池的成本。The solar cell device structure of the present invention includes from bottom to top: a substrate, an anode, a hole transport layer, a photoactive layer, an electron transport layer, a cathode modification layer and a cathode; wherein the hole transport layer is made of organic materials with a thickness of about 10-20 nm. The hole transport layer material is prepared into an organic small molecule monomer BTCV by an organic chemical synthesis method. It is dissolved in an organic solvent, and then spin-coated on a glass substrate. High temperature annealing or ultraviolet light irradiation is used to make it happen. Polymerization and cross-linking reaction to form a network hole transport layer, which is used to block electrons, transport holes, inhibit the close contact between the anode and the photoactive layer, reduce the probability of carrier recombination at the interface, and improve the photoelectric conversion efficiency of the battery . The organic small molecule monomer BTCV has simple synthesis steps, low cost, high yield and stable properties, which can be commercialized and greatly reduce the cost of perovskite solar cells.
本发明中制备的有机空穴传输材料小分子单体BTCV也可以应用于制备其他光伏器件。The organic hole transport material small-molecule monomer BTCV prepared in the present invention can also be applied to prepare other photovoltaic devices.
本发明提供的一种钙钛矿太阳能电池的制备方法,包括以下步骤:A preparation method of a perovskite solar cell provided by the present invention comprises the following steps:
一种钙钛矿太阳能电池的制备方法,包括以下步骤:A preparation method of a perovskite solar cell, comprising the following steps:
步骤S1、将镀有阳极材料的玻璃衬底清洗干净并吹干,然后进行紫外光清洗处理,得到预处理后衬底基片。In step S1, the glass substrate plated with the anode material is cleaned and blown dry, and then subjected to ultraviolet light cleaning treatment to obtain a pretreated substrate.
优选地,阳极材料为氧化铟锡(ITO)或氟掺杂氧化锡(FTO),用于收集空穴。Preferably, the anode material is indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) for collecting holes.
步骤S2、在预处理后衬底基片上沉积BTCV聚合物,形成有机空穴传输层。优选地,有机空穴传输层的厚度为10-20nm(比如11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm、20nm)。Step S2, depositing a BTCV polymer on the pretreated substrate to form an organic hole transport layer. Preferably, the thickness of the organic hole transport layer is 10-20 nm (eg 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm).
优选地,步骤S2中形成有机空穴传输层的具体步骤包括:Preferably, the specific steps of forming the organic hole transport layer in step S2 include:
步骤s21、将有机小分子单体BTCV置于N,N-二甲基甲酰胺中,充分搅拌溶解,配制成BTCV溶液;优选地,BTCV溶液的浓度为0.5-1.5mg mL-1(比如0.6mg mL-1、0.7mg mL-1、0.8mg mL-1、0.9mg mL-1、1.0mg mL-1、1.1mg mL-1、1.2mg mL-1、1.3mg mL-1、1.4mg mL-1);Step s21, placing the organic small molecular monomer BTCV in N,N-dimethylformamide, fully stirring and dissolving to prepare a BTCV solution; preferably, the concentration of the BTCV solution is 0.5-1.5 mg mL -1 (such as 0.6 mg mL -1 , 0.7 mg mL -1 , 0.8 mg mL -1 , 0.9 mg mL -1 , 1.0 mg mL -1 , 1.1 mg mL -1 , 1.2 mg mL -1 , 1.3 mg mL -1 , 1.4 mg mL-1 -1 );
步骤s22、将BTCV溶液过滤后,在匀胶机上旋涂30-60秒,然后进行固化处理,形成交联网状有机空穴传输层;步骤s22中,固化处理为在热台上130-170℃(比如135℃、138℃、140℃、145℃、148℃、150℃、155℃、158℃、160℃、165℃、168℃)退火8-12min(比如9min、10min、11min、12min)或者采用紫外灯照射25-35min(比如26min、27min、28min、29min、30min、31min、32min、33min、34min);In step s22, after filtering the BTCV solution, spin-coat on a glue spinner for 30-60 seconds, and then perform curing treatment to form a cross-linked organic hole transport layer; in step s22, curing treatment is performed on a hot stage at 130-170° C. (eg 135°C, 138°C, 140°C, 145°C, 148°C, 150°C, 155°C, 158°C, 160°C, 165°C, 168°C) Annealing for 8-12min (eg 9min, 10min, 11min, 12min) or Use ultraviolet light for 25-35min (such as 26min, 27min, 28min, 29min, 30min, 31min, 32min, 33min, 34min);
优选地,有机小分子单体BTCV的具体制备方法包括:Preferably, the specific preparation method of the organic small molecule monomer BTCV comprises:
将2-溴咔唑、4-乙烯基苄基氯和丙酮加热至60-90℃(比如62℃、64℃、66℃、68℃、70℃、72℃、74℃、76℃、78℃、80℃、82℃、84℃、86℃、88℃、90℃)后加入氢氧化钠和四丁基硫酸氢铵,搅拌后过滤,然后旋干溶剂后柱层析得到白色固体9-(4-乙烯苄基)-2-溴咔唑;Heat 2-bromocarbazole, 4-vinylbenzyl chloride and acetone to 60-90°C (e.g. 62°C, 64°C, 66°C, 68°C, 70°C, 72°C, 74°C, 76°C, 78°C , 80°C, 82°C, 84°C, 86°C, 88°C, 90°C), then add sodium hydroxide and tetrabutylammonium hydrogen sulfate, filter after stirring, and then spin off the solvent to obtain a white solid 9-( 4-vinylbenzyl)-2-bromocarbazole;
将9-(4-乙烯苄基)-2-溴咔唑、5,5’-二(三甲基锡)-2,2’-双噻吩、四三苯基膦钯、新蒸甲苯加入容器中,抽换气2-4次后在氩气氛围下加热至110-130℃(比如112℃、114℃、116℃、118℃、120℃、122℃、124℃、126℃、128℃、130℃)反应,反应结束后冷却至室温,旋干溶剂并加入饱和氟化钾溶液,使用二氯甲烷萃取,旋干溶剂后柱层析,得到黄色固体5,5'-二[9-(4-乙烯苄基)-2-咔唑基]-2,2'-双噻吩,即有机小分子单体BTCV。Add 9-(4-vinylbenzyl)-2-bromocarbazole, 5,5'-bis(trimethyltin)-2,2'-bisthiophene, tetrakistriphenylphosphine palladium, and freshly distilled toluene into the container In the middle, after 2-4 times of pumping and ventilation, heat to 110-130°C under argon atmosphere (such as 112°C, 114°C, 116°C, 118°C, 120°C, 122°C, 124°C, 126°C, 128°C, 130 ℃) reaction, cooled to room temperature after the reaction, spin-dried the solvent and added saturated potassium fluoride solution, use dichloromethane extraction, spin-dried the solvent after column chromatography to obtain a yellow solid 5,5'-bis[9-( 4-Vinylbenzyl)-2-carbazolyl]-2,2'-bisthiophene, namely BTCV, an organic small molecule monomer.
新蒸甲苯是指普通甲苯在使用之前进行蒸馏,确保无水、无杂质。Freshly distilled toluene means that ordinary toluene is distilled before use to ensure no water and no impurities.
优选地,2-溴咔唑与4-乙烯基苄基氯的摩尔比为1:1。Preferably, the molar ratio of 2-bromocarbazole to 4-vinylbenzyl chloride is 1:1.
优选地,9-(4-乙烯苄基)-2-溴咔唑与5,5’-二(三甲基锡)-2,2’-双噻吩的摩尔比为2:1。Preferably, the molar ratio of 9-(4-vinylbenzyl)-2-bromocarbazole to 5,5'-bis(trimethyltin)-2,2'-bisthiophene is 2:1.
步骤S3、在有机空穴传输层上旋涂钙钛矿前驱体溶液(CH3NH3PbI3),然后加入氯苯溶剂继续旋涂,经过90-110℃(比如92℃、94℃、96℃、98℃、100℃、102℃、104℃、106℃、108℃、110℃)退火处理后得到钙钛矿晶体薄膜,即光活性层;Step S3, spin-coating the perovskite precursor solution (CH 3 NH 3 PbI 3 ) on the organic hole transport layer, and then adding chlorobenzene solvent to continue the spin-coating, after 90-110 ° C (such as 92 ° C, 94 ° C, 96 ° C) °C, 98 °C, 100 °C, 102 °C, 104 °C, 106 °C, 108 °C, 110 °C) annealing treatment to obtain a perovskite crystal thin film, that is, a photoactive layer;
优选地,步骤S3中,钙钛矿前驱体溶液的制备方法包括:Preferably, in step S3, the preparation method of the perovskite precursor solution includes:
将供体A溶解在有机溶剂中,然后再加入供体B,搅拌后得到钙钛矿前驱体溶液;Dissolving donor A in an organic solvent, then adding donor B, and stirring to obtain a perovskite precursor solution;
其中,供体A为氯化铅、溴化铅、乙酸铅、硫氰酸铅或碘化铅;Wherein, donor A is lead chloride, lead bromide, lead acetate, lead thiocyanate or lead iodide;
供体B为甲基氯化铵、甲脒盐酸盐、甲基溴化铵、甲脒氢溴酸盐、甲基碘化铵或甲脒氢碘酸盐;Donor B is methylammonium chloride, formamidine hydrochloride, methylammonium bromide, formamidine hydrobromide, methylammonium iodide or formamidine hydroiodide;
优选地,有机溶剂为二甲基甲酰胺、二甲基亚砜或γ-丁内酯。Preferably, the organic solvent is dimethylformamide, dimethylsulfoxide or γ-butyrolactone.
优选地,供体A与供体B的摩尔比为1:(1-5)(比如1:1、1:1.5、1:2、1:2.5、1:3、1:3.5、1:4、1:4.5、1:5);Preferably, the molar ratio of Donor A to Donor B is 1:(1-5) (such as 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4 , 1:4.5, 1:5);
优选地,供体A和供体B在有机溶剂中的总的质量百分含量为35~50wt%(比如36wt%、37wt%、38wt%、39wt%、40wt%、41wt%、42wt%、43wt%、44wt%、45wt%、46wt%、47wt%、48wt%、49wt%)。Preferably, the total mass percentage of Donor A and Donor B in the organic solvent is 35-50wt% (such as 36wt%, 37wt%, 38wt%, 39wt%, 40wt%, 41wt%, 42wt%, 43wt% %, 44wt%, 45wt%, 46wt%, 47wt%, 48wt%, 49wt%).
步骤S4、在光活性层上旋涂PCBM([6,6]-苯基-C61-丁酸甲酯)的氯苯溶液,形成电子传输层;Step S4, spin coating the chlorobenzene solution of PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) on the photoactive layer to form an electron transport layer;
步骤S5、在电子传输层上旋涂PDINO(苝二酰亚胺衍生物)的甲醇溶液,形成阴极修饰层;Step S5, spin-coating a methanol solution of PDINO (perylene diimide derivative) on the electron transport layer to form a cathode modification layer;
步骤S6、在真空下将阴极材料通过热蒸发蒸镀到阴极修饰层,得到钙钛矿太阳能电池。In step S6, the cathode material is evaporated to the cathode modification layer by thermal evaporation under vacuum to obtain a perovskite solar cell.
优选地,所述阴极材料为金属铝(Al)或银(Ag)。Preferably, the cathode material is metal aluminum (Al) or silver (Ag).
本实施例和对照例中所用的材料、试剂等,均为市售产品。The materials, reagents, etc. used in this example and the comparative example are all commercially available products.
实施例1Example 1
如图1和图2所示,本实施例提供的一种钙钛矿太阳能电池的制备方法,包括以下步骤:As shown in FIG. 1 and FIG. 2 , the preparation method of a perovskite solar cell provided in this embodiment includes the following steps:
步骤S1、将溅射有氧化铟锡ITO的阳极玻璃衬底基片依次用洗洁精、去离子水、丙酮、异丙醇超声洗涤2次,每次10~15min,清洗完成后用氮气吹干。将吹干的ITO玻璃衬底放入紫外光清洗表面处理设备进行处理20min,得到预处理后衬底基片。Step S1, the anode glass substrate substrate sputtered with indium tin oxide (ITO) is ultrasonically washed twice with detergent, deionized water, acetone, and isopropanol in turn, for 10 to 15 minutes each time, and blowing with nitrogen after the cleaning is completed. Dry. The blown-dried ITO glass substrate was placed in an ultraviolet light cleaning surface treatment equipment for 20 minutes to obtain a pretreated substrate.
步骤S2、在预处理后衬底基片上沉积厚度为20nm的BTCV聚合物,形成有机空穴传输层,具体步骤主要有两大步。Step S2, depositing a BTCV polymer with a thickness of 20 nm on the pretreated substrate to form an organic hole transport layer. The specific steps mainly include two steps.
有机小分子单体BTCV的制备Preparation of Organic Small Molecular Monomer BTCV
步骤s21、在100ml两口瓶中加入2-溴咔唑0.588g(2.4mmol)、4-乙烯基苄基氯0.364g(2.4mmol)和20ml丙酮加热至75℃后加入氢氧化钠0.110g(2.8mmol)和四丁基硫酸氢铵0.02g(0.0589mmol),搅拌4h后过滤,然后旋干溶剂后柱层析得到白色固体9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol);Step s21, add 0.588g (2.4mmol) of 2-bromocarbazole, 0.364g (2.4mmol) of 4-vinylbenzyl chloride and 20ml of acetone into a 100ml two-necked flask, heat to 75°C, and then add 0.110g (2.8g) of sodium hydroxide. mmol) and tetrabutylammonium hydrogen sulfate 0.02g (0.0589mmol), stirred for 4h and filtered, and then spin-dried the solvent to obtain a white solid 9-(4-vinylbenzyl)-2-bromocarbazole 0.5g ( 1.38 mmol);
将9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol)、5,5’-二(三甲基锡)-2,2’-双噻吩0.0339g(0.690mmol)、四三苯基膦钯0.05g(0.04mmol)、新蒸甲苯50ml加入两口瓶中,抽换气3次后在氩气氛围下加热至130℃反应12h,反应结束后冷却至室温,旋干溶剂并加入饱和氟化钾溶液,使用二氯甲烷萃取(30ml×3),即每次萃取使用二氯甲烷30ml,共萃取3次,旋干溶剂后柱层析,得到黄色固体5,5'-二[9-(4-乙烯苄基)-2-咔唑基]-2,2'-双噻吩0.11g(0.151mmol),即有机小分子单体BTCV,有机小分子单体BTCV的分子结构式如图3所示,BTCV的质谱图如图4所示。0.5 g (1.38 mmol) of 9-(4-vinylbenzyl)-2-bromocarbazole, 0.0339 g (0.690 mmol) of 5,5'-bis(trimethyltin)-2,2'-bisthiophene, 0.05 g (0.04 mmol) of palladium tetrakistriphenylphosphine and 50 ml of freshly distilled toluene were added to the two-necked flask. After 3 times of pumping and ventilation, they were heated to 130° C. under an argon atmosphere and reacted for 12 h. After the reaction was completed, the reaction was cooled to room temperature and the solvent was spin-dried. Saturated potassium fluoride solution was added and extracted with dichloromethane (30ml×3), that is, 30ml of dichloromethane was used for each extraction, a total of 3 times of extraction, and the solvent was spin-dried and column chromatography was performed to obtain a yellow solid 5,5'- Bis[9-(4-vinylbenzyl)-2-carbazolyl]-2,2'-bisthiophene 0.11g (0.151mmol), namely the organic small molecule BTCV, the molecular structure of the organic small molecule BTCV As shown in Figure 3, the mass spectrum of BTCV is shown in Figure 4.
小分子单体BTCV的合成路线如下:The synthetic route of small molecular monomer BTCV is as follows:
BTCV聚合物的交联反应Cross-linking reaction of BTCV polymers
步骤s22、将有机小分子单体BTCV置于N,N-二甲基甲酰胺(DMF)中,充分搅拌溶解,配制成1mg mL-1的BTCV溶液;Step s22, placing the organic small molecular monomer BTCV in N,N-dimethylformamide (DMF), fully stirring and dissolving, and preparing a BTCV solution of 1 mg mL -1 ;
步骤s23、将BTCV溶液经0.45微米的滤头过滤后,在匀胶机上4000r/min的转速下旋涂60秒,然后在热台上150℃退火10min使其发生交联反应,形成交联网状有机空穴传输层,厚度为20nm。Step s23, after filtering the BTCV solution through a 0.45-micron filter head, spin-coating at a speed of 4000 r/min on a glue spinner for 60 seconds, and then annealing at 150° C. for 10 minutes on a hot stage to cause a cross-linking reaction to form a cross-linked network. Organic hole transport layer with a thickness of 20 nm.
步骤S3、PbI2和CH3NH3I按摩尔比1:2溶于N,N-二甲基甲酰胺(DMF)溶液中,溶液中PbI2和CH3NH3I总的质量分数为40wt%,室温搅拌,制得钙钛矿前驱体溶液(CH3NH3PbI3)。在有机空穴传输层上在5000r/min转速下旋涂钙钛矿前驱体溶液,然后旋转4.5s时滴加抗溶剂氯苯溶剂,促进钙钛矿层快速结晶,然后转移至空气中,经过100℃热退火处理10min,得到黑色的钙钛矿层,厚度为300nm,也即是光活性层。Step S3, PbI 2 and CH 3 NH 3 I were dissolved in N,N-dimethylformamide (DMF) solution in a molar ratio of 1:2, and the total mass fraction of PbI 2 and CH 3 NH 3 I in the solution was 40wt %, stirring at room temperature to obtain a perovskite precursor solution (CH 3 NH 3 PbI 3 ). The perovskite precursor solution was spin-coated on the organic hole transport layer at a speed of 5000 r/min, and then the anti-solvent chlorobenzene solvent was added dropwise during rotation for 4.5 s to promote the rapid crystallization of the perovskite layer, and then transferred to the air for 100 s. ℃ thermal annealing treatment for 10min to obtain a black perovskite layer with a thickness of 300nm, that is, a photoactive layer.
步骤S4、在光活性层上旋涂浓度为20mg mL-1的PCBM([6,6]-苯基-C61-丁酸甲酯)的氯苯溶液在1500r/min的转速下旋涂30-60s在上述钙钛矿层上,得到厚度为20nm的电子传输层。Step S4, spin-coating a chlorobenzene solution of PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) with a concentration of 20 mg mL -1 on the photoactive layer at a rotational speed of 1500 r/min for 30- 60 s on the above perovskite layer to obtain an electron transport layer with a thickness of 20 nm.
步骤S5、将1mg mL-1的PDINO(苝二酰亚胺衍生物)的甲醇溶液在3000r/min的转速下旋涂30-60s在上述覆盖有PCBM的钙钛矿层上,得到厚度为15nm的阴极修饰层。Step S5, spin-coating a methanol solution of 1 mg mL -1 of PDINO (perylene diimide derivative) at a rotational speed of 3000 r/min for 30-60 s on the perovskite layer covered with PCBM to obtain a 15 nm-thick Cathode modification layer.
步骤S6、最后在5×10-5Pa下真空蒸镀厚度为100nm的Al做金属电极,得到钙钛矿太阳能电池。Step S6, finally, vacuum evaporation of Al with a thickness of 100 nm is performed under 5×10 -5 Pa as a metal electrode to obtain a perovskite solar cell.
如图1所示,本发明实施例所得器件结构为ITO/BTCV/CH3NH3PbI3/PCBM/PDINO/Al,对器件测试其性能如图5所示,在最优条件下,在100mW cm-2的模拟太阳光照射下开路电压为1.00V,短路电流为21.70mA cm-2,填充因子为81%,光电转化效率为17.58%。As shown in FIG. 1 , the structure of the device obtained in the embodiment of the present invention is ITO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al, and the performance of the device is shown in FIG. 5 . Under optimal conditions, at 100mW The open-circuit voltage was 1.00V, the short-circuit current was 21.70mA cm- 2 , the fill factor was 81%, and the photoelectric conversion efficiency was 17.58% under the simulated sunlight of cm -2 .
实施例2Example 2
本实施例提供的一种钙钛矿太阳能电池的制备方法,包括以下步骤:The preparation method of a perovskite solar cell provided in this embodiment includes the following steps:
步骤S1、将溅射有氧化铟锡ITO的阳极玻璃衬底基片依次用洗洁精、去离子水、丙酮、异丙醇超声洗涤2次,每次10~15min,清洗完成后用氮气吹干。将吹干的ITO玻璃衬底放入紫外光清洗表面处理设备进行处理20min,得到预处理后衬底基片。Step S1, the anode glass substrate substrate sputtered with indium tin oxide (ITO) is ultrasonically washed twice with detergent, deionized water, acetone, and isopropanol in turn, for 10 to 15 minutes each time, and blowing with nitrogen after the cleaning is completed. Dry. The blown-dried ITO glass substrate was placed in an ultraviolet light cleaning surface treatment equipment for 20 minutes to obtain a pretreated substrate.
步骤S2、在预处理后衬底基片上沉积厚度为10nm的BTCV聚合物,形成有机空穴传输层,具体步骤主要有两大步。Step S2, depositing a BTCV polymer with a thickness of 10 nm on the pretreated substrate to form an organic hole transport layer. The specific steps mainly include two steps.
有机小分子单体BTCV的制备Preparation of Organic Small Molecular Monomer BTCV
步骤s21、在100ml两口瓶中加入2-溴咔唑0.588g(2.4mmol)、4-乙烯基苄基氯0.364g(2.4mmol)和20ml丙酮加热至75℃后加入氢氧化钠0.110g(2.8mmol)和四丁基硫酸氢铵0.02g(0.0589mmol),搅拌4h后过滤,然后旋干溶剂后柱层析得到白色固体9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol);Step s21, add 0.588g (2.4mmol) of 2-bromocarbazole, 0.364g (2.4mmol) of 4-vinylbenzyl chloride and 20ml of acetone into a 100ml two-necked flask, heat to 75°C, and then add 0.110g (2.8g) of sodium hydroxide. mmol) and tetrabutylammonium hydrogen sulfate 0.02g (0.0589mmol), stirred for 4h and filtered, and then spin-dried the solvent to obtain a white solid 9-(4-vinylbenzyl)-2-bromocarbazole 0.5g ( 1.38 mmol);
将9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol)、5,5’-二(三甲基锡)-2,2’-双噻吩0.0339g(0.690mmol)、四三苯基膦钯0.05g(0.04mmol)、新蒸甲苯50ml加入两口瓶中,抽换气3次后在氩气氛围下加热至130℃反应12h,反应结束后冷却至室温,旋干溶剂并加入饱和氟化钾溶液,使用二氯甲烷萃取(30ml×3),即每次使用二氯甲烷30ml萃取3次,旋干溶剂后柱层析,得到黄色固体5,5'-二[9-(4-乙烯苄基)-2-咔唑基]-2,2'-双噻吩0.11g(0.151mmol),即有机小分子单体BTCV,如图3所示。0.5 g (1.38 mmol) of 9-(4-vinylbenzyl)-2-bromocarbazole, 0.0339 g (0.690 mmol) of 5,5'-bis(trimethyltin)-2,2'-bisthiophene, 0.05 g (0.04 mmol) of palladium tetrakistriphenylphosphine and 50 ml of freshly distilled toluene were added to the two-necked flask. After 3 times of pumping and ventilation, they were heated to 130° C. under an argon atmosphere and reacted for 12 h. After the reaction was completed, the reaction was cooled to room temperature and the solvent was spin-dried. Saturated potassium fluoride solution was added, extracted with dichloromethane (30ml×3), that is, extracted three times with 30ml of dichloromethane each time, the solvent was spin-dried and column chromatography was performed to obtain a yellow solid 5,5'-bis[9 0.11 g (0.151 mmol) of -(4-vinylbenzyl)-2-carbazolyl]-2,2'-bisthiophene, which is an organic small molecule BTCV, as shown in FIG. 3 .
BTCV聚合物的交联反应Cross-linking reaction of BTCV polymers
步骤s22、将有机小分子单体BTCV置于N,N-二甲基甲酰胺(DMF)中,充分搅拌溶解,配制成1mg mL-1的BTCV溶液;Step s22, placing the organic small molecular monomer BTCV in N,N-dimethylformamide (DMF), fully stirring and dissolving, and preparing a BTCV solution of 1 mg mL -1 ;
步骤s23、将BTCV溶液经0.45微米的滤头过滤后,在匀胶机上4000r/min旋涂30秒,然后在紫外灯下照射30min使其发生交联反应,形成交联网状有机空穴传输层,厚度为10nm。Step s23, after filtering the BTCV solution through a 0.45-micron filter head, spin-coating at 4000 r/min for 30 seconds on a glue spinner, and then irradiating it under an ultraviolet lamp for 30 minutes to cause a cross-linking reaction to form a cross-linked organic hole transport layer , with a thickness of 10 nm.
步骤S3、PbI2和CH3NH3I按摩尔比1:1溶于N,N-二甲基甲酰胺(DMF)溶液中,溶液中PbI2和CH3NH3I总的质量分数为40wt%,室温搅拌,制得钙钛矿前驱体溶液(CH3NH3PbI3)。在有机空穴传输层上在5000r/min转速下旋涂钙钛矿前驱体溶液,然后旋转4.5s时滴加抗溶剂氯苯溶剂,促进钙钛矿层快速结晶,然后转移至空气中,经过100℃热退火处理10min,得到黑色的钙钛矿层,厚度为300nm,也即是光活性层。Step S3, PbI 2 and CH 3 NH 3 I were dissolved in N,N-dimethylformamide (DMF) solution in a molar ratio of 1:1, and the total mass fraction of PbI 2 and CH 3 NH 3 I in the solution was 40wt %, stirring at room temperature to obtain a perovskite precursor solution (CH 3 NH 3 PbI 3 ). The perovskite precursor solution was spin-coated on the organic hole transport layer at a speed of 5000 r/min, and then the anti-solvent chlorobenzene solvent was added dropwise during rotation for 4.5 s to promote the rapid crystallization of the perovskite layer, and then transferred to the air for 100 s. ℃ thermal annealing treatment for 10min to obtain a black perovskite layer with a thickness of 300nm, that is, a photoactive layer.
步骤S4、将浓度为20mg mL-1的PCBM([6,6]-苯基-C61-丁酸甲酯)的氯苯溶液在1500r/min的转速下旋涂30-60s在上述钙钛矿层上,得到厚度为20nm的电子传输层。Step S4, spin-coating the chlorobenzene solution of PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) with a concentration of 20 mg mL -1 on the perovskite layer at a rotational speed of 1500 r/min for 30-60 s , an electron transport layer with a thickness of 20 nm was obtained.
步骤S5、将1mg mL-1的PDINO(苝二酰亚胺衍生物)的甲醇溶液在3000r/min的转速下旋涂30-60s在上述覆盖有PCBM的钙钛矿层上,得到厚度为15nm的阴极修饰层。Step S5, spin-coating a methanol solution of 1 mg mL -1 of PDINO (perylene diimide derivative) at a rotational speed of 3000 r/min for 30-60 s on the perovskite layer covered with PCBM to obtain a 15 nm-thick Cathode modification layer.
步骤S6、最后在5×10-5Pa以下真空蒸镀厚度为100nm的Al做金属电极,得到钙钛矿太阳能电池。Step S6, finally, vacuum evaporation of Al with a thickness of 100 nm below 5×10 -5 Pa is used as a metal electrode to obtain a perovskite solar cell.
本发明实施例所得器件结构为ITO/BTCV/CH3NH3PbI3/PCBM/PDINO/Al,对器件测试其性能,在最优条件下,在100mW cm-2的模拟太阳光照射下开路电压为1.00V,短路电流为21.39mA cm-2,填充因子为79.95%,光电转化效率为17.10%。The structure of the device obtained in the embodiment of the present invention is ITO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al, and the performance of the device is tested. Under optimal conditions, the open circuit voltage is irradiated by 100mW cm -2 of simulated sunlight. is 1.00V, the short-circuit current is 21.39mA cm -2 , the fill factor is 79.95%, and the photoelectric conversion efficiency is 17.10%.
实施例3Example 3
本实施例提供的一种钙钛矿太阳能电池的制备方法,包括以下步骤:The preparation method of a perovskite solar cell provided in this embodiment includes the following steps:
步骤S1、将溅射有氧化铟锡ITO的阳极玻璃衬底基片依次用洗洁精、去离子水、丙酮、异丙醇超声洗涤2次,每次10~15min,清洗完成后用氮气吹干。将吹干的ITO玻璃衬底放入紫外光清洗表面处理设备进行处理20min,得到预处理后衬底基片。Step S1, the anode glass substrate substrate sputtered with indium tin oxide (ITO) is ultrasonically washed twice with detergent, deionized water, acetone, and isopropanol in turn, for 10 to 15 minutes each time, and blowing with nitrogen after the cleaning is completed. Dry. The blown-dried ITO glass substrate was placed in an ultraviolet light cleaning surface treatment equipment for 20 minutes to obtain a pretreated substrate.
步骤S2、在预处理后衬底基片上沉积厚度为15nm的BTCV聚合物,形成有机空穴传输层,具体步骤主要有两大步。Step S2, depositing a BTCV polymer with a thickness of 15 nm on the pretreated substrate to form an organic hole transport layer. The specific steps mainly include two steps.
有机小分子单体BTCV的制备Preparation of Organic Small Molecular Monomer BTCV
步骤s21、在100ml两口瓶中加入2-溴咔唑0.588g(2.4mmol)、4-乙烯基苄基氯0.364g(2.4mmol)和20ml丙酮加热至60℃后加入氢氧化钠0.110g(2.8mmol)和四丁基硫酸氢铵0.02g(0.0589mmol),搅拌4h后过滤,然后旋干溶剂后柱层析得到白色固体9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol);Step s21, add 0.588g (2.4mmol) of 2-bromocarbazole, 0.364g (2.4mmol) of 4-vinylbenzyl chloride and 20ml of acetone into a 100ml two-necked flask, heat to 60°C, and then add 0.110g (2.8g of sodium hydroxide) mmol) and tetrabutylammonium hydrogen sulfate 0.02g (0.0589mmol), stirred for 4h and filtered, and then spin-dried the solvent to obtain a white solid 9-(4-vinylbenzyl)-2-bromocarbazole 0.5g ( 1.38 mmol);
将9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol)、5,5’-二(三甲基锡)-2,2’-双噻吩0.0308g(0.627mmol)、四三苯基膦钯0.05g(0.04mmol)、新蒸甲苯30ml加入两口瓶中中,抽换气3次后在氩气氛围下加热至120℃反应12h,反应结束后冷却至室温,旋干溶剂并加入饱和氟化钾溶液,使用二氯甲烷萃取(30ml×3),即每次使用二氯甲烷30ml萃取3次,旋干溶剂后柱层析,得到黄色固体5,5'-二[9-(4-乙烯苄基)-2-咔唑基]-2,2'-双噻吩0.11g(0.151mmol),即有机小分子单体BTCV,如图3所示。0.5 g (1.38 mmol) of 9-(4-vinylbenzyl)-2-bromocarbazole, 0.0308 g (0.627 mmol) of 5,5'-bis(trimethyltin)-2,2'-bisthiophene, 0.05 g (0.04 mmol) of palladium tetrakistriphenylphosphine and 30 ml of freshly distilled toluene were added to the two-necked flask. After 3 times of pumping and ventilation, they were heated to 120° C. for 12 h under argon atmosphere. The solvent was added with saturated potassium fluoride solution, extracted with dichloromethane (30ml × 3), that is, extracted 3 times with 30ml of dichloromethane each time, the solvent was spin-dried and the column chromatography was performed to obtain a yellow solid 5,5'-bis[ 0.11 g (0.151 mmol) of 9-(4-vinylbenzyl)-2-carbazolyl]-2,2'-bisthiophene, namely BTCV, a small organic monomer, as shown in FIG. 3 .
BTCV聚合物的交联反应Cross-linking reaction of BTCV polymers
步骤s22、将有机小分子单体BTCV置于N,N-二甲基甲酰胺(DMF)中,充分搅拌溶解,配制成0.8mg mL-1的BTCV溶液;Step s22, placing the organic small-molecule monomer BTCV in N,N-dimethylformamide (DMF), fully stirring and dissolving, and preparing a BTCV solution of 0.8 mg mL -1 ;
步骤s23、将BTCV溶液经0.45微米的滤头过滤后,在匀胶机上4000r/min旋涂45秒,然后在热台上160℃退火12min使其发生交联反应,形成交联网状有机空穴传输层,厚度为15nm。Step s23, after filtering the BTCV solution through a 0.45-micron filter head, spin-coating at 4000 r/min on a glue spinner for 45 seconds, and then annealing at 160° C. for 12 min on a hot stage to cause a cross-linking reaction to form cross-linked organic holes Transport layer, with a thickness of 15 nm.
步骤S3、乙酸铅和甲基碘化铵按摩尔比1:3溶于γ-丁内酯溶液中,溶液中PbI2和CH3NH3I总的质量分数为50wt%,室温搅拌,制得钙钛矿前驱体溶液(CH3NH3PbI3)。在有机空穴传输层上在5000r/min转速下旋涂钙钛矿前驱体溶液,然后旋转4.5s时滴加抗溶剂氯苯溶剂,促进钙钛矿层快速结晶,然后转移至空气中,经过90℃热退火处理10min,得到黑色的钙钛矿层,厚度为300nm,也即是光活性层。In step S3, lead acetate and methyl ammonium iodide are dissolved in a γ-butyrolactone solution in a molar ratio of 1:3, the total mass fraction of PbI 2 and CH 3 NH 3 I in the solution is 50 wt %, and the mixture is stirred at room temperature to prepare Perovskite precursor solution (CH 3 NH 3 PbI 3 ). The perovskite precursor solution was spin-coated on the organic hole transport layer at a speed of 5000 r/min, and then the anti-solvent chlorobenzene solvent was added dropwise during rotation for 4.5 s to promote the rapid crystallization of the perovskite layer, and then transferred to the air for 90 s. ℃ thermal annealing treatment for 10min to obtain a black perovskite layer with a thickness of 300nm, that is, a photoactive layer.
步骤S4、在光活性层上旋涂浓度为20mg mL-1的PCBM([6,6]-苯基-C61-丁酸甲酯)的氯苯溶液在1500r/min的转速下旋涂30-60s在上述钙钛矿层上,得到厚度为20nm的电子传输层。Step S4, spin-coating a chlorobenzene solution of PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) with a concentration of 20 mg mL -1 on the photoactive layer at a rotational speed of 1500 r/min for 30- 60 s on the above perovskite layer to obtain an electron transport layer with a thickness of 20 nm.
步骤S5、将1mg mL-1的PDINO(苝二酰亚胺衍生物)的甲醇溶液在3000r/min的转速下旋涂30-60s在上述覆盖有PCBM的钙钛矿层上,得到厚度为15nm的阴极修饰层。Step S5, spin-coating a methanol solution of 1 mg mL -1 of PDINO (perylene diimide derivative) at a rotational speed of 3000 r/min for 30-60 s on the perovskite layer covered with PCBM to obtain a 15 nm-thick Cathode modification layer.
步骤S6、最后在5×10-5Pa以下真空蒸镀厚度为100nm的Ag做金属电极,得到钙钛矿太阳能电池。In step S6, finally, Ag with a thickness of 100 nm is vacuum-evaporated below 5×10 -5 Pa as a metal electrode to obtain a perovskite solar cell.
本发明实施例所得器件结构为ITO/BTCV/CH3NH3PbI3/PCBM/PDINO/Ag,对器件测试其性能,在最优条件下,在100mW cm-2的模拟太阳光照射下开路电压为1.01V,短路电流为20.84mA cm-2,填充因子为78.13%,光电转化效率为16.44%。The structure of the device obtained in the embodiment of the present invention is ITO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Ag. The performance of the device is tested. Under optimal conditions, the open circuit voltage is irradiated by 100mW cm -2 of simulated sunlight. is 1.01V, the short-circuit current is 20.84mA cm -2 , the fill factor is 78.13%, and the photoelectric conversion efficiency is 16.44%.
实施例4Example 4
本实施例提供的一种钙钛矿太阳能电池的制备方法,包括以下步骤:The preparation method of a perovskite solar cell provided in this embodiment includes the following steps:
步骤S1、将溅射有氟掺杂氧化锡FTO的阳极玻璃衬底基片依次用洗洁精、去离子水、丙酮、异丙醇超声洗涤2次,每次10~15min,清洗完成后用氮气吹干。将吹干的FTO玻璃衬底放入紫外光清洗表面处理设备进行处理20min,得到预处理后衬底基片。Step S1, the anode glass substrate substrate sputtered with fluorine-doped tin oxide FTO is ultrasonically washed twice with detergent, deionized water, acetone, and isopropanol in turn, for 10 to 15 minutes each time. Blow dry with nitrogen. The blown-dried FTO glass substrate was placed in an ultraviolet light cleaning surface treatment device for 20 minutes to obtain a pretreated substrate.
步骤S2、在预处理后衬底基片上沉积厚度为18nm的BTCV聚合物,形成有机空穴传输层,具体步骤主要有两大步。Step S2, depositing a BTCV polymer with a thickness of 18 nm on the pretreated substrate to form an organic hole transport layer. The specific steps mainly include two steps.
有机小分子单体BTCV的制备Preparation of Organic Small Molecular Monomer BTCV
步骤s21、在100ml两口瓶中加入2-溴咔唑0.588g(2.4mmol)、4-乙烯基苄基氯0.364g(2.4mmol)和20ml丙酮加热至75℃后加入氢氧化钠0.110g(2.8mmol)和四丁基硫酸氢铵0.02g(0.0589mmol),搅拌4h后过滤,然后旋干溶剂后柱层析得到白色固体9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol);Step s21, add 0.588g (2.4mmol) of 2-bromocarbazole, 0.364g (2.4mmol) of 4-vinylbenzyl chloride and 20ml of acetone into a 100ml two-necked flask, heat to 75°C, and then add 0.110g (2.8g) of sodium hydroxide. mmol) and tetrabutylammonium hydrogen sulfate 0.02g (0.0589mmol), stirred for 4h and filtered, and then spin-dried the solvent to obtain a white solid 9-(4-vinylbenzyl)-2-bromocarbazole 0.5g ( 1.38 mmol);
将9-(4-乙烯苄基)-2-溴咔唑0.5g(1.38mmol)、5,5’-二(三甲基锡)-2,2’-双噻吩0.0308g(0.627mmol)、四三苯基膦钯0.05g(0.04mmol)、新蒸甲苯30ml加入两口瓶中中,抽换气3次后在氩气氛围下加热至120℃反应12h,反应结束后冷却至室温,旋干溶剂并加入饱和氟化钾溶液,使用二氯甲烷萃取(30ml×3),即每次使用二氯甲烷30ml萃取3次,旋干溶剂后柱层析,得到黄色固体5,5'-二[9-(4-乙烯苄基)-2-咔唑基]-2,2'-双噻吩0.11g(0.151mmol),即有机小分子单体BTCV,如图3所示。0.5 g (1.38 mmol) of 9-(4-vinylbenzyl)-2-bromocarbazole, 0.0308 g (0.627 mmol) of 5,5'-bis(trimethyltin)-2,2'-bisthiophene, 0.05 g (0.04 mmol) of palladium tetrakistriphenylphosphine and 30 ml of freshly distilled toluene were added to the two-necked flask. After 3 times of pumping and ventilation, they were heated to 120° C. for 12 h under argon atmosphere. The solvent was added with saturated potassium fluoride solution, extracted with dichloromethane (30ml × 3), that is, extracted 3 times with 30ml of dichloromethane each time, the solvent was spin-dried and the column chromatography was performed to obtain a yellow solid 5,5'-bis[ 0.11 g (0.151 mmol) of 9-(4-vinylbenzyl)-2-carbazolyl]-2,2'-bisthiophene, namely BTCV, a small organic monomer, as shown in FIG. 3 .
BTCV聚合物的交联反应Cross-linking reaction of BTCV polymers
步骤s22、将有机小分子单体BTCV置于N,N-二甲基甲酰胺(DMF)中,充分搅拌溶解,配制成1.5mg mL-1的BTCV溶液;Step s22, placing the organic small-molecule monomer BTCV in N,N-dimethylformamide (DMF), fully stirring and dissolving, and preparing a BTCV solution of 1.5 mg mL -1 ;
步骤s23、将BTCV溶液经0.45微米的滤头过滤后,在匀胶机上4000r/min旋涂55秒,然后在紫外灯下照射25min使其发生交联反应,形成交联网状有机空穴传输层,厚度为18nm。Step s23, after filtering the BTCV solution through a 0.45-micron filter head, spin-coating at 4000 r/min for 55 seconds on a glue spinner, and then irradiating it under an ultraviolet lamp for 25 minutes to cause a cross-linking reaction to form a cross-linked organic hole transport layer. , with a thickness of 18 nm.
步骤S3、氯化铅和甲脒氢碘酸盐按摩尔比1:1溶于二甲基亚砜溶液中,溶液中PbI2和CH3NH3I总的质量分数为50wt%,室温搅拌,制得钙钛矿前驱体溶液(CH3NH3PbI3)。在有机空穴传输层上在5000r/min转速下旋涂钙钛矿前驱体溶液,然后旋转4.5s时滴加抗溶剂氯苯溶剂,促进钙钛矿层快速结晶,然后转移至空气中,经过100℃热退火处理10min,得到黑色的钙钛矿层,厚度为300nm,也即是光活性层。In step S3, lead chloride and formamidine hydroiodide are dissolved in a dimethyl sulfoxide solution in a molar ratio of 1:1, the total mass fraction of PbI 2 and CH 3 NH 3 I in the solution is 50 wt %, and stirring at room temperature, A perovskite precursor solution (CH 3 NH 3 PbI 3 ) was prepared. The perovskite precursor solution was spin-coated on the organic hole transport layer at a speed of 5000 r/min, and then the anti-solvent chlorobenzene solvent was added dropwise during rotation for 4.5 s to promote the rapid crystallization of the perovskite layer, and then transferred to the air for 100 s. ℃ thermal annealing treatment for 10min to obtain a black perovskite layer with a thickness of 300nm, that is, a photoactive layer.
步骤S4、在光活性层上旋涂浓度为20mg mL-1的PCBM([6,6]-苯基-C61-丁酸甲酯)的氯苯溶液在1500r/min的转速下旋涂30-60s在上述钙钛矿层上,得到厚度为20nm的电子传输层。Step S4, spin-coating a chlorobenzene solution of PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) with a concentration of 20 mg mL -1 on the photoactive layer at a rotational speed of 1500 r/min for 30- 60 s on the above perovskite layer to obtain an electron transport layer with a thickness of 20 nm.
步骤S5、将1mg mL-1的PDINO(苝二酰亚胺衍生物)的甲醇溶液在3000r/min的转速下旋涂30-60s在上述覆盖有PCBM的钙钛矿层上,得到厚度为15nm的阴极修饰层。Step S5, spin-coating a methanol solution of 1 mg mL -1 of PDINO (perylene diimide derivative) at a rotational speed of 3000 r/min for 30-60 s on the perovskite layer covered with PCBM to obtain a 15 nm-thick Cathode modification layer.
步骤S6、最后在5×10-5Pa以下真空蒸镀厚度为100nm的Ag做金属电极,得到钙钛矿太阳能电池。In step S6, finally, Ag with a thickness of 100 nm is vacuum-evaporated below 5×10 -5 Pa as a metal electrode to obtain a perovskite solar cell.
本发明实施例所得器件结构为FTO/BTCV/CH3NH3PbI3/PCBM/PDINO/Ag,对器件测试其性能,在最优条件下,在100mW cm-2的模拟太阳光照射下开路电压为1.00V,短路电流为20.51mA cm-2,填充因子为80.05%,光电转化效率为16.42%。The structure of the device obtained in the embodiment of the present invention is FTO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Ag, and the performance of the device is tested. Under optimal conditions, the open circuit voltage is irradiated by simulated sunlight of 100mW cm -2 is 1.00V, the short-circuit current is 20.51mA cm -2 , the fill factor is 80.05%, and the photoelectric conversion efficiency is 16.42%.
实施例5Example 5
本实施例与实施例1的区别在于,在步骤s23、将BTCV溶液经滤头过滤后,在匀胶机上旋涂后,然后在热台上130℃退火12min,使其发生交联反应,形成交联网状有机空穴传输层,其他步骤与方法与实施例1相同,在此不再赘述。The difference between this example and Example 1 is that in step s23, after the BTCV solution is filtered through a filter head, spin-coated on a glue spinner, and then annealed on a hot stage at 130°C for 12 minutes to cause a cross-linking reaction to occur, forming a The other steps and methods are the same as those in Embodiment 1 for the cross-linked organic hole transport layer, which will not be repeated here.
本实施例中制备的钙钛矿太阳能电池的结构为FTO/BTCV/CH3NH3PbI3/PCBM/PDINO/Al,对本实施例中的钙钛矿电池进行性能测试,在100mW cm-2的模拟太阳光照射下得到开路电压为1.00V,短路电流为21.03mA cm-2,填充因子为79.21%,光电转化效率为16.66%。The structure of the perovskite solar cell prepared in this example is FTO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al, and the performance test of the perovskite cell in this example is carried out at 100 mW cm -2 Under the simulated sunlight, the open circuit voltage is 1.00V, the short circuit current is 21.03mA cm -2 , the fill factor is 79.21%, and the photoelectric conversion efficiency is 16.66%.
对照例1Comparative Example 1
本对照例与实施例1的区别在于,在步骤S2中,有机空穴传输层采用的是PEDOT:PSS溶液,其他步骤与方法与实施例1相同,在此不再赘述。The difference between this comparative example and Example 1 is that in step S2, the organic hole transport layer adopts PEDOT:PSS solution, and other steps and methods are the same as those in Example 1, and will not be repeated here.
本对照例中制备的钙钛矿太阳能电池的结构为ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/PDINO/Al,对本对照例中的钙钛矿电池进行性能测试,测试结果如图5所示,在100mW cm-2的模拟太阳光照射下测量J-V曲线,得到开路电压为0.91V,短路电流为19.77mA cm-2,填充因子为77.03%,光电转化效率为13.86%。The structure of the perovskite solar cell prepared in this comparative example is ITO/PEDOT: PSS/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al. The performance test of the perovskite cell in this comparative example is carried out, and the test results are shown in the figure 5, the JV curve was measured under simulated sunlight irradiation of 100 mW cm -2 , and the open-circuit voltage was 0.91 V, the short-circuit current was 19.77 mA cm -2 , the fill factor was 77.03%, and the photoelectric conversion efficiency was 13.86%.
对照例2Comparative Example 2
本对照例与实施例1的区别在于,在步骤s22中将有机小分子单体BTCV配制成0.5mg mL-1的BTCV溶液,其他步骤与方法与实施例1相同,在此不再赘述。The difference between this comparative example and Example 1 is that in step s22, the small organic monomer BTCV is prepared into a BTCV solution of 0.5 mg mL −1 , and other steps and methods are the same as those in Example 1, and will not be repeated here.
本对照例中制备的钙钛矿太阳能电池的结构为ITO/BTCV/CH3NH3PbI3/PCBM/PDINO/Al,对本对照例中的钙钛矿电池进行性能测试,在100mW cm-2的模拟太阳光照射下测量J-V曲线,得到开路电压为1.00V,短路电流为18.28mA cm-2,填充因子为70.64%,光电转化效率为12.91%。The structure of the perovskite solar cell prepared in this comparative example is ITO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al. The performance of the perovskite cell in this comparative example was tested at 100 mW cm -2 The JV curve was measured under simulated sunlight, and the open-circuit voltage was 1.00V, the short-circuit current was 18.28mA cm -2 , the fill factor was 70.64%, and the photoelectric conversion efficiency was 12.91%.
对照例3Comparative Example 3
本对照例与实施例1的区别在于,在步骤s23中将BTCV溶液旋涂后在热台上100℃退火10min,其他步骤与方法与实施例1相同,在此不再赘述。The difference between this comparative example and Example 1 is that in step s23, the BTCV solution is spin-coated and then annealed on a hot stage at 100°C for 10 min. Other steps and methods are the same as those in Example 1, and will not be repeated here.
本对照例中制备的钙钛矿太阳能电池的结构为ITO/BTCV/CH3NH3PbI3/PCBM/PDINO/Al,对本对照例中的钙钛矿电池进行性能测试,在100mW cm-2的模拟太阳光照射下测量J-V曲线,得到开路电压为1.00V,短路电流为20.33mA cm-2,填充因子为75.87%,光电转化效率为15.42%。The structure of the perovskite solar cell prepared in this comparative example is ITO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al. The performance of the perovskite cell in this comparative example was tested at 100 mW cm -2 The JV curve was measured under simulated sunlight, and the open-circuit voltage was 1.00V, the short-circuit current was 20.33mA cm -2 , the fill factor was 75.87%, and the photoelectric conversion efficiency was 15.42%.
对照例4Comparative Example 4
本对照例与实施例1的区别在于,制备有机小分子单体BTCV时,在步骤s21中加入2-溴咔唑1.176g(4.8mmol)、4-乙烯基苄基氯0.364g(2.4mmol)、氢氧化钠0.110g(2.8mmol)和四丁基硫酸氢铵0.02g(0.0589mmol),其他步骤与方法与实施例1相同,在此不再赘述。The difference between this control example and Example 1 is that when preparing the organic small molecule BTCV, 1.176 g (4.8 mmol) of 2-bromocarbazole and 0.364 g (2.4 mmol) of 4-vinylbenzyl chloride were added in step s21. , 0.110g (2.8mmol) of sodium hydroxide and 0.02g (0.0589mmol) of tetrabutylammonium hydrogen sulfate, other steps and methods are the same as in Example 1, and will not be repeated here.
本对照例中制备的钙钛矿太阳能电池的结构为ITO/BTCV/CH3NH3PbI3/PCBM/PDINO/Al,对本对照例中的钙钛矿电池进行性能测试,在100mW cm-2的模拟太阳光照射下测量J-V曲线,得到开路电压为0.824V,短路电流为16.33mA cm-2,填充因子为60.85%,光电转化效率为8.188%。The structure of the perovskite solar cell prepared in this comparative example is ITO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al. The performance of the perovskite cell in this comparative example was tested at 100 mW cm -2 The JV curve was measured under simulated sunlight, and the open-circuit voltage was 0.824V, the short-circuit current was 16.33mA cm -2 , the fill factor was 60.85%, and the photoelectric conversion efficiency was 8.188%.
对照例5Comparative Example 5
本对照例与实施例1的区别在于,在步骤S3中将PbI2和CH3NH3I按摩尔比2:1溶于N,N-二甲基甲酰胺(DMF)溶液中,溶液中PbI2和CH3NH3I总的质量分数为40wt%,室温搅拌,制得钙钛矿前驱体溶液(CH3NH3PbI3),其他步骤与方法与实施例1相同,在此不再赘述。The difference between this control example and Example 1 is that in step S3, PbI 2 and CH 3 NH 3 I were dissolved in N,N-dimethylformamide (DMF) solution in a molar ratio of 2:1, and PbI in the solution The total mass fraction of 2 and CH 3 NH 3 I is 40wt%, stirring at room temperature to prepare a perovskite precursor solution (CH 3 NH 3 PbI 3 ), other steps and methods are the same as those in Example 1, and will not be repeated here. .
本对照例中制备的钙钛矿太阳能电池的结构为ITO/BTCV/CH3NH3PbI3/PCBM/PDINO/Al,对本对照例中的钙钛矿电池进行性能测试,在100mW cm-2的模拟太阳光照射下测量J-V曲线,得到开路电压为0.800V,短路电流为17.28mA cm-2,填充因子为65.21%,光电转化效率为9.014%。The structure of the perovskite solar cell prepared in this comparative example is ITO/BTCV/CH 3 NH 3 PbI 3 /PCBM/PDINO/Al. The performance of the perovskite cell in this comparative example was tested at 100 mW cm -2 The JV curve was measured under simulated sunlight, and the open-circuit voltage was 0.800V, the short-circuit current was 17.28mA cm -2 , the fill factor was 65.21%, and the photoelectric conversion efficiency was 9.014%.
该太阳能电池的光电转化效率低是因为PbI2有大量的剩余,没有生成CH3NH3PbI3,不能吸收光能;PbI2是绝缘体,阻碍电荷的传递,增加电阻,最终降低太阳能电池的光电转化效率。The low photoelectric conversion efficiency of the solar cell is due to the fact that PbI 2 has a large amount of surplus, does not generate CH 3 NH 3 PbI 3 , and cannot absorb light energy; PbI 2 is an insulator, which hinders the transfer of charges, increases resistance, and ultimately reduces the photoelectricity of the solar cell. Conversion efficiency.
综上所述:本发明的一种基于有机交联空穴传输层的钙钛矿太阳能电池,电池结构自下而上包括:阳极、空穴传输层、光活性层、电子传输层、阴极修饰层和阴极,其中空穴传输层采用厚度为10-20nm的有机小分子BTCV,并通过旋涂BTCV溶液并使其交联制备空穴传输层,本发明的空穴传输层能很好的降低界面处电子耦合或电荷复合的发生几率,利用该方法制备的平面异质结钙钛矿电池的光电转化效率达到17.58%,提高了钙钛矿太阳能电池的性能,可用于光电转化。In summary: a perovskite solar cell based on an organic cross-linked hole transport layer of the present invention, the cell structure includes from bottom to top: an anode, a hole transport layer, a photoactive layer, an electron transport layer, and a cathode modification layer and cathode, wherein the hole transport layer adopts organic small molecule BTCV with a thickness of 10-20nm, and the hole transport layer is prepared by spin-coating the BTCV solution and crosslinking it. The hole transport layer of the present invention can reduce the The probability of electron coupling or charge recombination at the interface, the photoelectric conversion efficiency of the planar heterojunction perovskite cell prepared by this method reaches 17.58%, which improves the performance of the perovskite solar cell and can be used for photoelectric conversion.
同时,有机小分子单体BTCV合成步骤简单,成本低廉,产率高且性质稳定,可以进行商业化生产,大大降低了钙钛矿太阳能电池的成本。At the same time, the organic small-molecule monomer BTCV has simple synthesis steps, low cost, high yield and stable properties, which can be commercialized and greatly reduce the cost of perovskite solar cells.
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910919968.7A CN110635043B (en) | 2019-09-26 | 2019-09-26 | Organic hole transport layer, perovskite solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910919968.7A CN110635043B (en) | 2019-09-26 | 2019-09-26 | Organic hole transport layer, perovskite solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110635043A CN110635043A (en) | 2019-12-31 |
CN110635043B true CN110635043B (en) | 2020-10-30 |
Family
ID=68974431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910919968.7A Expired - Fee Related CN110635043B (en) | 2019-09-26 | 2019-09-26 | Organic hole transport layer, perovskite solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110635043B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112159516B (en) * | 2020-08-20 | 2022-09-20 | 苏州大学 | Preparation and application of a hole transport material without doping and annealing |
CN113707811B (en) * | 2021-07-19 | 2024-09-03 | 东华大学 | Organic solar cell device based on silver nanowire flexible transparent electrode and preparation method thereof |
CN118102828B (en) * | 2024-04-19 | 2024-06-21 | 深圳瓦诺科技有限公司 | Preparation method of organic electronic transmission layer and perovskite solar cell |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060008580A1 (en) * | 2000-11-24 | 2006-01-12 | Gabrielle Nelles | Hybrid solar cells with thermal deposited semiconductive oxide layer |
US20070112172A1 (en) * | 2005-11-16 | 2007-05-17 | Xerox Corporation | Compound having indolocarbazole moiety and divalent linkage |
CN105244441A (en) * | 2015-10-08 | 2016-01-13 | 西安电子科技大学 | Tetraphenyl ethylene polymer hole transport layer-based perovskite solar cell |
CN105324460A (en) * | 2013-06-21 | 2016-02-10 | 默克专利有限公司 | conjugated polymer |
CN105789451A (en) * | 2016-04-19 | 2016-07-20 | 中国科学院化学研究所 | Perovskite crystal film and water vapor annealing preparation method and application thereof |
US20170213967A1 (en) * | 2016-01-27 | 2017-07-27 | National Chiao Tung University | Perovskite light-emitting device and fabricating method thereof |
CN110117228A (en) * | 2019-04-23 | 2019-08-13 | 天津大学 | Cross-linking type small molecule hole transport material of vinyl bridging and preparation method thereof, application, crosslinking hole transmission layer preparation process |
-
2019
- 2019-09-26 CN CN201910919968.7A patent/CN110635043B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060008580A1 (en) * | 2000-11-24 | 2006-01-12 | Gabrielle Nelles | Hybrid solar cells with thermal deposited semiconductive oxide layer |
US20070112172A1 (en) * | 2005-11-16 | 2007-05-17 | Xerox Corporation | Compound having indolocarbazole moiety and divalent linkage |
CN105324460A (en) * | 2013-06-21 | 2016-02-10 | 默克专利有限公司 | conjugated polymer |
CN105244441A (en) * | 2015-10-08 | 2016-01-13 | 西安电子科技大学 | Tetraphenyl ethylene polymer hole transport layer-based perovskite solar cell |
US20170213967A1 (en) * | 2016-01-27 | 2017-07-27 | National Chiao Tung University | Perovskite light-emitting device and fabricating method thereof |
CN105789451A (en) * | 2016-04-19 | 2016-07-20 | 中国科学院化学研究所 | Perovskite crystal film and water vapor annealing preparation method and application thereof |
CN110117228A (en) * | 2019-04-23 | 2019-08-13 | 天津大学 | Cross-linking type small molecule hole transport material of vinyl bridging and preparation method thereof, application, crosslinking hole transmission layer preparation process |
Also Published As
Publication number | Publication date |
---|---|
CN110635043A (en) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110635043B (en) | Organic hole transport layer, perovskite solar cell and preparation method thereof | |
CN105789451A (en) | Perovskite crystal film and water vapor annealing preparation method and application thereof | |
CN109378386B (en) | Method for regulating the morphology of lead-free perovskite solar cells and prepared battery devices | |
CN105576131A (en) | Method for preparing interface modified perovskite solar cell through vapor auxiliary solution method | |
WO2023155562A1 (en) | Halide perovskite solar cell and bottom interface self-growth modification method therefor | |
CN114242899B (en) | Semitransparent organic solar cell | |
CN107369764A (en) | A kind of perovskite solar cell and preparation method for adulterating lead acetate trihydrate | |
CN114141952B (en) | A kind of doped perovskite solar cell and its preparation method | |
CN105226190A (en) | A kind of planar heterojunction perovskite solar cell and preparation method thereof | |
CN107546328A (en) | A kind of cathodic modification layer and its preparation method and application | |
CN101901874B (en) | Surface modification method for anode of polymer solar cell | |
CN110600618A (en) | Preparation method of tin-based perovskite solar cell without hole transport layer | |
CN106410037A (en) | Small organic molecule donor material based double-junction solar cell device and preparation method thereof | |
CN107706309A (en) | A kind of preparation method of plane perovskite solar cell | |
CN113410391B (en) | A kind of organic solar cell with blended layer and preparation method | |
CN105826473A (en) | High-efficiency, low-cost perovskite-type solar cell and preparation method for same | |
TW202237690A (en) | Perovskite photoelectric element including benzothiadiazole polymer which improves an energy level matching with fullerene derivatives | |
CN117337115A (en) | A kind of lead-tin mixed perovskite solar cell based on self-assembled single layer and preparation method thereof | |
CN115101679B (en) | Method for improving thermal stability of organic photoelectric film and application of organic photoelectric film in photovoltaic cell | |
CN103872249B (en) | Organic thin film solar cell that a kind of polar solvent is modified and preparation method thereof | |
CN115611892B (en) | Small molecule electron transport layer material and preparation method and application thereof | |
CN106893082B (en) | Polymer hole extracts the perovskite solar cell of layer material and its composition | |
CN114141957B (en) | Perovskite solar cell and preparation method thereof | |
CN116367556A (en) | A high-efficiency quaternary organic photovoltaic cell and its preparation method | |
CN108832003B (en) | A method to improve the photoelectric conversion efficiency of perovskite solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201030 |