TW202237690A - Perovskite photoelectric element including benzothiadiazole polymer which improves an energy level matching with fullerene derivatives - Google Patents

Perovskite photoelectric element including benzothiadiazole polymer which improves an energy level matching with fullerene derivatives Download PDF

Info

Publication number
TW202237690A
TW202237690A TW110109855A TW110109855A TW202237690A TW 202237690 A TW202237690 A TW 202237690A TW 110109855 A TW110109855 A TW 110109855A TW 110109855 A TW110109855 A TW 110109855A TW 202237690 A TW202237690 A TW 202237690A
Authority
TW
Taiwan
Prior art keywords
upper carrier
perovskite
layer
electron transport
photoelectric element
Prior art date
Application number
TW110109855A
Other languages
Chinese (zh)
Other versions
TWI759149B (en
Inventor
黃琬瑜
徐國凱
潘宜呈
路盛智
施彥辰
柯崇文
Original Assignee
位速科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 位速科技股份有限公司 filed Critical 位速科技股份有限公司
Priority to TW110109855A priority Critical patent/TWI759149B/en
Application granted granted Critical
Publication of TWI759149B publication Critical patent/TWI759149B/en
Publication of TW202237690A publication Critical patent/TW202237690A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A benzothiadiazole polymer, an electron transport complex comprising the benzothiadiazole polymer, and a perovskite photoelectric element comprising the electron transport complex are disclosed. The benzothiadiazole polymer comprises a repeating unit represented by formula (I). The benzothiadiazole polymer of the invention can improve an energy level matching with fullerene derivatives, and can be mixed with the fullerene derivatives to form an electron transport complex. If the electron transport complex is used as a carrier transport material on a perovskite photoelectric element, both of the power conversion efficiency (PCE) and stability of the perovskite photoelectric element can be improved.

Description

苯并噻二唑聚合物、電子傳輸複合物及鈣鈦礦光電元件Benzothiadiazole polymers, electron transport complexes and perovskite optoelectronic devices

本發明是有關於一種聚合物、包含前述聚合物的電子傳輸複合物,以及包含前述電子傳輸複合物的鈣鈦礦光電元件,特別是指一種苯并噻二唑聚合物、包含前述苯并噻二唑聚合物的電子傳輸複合物,以及包含前述電子傳輸複合物的鈣鈦礦光電元件。The present invention relates to a polymer, an electron transport compound comprising the aforementioned polymer, and a perovskite photoelectric element comprising the aforementioned electron transport compound, in particular to a benzothiadiazole polymer, comprising the aforementioned benzothiadiazole An electron transport complex of an oxadiazole polymer, and a perovskite photovoltaic element comprising the aforementioned electron transport complex.

鈣鈦礦光電材料近年發展迅速,因其具有良好的光學性質與電性且可用在濕式塗佈製程,所以被用來製作低成本且高功能性的鈣鈦礦光電元件,例如太陽能電池、發光二極體或光感測器等。Perovskite photoelectric materials have developed rapidly in recent years. Because of their good optical and electrical properties and can be used in wet coating processes, they are used to make low-cost and high-functional perovskite photoelectric components, such as solar cells, Light emitting diodes or light sensors, etc.

常見被用來作為鈣鈦礦光電元件中上載子傳輸材料為富勒烯衍生物,如[6,6]-苯基-C61-丁酸甲酯{[6,6]-phenyl-C61-butyric acid methyl ester, 簡稱PCBM}。然而,PCBM為小分子材料,其用於濕式塗佈成膜性不佳,常導致鈣鈦礦光電元件有漏電(shunt leakage)情況發生而效能低下,且也可能是造成鈣鈦礦光電元件壽命不佳的主因,阻礙其商業化之進程。Commonly used as upper carrier transport materials in perovskite photoelectric components are fullerene derivatives, such as [6,6]-phenyl-C61-butyric acid methyl ester {[6,6]-phenyl-C61-butyric acid methyl ester, referred to as PCBM}. However, PCBM is a small molecule material, which has poor film-forming properties when used in wet coating, which often leads to the occurrence of shunt leakage in perovskite photoelectric devices and low performance, and may also cause perovskite photoelectric devices The main cause of poor life expectancy hinders the process of its commercialization.

CN106449882 A與CN107994121 A已公開通過聚合物摻雜PCBM的方式改良上載子傳輸材料的成膜性。然而,聚合物所扮演的角色除了改善成膜性外,其與富勒烯衍生物的能階匹配性也很重要,其會影響著載子的傳導性與元件的電性。一般來說,該摻雜聚合物之最低未佔有分子軌域(lowest unoccupied molecular orbital, LUMO)的能量越接近富勒烯衍生物越好,反之則可能造成元件效能低落,甚至可能因能障缺陷造成電荷累積,對元件的壽命產生不良的影響。CN106449882 A and CN107994121 A have disclosed that the film-forming properties of upper carrier transport materials are improved by doping PCBM with polymers. However, in addition to improving the film-forming properties, the role of the polymer is also very important to match the energy levels of the fullerene derivatives, which will affect the conductivity of the carrier and the electrical properties of the device. Generally speaking, the closer the energy of the lowest unoccupied molecular orbital (LUMO) of the doped polymer is to that of the fullerene derivative, the better. Otherwise, the performance of the device may be reduced, and even the energy barrier defect may be caused. It causes charge accumulation and adversely affects the life of the component.

因此,如何設計一種可與富勒烯衍生物摻雜的聚合物,以改善富勒烯衍生物於濕式塗佈時的成膜性,並同時能改善材料的能階匹配性,以及提升鈣鈦礦光電元件的能量轉換效率(power conversion efficiency, PCE)與穩定性,對於鈣鈦礦光電元件的技術發展與商業化特別重要。Therefore, how to design a polymer that can be doped with fullerene derivatives to improve the film-forming properties of fullerene derivatives during wet coating, and at the same time improve the energy level matching of materials and increase the calcium The power conversion efficiency (PCE) and stability of titanium photovoltaic components are particularly important for the technological development and commercialization of perovskite photovoltaic components.

因此,本發明之第一目的,即在提供一種苯并噻二唑聚合物。本發明的苯并噻二唑聚合物為一種共聚物,其能提升與富勒烯衍生物的能階匹配性,並可與富勒烯衍生物混和成一種電子傳輸複合物。若以該電子傳輸複合物作為鈣鈦礦光電元件之上載子傳輸材料時,可同時提升鈣鈦礦光電元件的能量轉換效率(PCE)與穩定性。Therefore, the first object of the present invention is to provide a benzothiadiazole polymer. The benzothiadiazole polymer of the present invention is a copolymer, which can improve the energy level matching with the fullerene derivatives, and can be mixed with the fullerene derivatives to form an electron transport complex. If the electron transport complex is used as the carrier transport material on the perovskite photoelectric device, the power conversion efficiency (PCE) and stability of the perovskite photoelectric device can be improved at the same time.

於是,本發明苯并噻二唑聚合物,包含下式(I)所示的重複單元: [式(I)]

Figure 02_image001
其中, p與q分別為0、1或2; X 1與X 2分別為H、F或Cl,且X 1與X 2至少其中一者為F或Cl;及; Ar 1、Ar 2與Ar 3分別為亞芳基(arylene)或亞雜芳基(heteroarylene)。 Thus, the benzothiadiazole polymer of the present invention comprises a repeating unit represented by the following formula (I): [Formula (I)]
Figure 02_image001
Wherein, p and q are 0, 1 or 2 respectively; X 1 and X 2 are H, F or Cl respectively, and at least one of X 1 and X 2 is F or Cl; and; Ar 1 , Ar 2 and Ar 3 are respectively arylene or heteroarylene.

因此,本發明之第二目的,即在提供一種電子傳輸複合物。Therefore, the second object of the present invention is to provide an electron transport complex.

於是,本發明電子傳輸複合物包含前述的苯并噻二唑聚合物與富勒烯衍生物。Thus, the electron transport complex of the present invention comprises the aforementioned benzothiadiazole polymer and fullerene derivatives.

因此,本發明之第三目的,即在提供一種鈣鈦礦光電元件。Therefore, the third object of the present invention is to provide a perovskite photoelectric device.

於是,本發明鈣鈦礦光電元件包含前述的電子傳輸複合物。Thus, the perovskite photovoltaic element of the present invention comprises the aforementioned electron transport complex.

本發明之功效在於:由於本發明苯并噻二唑聚合物可通過控制共聚物內分子的化學結構(Ar 1、Ar 2、Ar 3、X 1與X 2),來適當地調整材料的能階,使其與各種富勒烯衍生物具有更佳的能階匹配性。 The effect of the present invention lies in that the energy of the material can be properly adjusted by controlling the chemical structure (Ar 1 , Ar 2 , Ar 3 , X 1 and X 2 ) of the benzothiadiazole polymer of the present invention. order, so that it has better energy level matching with various fullerene derivatives.

此外,本發明苯并噻二唑聚合物可在材料合成階段中即得到所需的分子比例,所以相較於先前技術(CN107994121 A),本發明可省去還要將不同聚合物互相混合的步驟,不僅節省製程的繁雜性,同時也減少後續混合造成材料分佈不均勻的疑慮。In addition, the benzothiadiazole polymer of the present invention can obtain the required molecular ratio in the material synthesis stage, so compared with the prior art (CN107994121 A), the present invention can save the need to mix different polymers with each other. steps, not only saves the complexity of the manufacturing process, but also reduces the doubts about the uneven distribution of materials caused by subsequent mixing.

又,以本發明苯并噻二唑聚合物與富勒烯衍生物混合成電子傳輸複合物時,由該電子傳輸複合物所製得的上載子傳輸材料會具有更佳的成膜性與能階匹配性,且同時能提升鈣鈦礦光電元件的能量轉換效率(PCE)與穩定性。In addition, when the benzothiadiazole polymer of the present invention is mixed with a fullerene derivative to form an electron transport compound, the carrier transport material prepared from the electron transport compound will have better film-forming properties and energy Order matching, and at the same time, it can improve the power conversion efficiency (PCE) and stability of perovskite photovoltaic devices.

以下將就本發明內容進行詳細說明:The content of the present invention will be described in detail below:

[[ 苯并噻二唑Benzothiadiazole 聚合物polymer ]]

本發明苯并噻二唑聚合物,包含下式(I)所示的重複單元: [式(I)]

Figure 02_image001
其中, p與q分別為0、1或2; X 1與X 2分別為H、F或Cl,且X 1與X 2至少其中一者為F或Cl;及; Ar 1、Ar 2和Ar 3分別為亞芳基或亞雜芳。 The benzothiadiazole polymer of the present invention comprises a repeating unit represented by the following formula (I): [Formula (I)]
Figure 02_image001
Wherein, p and q are 0, 1 or 2 respectively; X 1 and X 2 are H, F or Cl respectively, and at least one of X 1 and X 2 is F or Cl; and; Ar 1 , Ar 2 and Ar 3 are respectively arylene or heteroarylene.

較佳地,p與q分別為0或1。Preferably, p and q are 0 or 1 respectively.

較佳地,Ar 1

Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
, 其中, R 1至R 5分別為H、R 6、‒(CH 2)n 1OR 7、‒(CH 2)n 1SR 8、 ‒(CH 2)n 1C(=O)OR 9、‒(CH 2)n 1Si(R 10) 3、‒(CH 2)n 1N(CH 3) 2、 ‒(CH 2)n 1N +R 11(CH 3) 2X¯、‒(CH 2)n 1N +H(CH 3) 2X¯或 ‒(C 2H 4O)n 1R 11; R 6至R 10分別為未經取代或經至少一R 16取代的C 1~C 40直鏈烷基、未經取代或經至少一R 16取代的C 4~C 40支鏈烷基、未經取代或經至少一R 16取代的C 4~C 40環狀烷基、未經取代或經至少一R 16取代的C 2~C 40烯基、或未經取代或經至少一R 16取代的C 2~C 40炔基; R 11為甲基或乙基; n 1為1~8; X為Cl、Br或I; R 16為鹵素、‒CN、芳基、雜芳基或‒SiR 17R 18R 19;及 R 17至R 19分別為C 1~C 40烷基。 Preferably, Ar 1 is
Figure 02_image003
,
Figure 02_image005
,
Figure 02_image007
or
Figure 02_image009
, wherein, R 1 to R 5 are H, R 6 , ‒(CH 2 )n 1 OR 7 , ‒(CH 2 )n 1 SR 8 , ‒(CH 2 )n 1 C(=O)OR 9 , ‒(CH 2 )n 1 Si(R 10 ) 3 , ‒(CH 2 )n 1 N(CH 3 ) 2 , ‒(CH 2 )n 1 N + R 11 (CH 3 ) 2 X¯, ‒(CH 2 )n 1 N + H(CH 3 ) 2 X ¯ or ‒(C 2 H 4 O)n 1 R 11 ; R 6 to R 10 are respectively unsubstituted or substituted by at least one R 16 C 1 ~C 40 straight chain alkyl, C 4 ~C 40 branched alkyl unsubstituted or substituted by at least one R 16 , C 4 ~C 40 cyclic alkyl unsubstituted or substituted by at least one R 16 , unsubstituted C 2 ~C 40 alkenyl substituted or substituted by at least one R 16 , or C 2 ~C 40 alkynyl unsubstituted or substituted by at least one R 16 ; R 11 is methyl or ethyl; n 1 is 1 ~8; X is Cl, Br or I; R 16 is halogen, ‒CN, aryl, heteroaryl or ‒SiR 17 R 18 R 19 ; and R 17 to R 19 are respectively C 1 ~C 40 alkyl.

更佳地,Ar 1

Figure 02_image003
。 More preferably, Ar 1 is
Figure 02_image003
.

又更佳地,R 1與R 2分別為R 6。又更佳地,R 1與R 2分別為未經取代或經至少一R 16取代的C 1~C 40直鏈烷基、未經取代或經至少一R 16取代的C 4~C 40支鏈烷基、或未經取代或經至少一R 16取代的C 4~C 40環狀烷基。又更佳地,R 1與R 2分別為未經取代或經至少一R 16取代的C 1~C 40直鏈烷基。又更佳地,R 1與R 2分別為未經取代的C 1~C 40直鏈烷基。又更佳地,R 1與R 2分別為未經取代的C 1~C 15直鏈烷基。又更佳地,R 1與R 2分別為未經取代的C 5~C 13直鏈烷基。 Still more preferably, R 1 and R 2 are R 6 . Still more preferably, R 1 and R 2 are respectively unsubstituted or substituted by at least one R 16 C 1 ~C 40 straight chain alkyl, unsubstituted or substituted by at least one R 16 C 4 ~C 40 branched Alkanyl, or C 4 ~C 40 cyclic alkyl that is unsubstituted or substituted by at least one R 16 . Still more preferably, R 1 and R 2 are C 1 -C 40 linear alkyl groups that are unsubstituted or substituted by at least one R 16 . Still more preferably, R 1 and R 2 are respectively unsubstituted C 1 -C 40 linear alkyl groups. Still more preferably, R 1 and R 2 are respectively unsubstituted C 1 -C 15 linear alkyl groups. Still more preferably, R 1 and R 2 are respectively unsubstituted C 5 -C 13 linear alkyl groups.

更佳地,Ar 2與Ar 3分別為

Figure 02_image012
Figure 02_image014
,其中,n 2與n 3分別為1、2或3;及R 12至R 15分別為H、F、Cl、Br、R 6、‒CN、‒OR 7、‒SR 8、‒C(=O)OR 9、‒Si(R 10) 3、芳基或雜芳基。 More preferably, Ar 2 and Ar 3 are
Figure 02_image012
or
Figure 02_image014
, wherein, n 2 and n 3 are 1, 2 or 3 respectively; and R 12 to R 15 are H, F, Cl, Br, R 6 , ‒CN, ‒OR 7 , ‒SR 8 , ‒C (= O)OR 9 , -Si(R 10 ) 3 , aryl or heteroaryl.

又更佳地,Ar 2與Ar 3分別為

Figure 02_image012
。 And more preferably, Ar 2 and Ar 3 are respectively
Figure 02_image012
.

又更佳地,R 12與R 13分別為H或R 6。又更佳地,R 12與R 13分別為H、未經取代或經至少一R 16取代的C 1~C 40直鏈烷基、未經取代或經至少一R 16取代的C 4~C 40支鏈烷基、或未經取代或經至少一R 16取代的C 4~C 40環狀烷基。又更佳地,R 12與R 13分別為H、或未經取代或經至少一R 16取代的C 1~C 40直鏈烷基。又更佳地,R 12與R 13分別為H或未經取代的C 1~C 40直鏈烷基。又更佳地,R 12與R 13分別為H或未經取代的C 1~C 11直鏈烷基。又更佳地,R 12與R 13分別為H或未經取代的C 3~C 9直鏈烷基。 Still more preferably, R 12 and R 13 are H or R 6 respectively. Still more preferably, R 12 and R 13 are H, unsubstituted or substituted by at least one R 16 C 1 ~ C 40 linear alkyl, unsubstituted or substituted by at least one R 16 C 4 ~ C 40 branched chain alkyl, or C 4 ~C 40 cyclic alkyl unsubstituted or substituted by at least one R 16 . Still more preferably, R 12 and R 13 are respectively H, or C 1 -C 40 linear alkyl groups that are unsubstituted or substituted by at least one R 16 . Still more preferably, R 12 and R 13 are H or unsubstituted C 1 -C 40 linear alkyl groups respectively. Still more preferably, R 12 and R 13 are H or unsubstituted C 1 -C 11 linear alkyl groups respectively. Still more preferably, R 12 and R 13 are H or unsubstituted C 3 ~C 9 straight chain alkyl, respectively.

[[ 電子傳輸複合物electron transport complex ]]

本發明電子傳輸複合物,包含前述的苯并噻二唑聚合物與富勒烯衍生物。The electron transport complex of the present invention comprises the aforementioned benzothiadiazole polymer and fullerene derivatives.

該富勒烯衍生物例如但不限於是[6,6]-苯基-C61-丁酸甲酯(PCBM)、[6,6]-苯基-C71-丁酸甲酯{[6,6]-phenyl- C71-butyric acid methyl ester , 簡稱PC71BM}、雙[6,6]-苯基-C62-丁酸甲酯{Bis(1-[3-(methoxycarbonyl)propyl]-1- phenyl)-[6,6]C62, 簡稱Bis-PCBM}、茚-碳六十之雙加成物{1',1'',4',4''-tetrahydro-di[1,4]methanonaphthaleno[5,6]fullerene-C60, 簡稱ICBA}或前述的組合。The fullerene derivatives are, for example but not limited to, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), [6,6]-phenyl-C71-butyric acid methyl ester {[6,6 ]-phenyl- C71-butyric acid methyl ester , referred to as PC71BM}, bis[6,6]-phenyl-C62-butyric acid methyl ester {Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)- [6,6]C62, referred to as Bis-PCBM}, indene-carbon sixty double adduct {1',1'',4',4''-tetrahydro-di[1,4]methanonaphthaleno[5, 6] fullerene-C60, referred to as ICBA} or a combination of the aforementioned.

較佳地,該苯并噻二唑聚合物的最低未佔有分子軌域(LUMO)與該富勒烯衍生物的最低未佔有分子軌域(LUMO)之能量差小於1.0 eV。更佳地,該苯并噻二唑聚合物的最低未佔有分子軌域(LUMO)與該富勒烯衍生物的最低未佔有分子軌域(LUMO)之能量差小於0.4 eVPreferably, the energy difference between the lowest unoccupied molecular orbital (LUMO) of the benzothiadiazole polymer and the lowest unoccupied molecular orbital (LUMO) of the fullerene derivative is less than 1.0 eV. More preferably, the energy difference between the lowest unoccupied molecular orbital (LUMO) of the benzothiadiazole polymer and the lowest unoccupied molecular orbital (LUMO) of the fullerene derivative is less than 0.4 eV

較佳地,以該電子傳輸複合物的總重為100 wt%計,該苯并噻二唑聚合物的重量範圍為0.1~99 wt%。更佳地,以該電子傳輸複合物的總重為100 wt%計,該苯并噻二唑聚合物的重量範圍為0.5~20 wt%。Preferably, based on 100 wt% of the total weight of the electron transport complex, the weight range of the benzothiadiazole polymer is 0.1-99 wt%. More preferably, based on the total weight of the electron transport complex being 100 wt%, the weight range of the benzothiadiazole polymer is 0.5-20 wt%.

[[ 鈣鈦礦光電元件Perovskite Photovoltaics ]]

本發明鈣鈦礦光電元件,包含如前述的電子傳輸複合物。The perovskite photoelectric element of the present invention comprises the aforementioned electron transport complex.

較佳地,該鈣鈦礦光電元件包括一基板、一積層於該基板上的下電極、一積層於該下電極上的下載子傳輸層、一積層於該下載子傳輸層上的鈣鈦礦活性層、一積層於該鈣鈦礦活性層上的上載子傳輸單元、一積層於該上載子傳輸單元上的上電極,該上載子傳輸單元包含該電子傳輸複合物。Preferably, the perovskite photoelectric element comprises a substrate, a lower electrode laminated on the substrate, a carrier transport layer laminated on the lower electrode, a perovskite laminated on the carrier transport layer Active layer, an upper carrier transport unit stacked on the perovskite active layer, an upper electrode stacked on the upper carrier transport unit, the upper carrier transport unit includes the electron transport complex.

更佳地,該上載子傳輸單元包括一上載子傳輸層,該上載子傳輸層包含該電子傳輸複合物。More preferably, the upper carrier transport unit includes an upper carrier transport layer, and the upper carrier transport layer contains the electron transport complex.

又更佳地,該上載子傳輸單元還包括至少一上載子修飾層,該上載子傳輸層積層於該鈣鈦礦活性層上,該上載子修飾層積層於該上載子傳輸層上,該上電極積層於該上載子修飾層上。Still more preferably, the upper carrier transport unit further includes at least one upper carrier modification layer, the upper carrier modification layer is laminated on the perovskite active layer, the upper carrier modification layer is laminated on the upper carrier transport layer, the upper Electrodes are stacked on the upper carrier modification layer.

又更佳地,前述上載子傳輸層的厚度範圍為0.1~200 nm。又更佳地,前述上載子傳輸層的厚度範圍為1~100 nm。Still more preferably, the aforementioned upper carrier transport layer has a thickness ranging from 0.1 to 200 nm. Still more preferably, the aforementioned upper carrier transport layer has a thickness ranging from 1 to 100 nm.

< 比較例comparative example 1>1>

製備苯并噻二唑聚合物Preparation of Benzothiadiazole Polymers

比較例 1的苯并噻二唑聚合物包含下列所示的重複單元。

Figure 02_image016
比較例 1 The benzothiadiazole polymer of Comparative Example 1 contained repeating units shown below.
Figure 02_image016
Comparative example 1

比較例 1的苯并噻二唑聚合物是依據下列方法所製得。 化合物 1

Figure 02_image018
化合物 1化合物 1的製備方法: 將芴(50 g, 300.8 mmol)與N-溴代丁二醯亞胺(160.6 g, 902.4 mmol)溶於二甲基甲醯胺(250 mL)中,並加熱至50℃攪拌6小時。待反應結束後,將產物倒入冰水中沉澱出固體。經過濾後,使用甲醇洗滌產物,再經真空乾燥後得到白色固體化合物 1(83.7 g, 產率:86%)。 化合物 2
Figure 02_image020
化合物 1 化合物 2化合物 2的製備方法: 將化合物 1(7.3 g, 22.5 mmol)與1-溴辛烷(13.1 g, 67.5 mmol)溶解於四氫呋喃中。接著,在冰浴下加入叔丁醇鉀(12.6 g. 112.5 mmol)並回到室溫反應1小時。待反應結束後,先以1N鹽酸水溶液中和,再加入二氯甲烷進行萃取。有機層以無水硫酸鎂乾燥後,迴旋濃縮機去除溶劑。最後再以矽膠管柱層析(正庚烷為沖提液)純化,得白色固體化合物 2(9.7 g, 產率:79%)。 化合物 3
Figure 02_image022
化合物 2 化合物 3化合物 3的製備方法:
Figure 02_image024
將化合物 2(9.6 g, 16.4 mmol)入料於250 mL反應瓶中後,加入100 mL的無水四氫呋喃並降至-78℃。接著,逐滴加入2.5 M的正丁基鋰的正己烷溶液(22 mL, 54.1 mmol)並維持-78℃ 1小時後,再逐滴加入硼酸三甲酯(17.0 g, 164 mmol)。回到室溫後加入4N鹽酸水溶液攪拌1小時。結束後,加入水並用正庚烷萃取及用無水硫酸鎂乾燥。經過濾後,濃縮去除溶劑。以四氫呋喃與正庚烷進行再結晶純化得到中間體白色固體。接著,將中間體與頻哪醇(pinacol)(3.9 g, 32.8 mmol)和甲苯 (100 mL)置入圓底瓶中攪拌隔夜。反應結束後,加入無水硫酸鎂乾燥、濃縮去除溶劑。粗產物以甲苯與甲醇進行再結晶純化得到白色固體化合物 3(4.5 g, 產率:43%)。 比較例 1的製備方法: 在氮氣下將化合物 3(500 mg, 0.78 mmol)、化合物 4(229 mg, 0.78 mmol)、三(2-呋喃基)膦(24 mg, 0.08 mmol)、Pd 2(dba) 3(20 mg, 0.02 mmol)、K 3PO 4(1.65 g, 7.78 mmol)、Aliquat336 (1mL)溶於甲苯(20 mL)與水(4 mL)的混合液中。接著,加熱迴流攪拌隔夜。待反應結束後,降溫至室溫,先以水與三氯甲烷進行萃取,再使用無水硫酸鎂乾燥。經過濾後,濃縮去除溶劑。以三氯甲烷與甲醇進行再沉澱析出固體。最後,收集沉澱物並將該固體依序以甲醇、丙酮洗滌後,經真空乾燥得到比較例 1(264 mg, 產率:61%)。 The benzothiadiazole polymer of Comparative Example 1 was prepared according to the following method. Compound 1
Figure 02_image018
The preparation method of fluorene compound 1 compound 1 : Dissolve fluorene (50 g, 300.8 mmol) and N-bromosuccinimide (160.6 g, 902.4 mmol) in dimethylformamide (250 mL), and Heat to 50°C and stir for 6 hours. After the reaction was completed, the product was poured into ice water to precipitate a solid. After filtration, the product was washed with methanol, and dried in vacuo to obtain compound 1 (83.7 g, yield: 86%) as a white solid. Compound 2
Figure 02_image020
Compound 1 Compound 2 Preparation method of compound 2 : Compound 1 (7.3 g, 22.5 mmol) and 1-bromooctane (13.1 g, 67.5 mmol) were dissolved in tetrahydrofuran. Next, potassium tert-butoxide (12.6 g. 112.5 mmol) was added under ice-cooling and returned to room temperature to react for 1 hour. After the reaction was completed, it was neutralized with 1N hydrochloric acid aqueous solution, and then dichloromethane was added for extraction. After the organic layer was dried over anhydrous magnesium sulfate, the solvent was removed by whirling concentrator. Finally, it was purified by silica gel column chromatography (n-heptane as the eluent) to obtain compound 2 (9.7 g, yield: 79%) as a white solid. Compound 3
Figure 02_image022
The preparation method of compound 2 compound 3 compound 3 :
Figure 02_image024
After compound 2 (9.6 g, 16.4 mmol) was charged into a 250 mL reaction flask, 100 mL of anhydrous tetrahydrofuran was added and cooled to -78°C. Next, 2.5 M n-butyl lithium in n-hexane (22 mL, 54.1 mmol) was added dropwise and maintained at -78°C for 1 hour, then trimethyl borate (17.0 g, 164 mmol) was added dropwise. After returning to room temperature, 4N aqueous hydrochloric acid solution was added and stirred for 1 hour. After completion, water was added and extracted with n-heptane and dried over anhydrous magnesium sulfate. After filtration, it was concentrated to remove the solvent. Purification by recrystallization with tetrahydrofuran and n-heptane gave the intermediate as a white solid. Next, the intermediate was placed in a round bottom flask with pinacol (3.9 g, 32.8 mmol) and toluene (100 mL) and stirred overnight. After the reaction was completed, anhydrous magnesium sulfate was added to dry and concentrated to remove the solvent. The crude product was purified by recrystallization from toluene and methanol to obtain compound 3 (4.5 g, yield: 43%) as a white solid. Preparation method of Comparative Example 1 : Compound 3 (500 mg, 0.78 mmol), compound 4 (229 mg, 0.78 mmol), tris(2-furyl)phosphine (24 mg, 0.08 mmol), Pd 2 ( dba) 3 (20 mg, 0.02 mmol), K 3 PO 4 (1.65 g, 7.78 mmol), and Aliquat336 (1 mL) were dissolved in a mixture of toluene (20 mL) and water (4 mL). Then, it was heated to reflux and stirred overnight. After the reaction, cool down to room temperature, extract with water and chloroform, and then dry with anhydrous magnesium sulfate. After filtration, it was concentrated to remove the solvent. A solid was precipitated by reprecipitation with chloroform and methanol. Finally, the precipitate was collected and the solid was washed with methanol and acetone in sequence, and dried in vacuo to obtain Comparative Example 1 (264 mg, yield: 61%).

< 實施例Example 1>1>

製備苯并噻二唑聚合物Preparation of Benzothiadiazole Polymers

實施例 1的苯并噻二唑聚合物包含下列所示的重複單元。

Figure 02_image026
實施例 1 The benzothiadiazole polymer of Example 1 contained the repeating units shown below.
Figure 02_image026
Example 1

實施例 1的苯并噻二唑聚合物是依據下列方法所製得。

Figure 02_image028
實施例 1的製備方法: 在氮氣下,將化合物 3(500 mg, 0.78 mmol)、化合物 5(256 mg, 0.78 mmol)、三(2-呋喃基)膦(24 mg, 0.08 mmol)、Pd 2(dba) 3(20 mg, 0.02 mmol)、K 3PO 4(1.65 g, 7.78 mmol)、Aliquat336 (1mL)溶於甲苯 (20 mL)與水(4 mL)的混合液中。接著,加熱迴流攪拌隔夜。待反應結束後,降溫至室溫,先以水與三氯甲烷進行萃取,再使用無水硫酸鎂乾燥。經過濾後,濃縮去除溶劑。以三氯甲烷與甲醇進行再沉澱析出固體。收集沉澱物,並將該固體依序以甲醇、丙酮洗滌後,以真空乾燥得到實施例 1(283 mg, 產率:62%)。 The benzothiadiazole polymer of Example 1 was prepared according to the following method.
Figure 02_image028
Preparation method of Example 1 : Under nitrogen, compound 3 (500 mg, 0.78 mmol), compound 5 (256 mg, 0.78 mmol), tris(2-furyl)phosphine (24 mg, 0.08 mmol), Pd 2 (dba) 3 (20 mg, 0.02 mmol), K 3 PO 4 (1.65 g, 7.78 mmol), and Aliquat336 (1 mL) were dissolved in a mixture of toluene (20 mL) and water (4 mL). Then, it was heated to reflux and stirred overnight. After the reaction, cool down to room temperature, extract with water and chloroform, and then dry with anhydrous magnesium sulfate. After filtration, it was concentrated to remove the solvent. A solid was precipitated by reprecipitation with chloroform and methanol. The precipitate was collected, and the solid was washed sequentially with methanol and acetone, and dried in vacuo to obtain Example 1 (283 mg, yield: 62%).

< 實施例Example 2>2>

製備苯并噻二唑聚合物Preparation of Benzothiadiazole Polymers

實施例 2的苯并噻二唑聚合物包含下列所示的重複單元。

Figure 02_image030
實施例 2 The benzothiadiazole polymer of Example 2 contained the repeating units shown below.
Figure 02_image030
Example 2

實施例 2的苯并噻二唑聚合物是依據下列方法所製得。 化合物 6

Figure 02_image032
3- 六烷基噻吩 化合物 6化合物 6的製備方法: 將3-六烷基噻吩(10 g, 59 mmol)與150 mL的無水四氫呋喃混合圓底瓶中。在-10 oC下,緩慢的加入2.5M正丁基鋰(26 mL, 65 mmol)並在-10 oC下持續攪拌1小時。接著,將三甲基氯化錫(15.4 g, 77 mmol)緩慢的加入反應當中,並在0 oC下持續攪拌30分鐘。回至室溫後,加入庚烷與去離子水萃取三次。有機層先以無水硫酸鎂乾燥,再經過濾後,以迴旋濃縮機濃縮抽乾得到黃色液體化合物 6(19.6 g, 產率:99%)。
Figure 02_image034
化合物 7的製備方法: 將化合物 5(8.5. g, 25 mmol)、化合物 6(19.6 g, 59 mmol)、三(2-呋喃基)膦(840 mg,  2.7 mmol)及Pd 2(dba) 3(710 mg, 0.7 mmol)加入至圓底瓶中。隨後加入85 mL的甲苯,在氮氣保護下50 oC下攪拌3小時。冷卻後,先使用迴旋濃縮機移除甲苯,再以矽膠管住層析(石油醚/二氯甲烷)進行純化。最後,經真空乾燥後得到橘黃色固體化合物 7(8.85 g, 產率:68%)。 化合物 8
Figure 02_image036
化合物 7 化合物 8化合物 8的製備方法: 將化合物 7(8.85 g, 17.6 mmol)加入至100 mL的圓底瓶當中後,加入90 mL的四氫呋喃。在避光的條件下,逐步加入NBS(7,45 g, 41.9 mmol),隨後加熱至55 oC攪拌1小時。待反應結束後,先使用迴旋濃縮機移除溶劑,再以矽膠管住層析(石油醚/二氯甲烷)進行純化。最後,經真空乾燥後得到橘紅色固體化合物 8(8.65 g, 產率:74%)。
Figure 02_image038
實施例 2的製備方法: 在氮氣下,將化合物 3(486 mg, 0.75 mmol)、化合物 8(500 mg, 0.76 mmol)、三(2-呋喃基)膦(24 mg, 0.08 mmol)、Pd 2(dba) 3(17 mg, 0.018 mmol)、K 3PO 4(1.65 g, 7.78 mmol)、Aliquat336 (1mL)溶於甲苯(15 mL)與水(3 mL)的混合液中。接著,加熱迴流攪拌隔夜。待反應結束後,降溫至室溫,先以水與三氯甲烷進行萃取,再使用無水硫酸鎂乾燥。經過濾後,濃縮去除溶劑。以三氯甲烷與甲醇進行再沉澱析出固體。收集沉澱物,並將該固體依序以甲醇、丙酮洗滌後,以真空乾燥得到實施例 2(500 mg, 產率:72%)。 The benzothiadiazole polymer of Example 2 was prepared according to the following method. Compound 6
Figure 02_image032
3 -hexaalkylthiophene compound 6 Preparation method of compound 6 : 3-hexaalkylthiophene (10 g, 59 mmol) was mixed with 150 mL of anhydrous tetrahydrofuran in a round bottom bottle. At -10 ° C, 2.5M n-butyllithium (26 mL, 65 mmol) was slowly added and stirring was continued at -10 ° C for 1 hour. Then, trimethyltin chloride (15.4 g, 77 mmol) was slowly added into the reaction, and the stirring was continued at 0 o C for 30 minutes. After returning to room temperature, heptane and deionized water were added for extraction three times. The organic layer was first dried with anhydrous magnesium sulfate, and then filtered, concentrated and dried with a cyclone concentrator to obtain yellow liquid compound 6 (19.6 g, yield: 99%).
Figure 02_image034
Preparation of Compound 7 : Compound 5 (8.5. g, 25 mmol), Compound 6 (19.6 g, 59 mmol), Tris(2-furyl)phosphine (840 mg, 2.7 mmol) and Pd 2 (dba) 3 (710 mg, 0.7 mmol) was added to a round bottom bottle. Then 85 mL of toluene was added and stirred at 50 o C for 3 hours under the protection of nitrogen. After cooling, the toluene was removed using a cyclone concentrator, and then purified by silica gel tube chromatography (petroleum ether/dichloromethane). Finally, orange solid compound 7 (8.85 g, yield: 68%) was obtained after vacuum drying. Compound 8
Figure 02_image036
Compound 7 Compound 8 Preparation method of compound 8 : Compound 7 (8.85 g, 17.6 mmol) was added to a 100 mL round bottom bottle, and 90 mL of tetrahydrofuran was added. Under the condition of protecting from light, NBS (7,45 g, 41.9 mmol) was gradually added, followed by heating to 55 o C and stirring for 1 hour. After the reaction was completed, the solvent was removed using a cyclone concentrator, and then purified by silica gel tube chromatography (petroleum ether/dichloromethane). Finally, orange-red solid compound 8 (8.65 g, yield: 74%) was obtained after vacuum drying.
Figure 02_image038
Preparation method of Example 2 : Under nitrogen, compound 3 (486 mg, 0.75 mmol), compound 8 (500 mg, 0.76 mmol), tris(2-furyl)phosphine (24 mg, 0.08 mmol), Pd 2 (dba) 3 (17 mg, 0.018 mmol), K 3 PO 4 (1.65 g, 7.78 mmol), and Aliquat336 (1 mL) were dissolved in a mixture of toluene (15 mL) and water (3 mL). Then, it was heated to reflux and stirred overnight. After the reaction, cool down to room temperature, extract with water and chloroform, and then dry with anhydrous magnesium sulfate. After filtration, it was concentrated to remove the solvent. A solid was precipitated by reprecipitation with chloroform and methanol. The precipitate was collected, and the solid was washed sequentially with methanol and acetone, and dried in vacuo to obtain Example 2 (500 mg, yield: 72%).

< 比較比較例Comparative example 11 與實施例with example 1~21~2 的能階匹配性energy level matching >

比較例1、實施例1與實施例2之材料能階是以下述方法所測得:先以循環伏安法測得材料之最高佔有分子軌域(highest occupied molecular orbital, HOMO),再以紫外光-可見光光譜儀測得材料之能隙(bandgap),並藉此推算出材料之LUMO。圖1為鈣鈦礦(Perovskite)、PCBM、比較例1、實施例1~2的能階圖。The energy levels of the materials in Comparative Example 1, Example 1 and Example 2 were measured by the following method: First, the highest occupied molecular orbital (HOMO) of the material was measured by cyclic voltammetry, and then the ultraviolet The light-visible light spectrometer measures the energy gap (bandgap) of the material, and uses it to calculate the LUMO of the material. Fig. 1 is the energy level diagram of Perovskite (Perovskite), PCBM, Comparative Example 1, and Examples 1-2.

參閱圖1,實施例1與實施例2的LUMO分別為-3.53 eV與-3.86 eV。相較於比較例1(-3.42eV),實施例1與實施例2更接近PCBM與鈣鈦礦活性層的LUMO(-3.90 eV),因此有助於減少材料界面的能障缺陷。Referring to FIG. 1 , the LUMOs of Example 1 and Example 2 are -3.53 eV and -3.86 eV, respectively. Compared with Comparative Example 1 (-3.42eV), Example 1 and Example 2 are closer to the LUMO (-3.90 eV) of the PCBM and perovskite active layer, thus helping to reduce the energy barrier defects at the material interface.

< 鈣鈦礦光電元件結構Perovskite photoelectric element structure >

參閱圖2,本發明鈣鈦礦光電元件的第一種結構包括一基板1、一積層於該基板1上的下電極2、一積層於該下電極2上的下載子傳輸層3、一積層於該下載子傳輸層3上的鈣鈦礦活性層4、一積層於該鈣鈦礦活性層4上的上載子傳輸單元5,及一積層於該上載子傳輸單元5上的上電極6。該上載子傳輸單元5包括一上載子傳輸層51。Referring to Fig. 2, the first structure of the perovskite photoelectric element of the present invention comprises a substrate 1, a lower electrode 2 laminated on the substrate 1, a carrier transport layer 3 laminated on the lower electrode 2, a laminated layer A perovskite active layer 4 on the carrier transport layer 3 , an upper carrier transport unit 5 stacked on the perovskite active layer 4 , and an upper electrode 6 stacked on the upper carrier transport unit 5 . The uplink subtransmission unit 5 includes an uplink subtransmission layer 51 .

參閱圖3,本發明鈣鈦礦光電元件的第二種結構包括一基板1、一積層於該基板1上的下電極2、一積層於該下電極2上的下載子傳輸層3、一積層於該下載子傳輸層3上的鈣鈦礦活性層4、一積層於該鈣鈦礦活性層4上的上載子傳輸單元5,及一積層於該上載子傳輸單元5上的上電極6。該上載子傳輸單元5包括一上載子傳輸層51及一上載子修飾層52。該上載子傳輸層51積層於該鈣鈦礦活性層4上,該上載子修飾層52積層於該上載子傳輸層51上,該上電極6積層於該上載子修飾層52上。Referring to Fig. 3, the second structure of the perovskite photoelectric element of the present invention comprises a substrate 1, a lower electrode 2 laminated on the substrate 1, a carrier transport layer 3 laminated on the lower electrode 2, a laminated layer A perovskite active layer 4 on the carrier transport layer 3 , an upper carrier transport unit 5 stacked on the perovskite active layer 4 , and an upper electrode 6 stacked on the upper carrier transport unit 5 . The uplink sub-transmission unit 5 includes an uplink subtransmission layer 51 and an uplink subtransmission layer 52 . The upper carrier transport layer 51 is stacked on the perovskite active layer 4 , the upper carrier modification layer 52 is stacked on the upper carrier transport layer 51 , and the upper electrode 6 is stacked on the upper carrier modification layer 52 .

< 比較應用例Comparative application example 1~21~2 與應用例and application examples 1~2>1~2>

製備鈣鈦礦光電元件Preparation of perovskite photoelectric components

比較應用例1~2與應用例1~2的鈣鈦礦光電元件(結構參閱圖3)是依據下表1所示電子傳輸複合物(作為上載子傳輸材料)中所包含的苯并噻二唑聚合物與下列方法所製得。 表1   苯并噻二唑聚合物 比較應用例 1 比較應用例 2

Figure 02_image040
比較例 1 應用例 2
Figure 02_image042
實施例 1
應用例 3
Figure 02_image030
實施例 2
The perovskite photoelectric elements (see Figure 3 for the structure) of comparative application examples 1~2 and application examples 1~2 are based on the benzothiadiene contained in the electron transport compound (as an upper carrier transport material) shown in Table 1 below. Azole polymers were prepared by the following method. Table 1 Benzothiadiazole polymer Comparative application example 1 none Comparative application example 2
Figure 02_image040
Comparative example 1
Application example 2
Figure 02_image042
Example 1
Application example 3
Figure 02_image030
Example 2

將氧化銦錫(ITO)玻璃基板(12 Ω/□)依序使用清潔劑、去離子水、丙酮及異丙醇經超音波震盪清洗15分鐘後,再經由UV ozone清潔機進行基板表面清潔30分鐘。其中,玻璃基板即為該基板1,氧化銦錫(ITO)即為該下電極2。Clean the indium tin oxide (ITO) glass substrate (12 Ω/□) sequentially with detergent, deionized water, acetone and isopropanol by ultrasonic vibration for 15 minutes, and then clean the surface of the substrate with a UV ozone cleaner for 30 minutes minute. Wherein, the glass substrate is the substrate 1 , and indium tin oxide (ITO) is the bottom electrode 2 .

將聚[雙(4-苯基)(2,4,6-三甲基苯基)胺]{poly [bis(4-phenyl)(2,4,6-trimethylphenyl)amine], PTAA}與溶劑甲苯混和,形成固含量為1.5 wt%的溶液。將該溶液塗佈於該下電極2上,並於100~120℃烘烤10~30分鐘後,形成厚度約10 nm的下載子傳輸層3。Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]{poly [bis(4-phenyl)(2,4,6-trimethylphenyl)amine], PTAA} with solvent Toluene was mixed to form a solution with a solid content of 1.5 wt%. The solution is coated on the lower electrode 2 and baked at 100-120° C. for 10-30 minutes to form a carrier transport layer 3 with a thickness of about 10 nm.

將鈣鈦礦原料成份HC(NH 2) 2I、CsI、PbI 2、PbBr 2依照莫耳比例0.83:0.17:0.85:0.15與溶劑DMF/DMSO (9:1 v/v)混和,形成固含量為49 wt%的鈣鈦礦前驅液。先將該鈣鈦礦前驅液塗佈於該下載子傳輸層3上,再利用真空減壓法去除溶劑,並於100~110℃下烘烤30~60分鐘後,形成厚度約400 nm的鈣鈦礦活性層4。 Mix the perovskite raw material components HC(NH 2 ) 2 I, CsI, PbI 2 , and PbBr 2 with the solvent DMF/DMSO (9:1 v/v) according to the molar ratio of 0.83:0.17:0.85:0.15 to form a solid content It is 49 wt% perovskite precursor solution. First apply the perovskite precursor solution on the carrier transport layer 3, then remove the solvent by vacuum decompression, and bake at 100-110°C for 30-60 minutes to form a calcium layer with a thickness of about 400 nm. Titanium active layer 4.

依據表1所示的苯并噻二唑聚合物,將電子傳輸複合物(包含苯并噻二唑聚合物與PCBM)與溶劑氯苯混合,形成固含量2.5 wt%的溶液。其中,以該電子傳輸複合物的總重為100 wt%計,該苯并噻二唑聚合物的重量為5 wt%。將該溶液塗佈於鈣鈦礦活性層4上,並於80~100℃烘烤10分鐘後,形成厚度約50 nm的上載子傳輸層51。According to the benzothiadiazole polymers shown in Table 1, the electron transport complex (including benzothiadiazole polymer and PCBM) was mixed with the solvent chlorobenzene to form a solution with a solid content of 2.5 wt%. Wherein, based on the total weight of the electron transport complex being 100 wt%, the weight of the benzothiadiazole polymer is 5 wt%. The solution is coated on the perovskite active layer 4 and baked at 80-100° C. for 10 minutes to form an upper carrier transport layer 51 with a thickness of about 50 nm.

將PEI與溶劑二丁醇混合,形成固含量0.05 wt%的溶液。將該溶液塗佈於上載子傳輸層51上,並於90~100℃烘烤6分鐘後,形成厚度約2 nm的上載子修飾層52。PEI was mixed with the solvent dibutanol to form a solution with a solid content of 0.05 wt%. The solution is coated on the upper carrier transport layer 51 and baked at 90-100° C. for 6 minutes to form an upper carrier modification layer 52 with a thickness of about 2 nm.

先將前述所得的樣品送入真空腔體內,再於1.0×10 ‒6torr下蒸鍍銀金屬,形成厚度約100 nm的上電極6後,得到鈣鈦礦光電元件。 The above-mentioned obtained samples were first sent into a vacuum chamber, and then silver metal was evaporated at 1.0×10 ‒6 torr to form an upper electrode 6 with a thickness of about 100 nm, and then a perovskite photoelectric element was obtained.

< 鈣鈦礦光電元件的能量轉換效率Energy Conversion Efficiency of Perovskite Photovoltaics (PCE)(PCE) 分析analyze >

鈣鈦礦光伏元件的工作區域經由金屬遮罩定義為0.04 cm 2。Keithley 2400作為電源供應器,以Lab-View程式控制,在光強度100 mW/cm 2的AM1.5G模擬太陽光(SAN-EI XES-40S3)的照射下量測鈣鈦礦光電元件的電性,並以電腦程式記錄,得到電流-電壓特性參數。 The working area of the perovskite photovoltaic element is defined as 0.04 cm 2 via a metal mask. Keithley 2400 is used as a power supply, controlled by Lab-View program, under the irradiation of AM1.5G simulated sunlight (SAN-EI XES-40S3) with a light intensity of 100 mW/cm 2 to measure the electrical properties of perovskite photoelectric components , and recorded with a computer program to obtain the current-voltage characteristic parameters.

應用例1~2與比較應用例1~2之鈣鈦礦光電元件所使用的電子傳輸複合物,以及由前述電性分析結果所得之開路電壓(open voltage;V oc)、短路電流(short-circuit current;J sc)、填充因子(fill factor;FF)與能量轉換效率(PCE)分別整理於下表2中。需補充說明的是,填充因子FF被認為與元件的界面缺陷有關,一般來說,缺陷越少,載子傳遞越無障礙,FF值則越高。 表2   電子傳輸 複合物 V oc (V) J sc(Ma/cm -2) FF (%) PCE (%) 比較 應用例 1 PCBM 1000 18.0 0.70 12.53 比較 應用例 2 PCBM+ 5wt%比較例1 1025 18.5 0.66 12.57 應用例 1 PCBM+ 5wt%實施例1 1000 19.4 0.76 14.65 應用例 2 PCBM+ 5wt%實施例2 925 18.6 0.79 13.59 Application examples 1~2 and comparative application examples 1~2 The electron transport compound used in the perovskite photoelectric element, and the open circuit voltage (open voltage; V oc ), short-circuit current (short- circuit current; J sc ), fill factor (fill factor; FF) and power conversion efficiency (PCE) are respectively sorted out in Table 2 below. It should be added that the fill factor FF is considered to be related to the interface defects of the component. Generally speaking, the fewer the defects, the more barrier-free the carrier transfer, and the higher the FF value. Table 2 electron transport complex V oc (V) J sc (Ma/cm -2 ) FF (%) PCE (%) Comparative application example 1 PCBM 1000 18.0 0.70 12.53 Comparative application example 2 PCBM+ 5wt% Comparative Example 1 1025 18.5 0.66 12.57 Application example 1 PCBM+ 5wt% Example 1 1000 19.4 0.76 14.65 Application example 2 PCBM+ 5wt% Example 2 925 18.6 0.79 13.59

由表2可以發現,相較於電子傳輸複合物中不包含任何聚合物的鈣鈦礦光電元件(比較應用例1)及電子傳輸複合物中包含比較例1之苯并噻二唑聚合物與PCBM的鈣鈦礦光電元件(比較應用例2),採用電子傳輸複合物中包含本發明苯并噻二唑聚合物與PCBM的鈣鈦礦光電元件(應用例1~2)會具有更高的能量轉換效率(PCE)。It can be found from Table 2 that, compared with the perovskite photoelectric element (comparative application example 1) that does not contain any polymer in the electron transport compound and the benzothiadiazole polymer of Comparative Example 1 in the electron transport compound and The perovskite optoelectronic element (comparative application example 2) of PCBM, the perovskite optoelectronic element (application example 1 ~ 2) that comprises the benzothiadiazole polymer of the present invention and PCBM in the electronic transport compound will have higher Power Conversion Efficiency (PCE).

特別說明的是,應用例1~2之填充因子FF相較於比較應用例2有明顯的增加(增加幅度約15~20%),顯示材料界面的能障缺陷減少,而有助於載子的傳遞能力提升。前述結果充分說明包含本發明苯并噻二唑聚合物與PCBM之電子傳輸複合物更適合作為鈣鈦礦光電元件之上載子傳輸材料。It is particularly noted that the fill factor FF of application examples 1-2 is significantly increased compared with comparative application example 2 (the increase range is about 15-20%), which shows that the energy barrier defects at the material interface are reduced, which is conducive to the carrier The transmission ability is improved. The foregoing results fully demonstrate that the electron transport complex comprising the benzothiadiazole polymer of the present invention and PCBM is more suitable as the carrier transport material on the perovskite photoelectric element.

< 鈣鈦礦光電元件的連續照光穩定性測試Continuous Illumination Stability Test of Perovskite Photovoltaic Components >

將應用例1~2與比較應用例1~2的鈣鈦礦光電元件持續照光作模擬實際應用情況,測試結果見圖4。The perovskite photoelectric elements of application examples 1~2 and comparative application examples 1~2 were continuously illuminated to simulate the actual application situation, and the test results are shown in Figure 4.

由圖4可以發現,相較於電子傳輸複合物中不包含任何聚合物的鈣鈦礦光電元件(比較應用例1)及電子傳輸複合物中包含比較例1與PCBM的元件(比較應用例2),採用電子傳輸複合物中包含本發明苯并噻二唑聚合物與PCBM的鈣鈦礦光電元件(應用例1~2)會具有更穩定的能量轉換效率(PCE)。It can be found from Figure 4 that, compared with the perovskite photoelectric element (comparative application example 1) that does not contain any polymer in the electron transport compound and the element that includes comparative example 1 and PCBM in the electron transport compound (comparative application example 2 ), the perovskite photoelectric element (application examples 1-2) comprising the benzothiadiazole polymer of the present invention and PCBM in the electron transport compound will have a more stable power conversion efficiency (PCE).

前述情況是因為包含本發明苯并噻二唑聚合物與富勒烯衍生物的電子傳輸複合物除了具有優秀的成膜性之外,相較於比較例1之苯并噻二唑聚合物,本發明苯并噻二唑聚合物具有與富勒烯衍生物更匹配的能階特性,因此利於減少材料能障缺陷而有助於提升元件的使用壽命。The foregoing is because the electron transport complex comprising the benzothiadiazole polymer of the present invention and a fullerene derivative has excellent film-forming properties, compared to the benzothiadiazole polymer of Comparative Example 1, The benzothiadiazole polymer of the present invention has energy level characteristics that are more compatible with the fullerene derivatives, so it is beneficial to reduce material energy barrier defects and help to improve the service life of components.

綜上所述,由於本發明苯并噻二唑聚合物可通過控制共聚物內分子的化學結構(Ar 1、Ar 2、Ar 3、X 1與X 2),來適當地調整材料的能階,使其與各種富勒烯衍生物具有更佳的能階匹配性。此外,本發明苯并噻二唑聚合物可在材料合成階段中即得到所需的分子比例,所以相較於先前技術本發明可省去還要將不同聚合物互相混合的步驟,不僅節省製程的繁雜性,同時也減少後續混合造成材料分佈不均勻的疑慮。又,以本發明苯并噻二唑聚合物與富勒烯衍生物混合成電子傳輸複合物時,由該電子傳輸複合物所製得的上載子傳輸材料會具有更佳的成膜性與能階匹配性,且同時能提升鈣鈦礦光電元件的能量轉換效率(PCE)與穩定性,故確實能達成本發明之目的。 In summary, since the benzothiadiazole polymer of the present invention can properly adjust the energy level of the material by controlling the chemical structure (Ar 1 , Ar 2 , Ar 3 , X 1 and X 2 ) of the molecules in the copolymer , so that it has better energy level matching with various fullerene derivatives. In addition, the benzothiadiazole polymer of the present invention can obtain the required molecular ratio in the material synthesis stage, so compared with the prior art, the present invention can save the step of mixing different polymers with each other, not only saving the production process At the same time, it also reduces the doubts about the uneven distribution of materials caused by subsequent mixing. In addition, when the benzothiadiazole polymer of the present invention is mixed with a fullerene derivative to form an electron transport compound, the carrier transport material prepared from the electron transport compound will have better film-forming properties and energy Order matching, and at the same time can improve the power conversion efficiency (PCE) and stability of the perovskite photoelectric element, so the purpose of the present invention can indeed be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。But what is described above is only an embodiment of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.

1:基板 2:下電極 3:下載子傳輸層 4:鈣鈦礦活性層 5:上載子傳輸單元 51:上載子傳輸層 52:上載子修飾層 6:上電極 1: Substrate 2: Bottom electrode 3: Download sub-transport layer 4: Perovskite active layer 5: Upload subtransmission unit 51:Upload sub-transport layer 52:Upload sub-modification layer 6: Upper electrode

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1說明鈣鈦礦(Perovskite)、PCBM、比較例1、實施例1~2的能階圖; 圖2是一剖面示意圖,說明本發明鈣鈦礦光電元件的第一種結構; 圖3是一剖面示意圖,說明本發明鈣鈦礦光電元件的第二種結構;及 圖4是一曲線圖,說明應用例1~2與比較應用例1~2的鈣鈦礦光電元件持續照光作模擬後的穩定性結果。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 illustrates the energy level diagram of perovskite (Perovskite), PCBM, comparative example 1, embodiment 1~2; Fig. 2 is a schematic sectional view illustrating the first structure of the perovskite photoelectric element of the present invention; Fig. 3 is a schematic sectional view illustrating the second structure of the perovskite photoelectric element of the present invention; and FIG. 4 is a graph illustrating the stability results of the perovskite photoelectric elements of application examples 1-2 and comparative application examples 1-2 after continuous illumination for simulation.

Figure 110109855-A0101-11-0002-1
Figure 110109855-A0101-11-0002-1

1:基板 1: Substrate

2:下電極 2: Bottom electrode

3:下載子傳輸層 3: Download sub-transport layer

4:鈣鈦礦活性層 4: Perovskite active layer

5:上載子傳輸單元 5: Upload subtransmission unit

51:上載子傳輸層 51:Upload sub-transport layer

52:上載子修飾層 52:Upload sub-modification layer

6:上電極 6: Upper electrode

Claims (12)

一種苯并噻二唑聚合物,包含下式(I)所示的重複單元: [式(I)]
Figure 03_image001
其中, p與q分別為0、1或2; X 1與X 2分別為H、F或Cl,且X 1與X 2至少其中一者為F或Cl;及 Ar 1、Ar 2與Ar 3分別為亞芳基或亞雜芳基。
A benzothiadiazole polymer comprising repeating units represented by the following formula (I): [Formula (I)]
Figure 03_image001
Wherein, p and q are 0, 1 or 2 respectively; X 1 and X 2 are H, F or Cl respectively, and at least one of X 1 and X 2 is F or Cl; and Ar 1 , Ar 2 and Ar 3 Arylene or heteroarylene, respectively.
如請求項1所述的苯并噻二唑聚合物,其中,Ar 1
Figure 03_image003
Figure 03_image005
Figure 03_image007
Figure 03_image009
其中, R 1至R 5分別為H、R 6、‒(CH 2)n 1OR 7、 ‒(CH 2)n 1SR 8、‒(CH 2)n 1C(=O)OR 9、 ‒(CH 2)n 1Si(R 10) 3、‒(CH 2)n 1N(CH 3) 2、 ‒(CH 2)n 1N +R 11(CH 3) 2X¯、‒(CH 2)n 1N +H(CH 3) 2X¯或‒(C 2H 4O)n 1R 11; R 6至R 10分別為未經取代或經至少一R 16取代的C 1~C 40直鏈烷基、未經取代或經至少一R 16取代的C 4~C 40支鏈烷基、未經取代或經至少一R 16取代的C 4~C 40環狀烷基、未經取代或經至少一R 16取代的C 2~C 40烯基、或未經取代或經至少一R 16取代的C 2~C 40炔基; R 11為甲基或乙基; n 1為1~8; X為Cl、Br或I; R 16為鹵素、‒CN、芳基、雜芳基或‒SiR 17R 18R 19;及 R 17至R 19分別為C 1~C 40烷基。
The benzothiadiazole polymer as claimed in item 1, wherein Ar 1 is
Figure 03_image003
,
Figure 03_image005
,
Figure 03_image007
or
Figure 03_image009
,
Wherein, R 1 to R 5 are H, R 6 , ‒(CH 2 )n 1 OR 7 , ‒(CH 2 )n 1 SR 8 , ‒(CH 2 )n 1 C(=O)OR 9 , ‒ (CH 2 )n 1 Si(R 10 ) 3 , ‒(CH 2 )n 1 N(CH 3 ) 2 , ‒(CH 2 )n 1 N + R 11 (CH 3 ) 2 X¯, ‒(CH 2 )n 1 N + H(CH 3 ) 2 X ¯ or ‒(C 2 H 4 O)n 1 R 11 ; R 6 to R 10 are respectively unsubstituted or substituted by at least one R 16 C 1 ~C 40 Straight chain alkyl, C 4 ~C 40 branched alkyl unsubstituted or substituted by at least one R 16 , C 4 ~C 40 cyclic alkyl unsubstituted or substituted by at least one R 16 , unsubstituted Or C 2 ~C 40 alkenyl substituted by at least one R 16 , or C 2 ~C 40 alkynyl unsubstituted or substituted by at least one R 16 ; R 11 is methyl or ethyl; n 1 is 1~ 8; X is Cl, Br or I; R 16 is halogen, ‒CN, aryl, heteroaryl or ‒SiR 17 R 18 R 19 ; and R 17 to R 19 are respectively C 1 ~C 40 alkyl.
如請求項2所述的苯并噻二唑聚合物,其中,Ar 2與Ar 3分別為
Figure 03_image012
Figure 03_image014
,其中, n 2與n 3分別為1、2或3;及 R 12至R 15分別為H、F、Cl、Br、R 6、‒CN、‒OR 7、‒SR 8、‒C(=O)OR 9、‒Si(R 10) 3、芳基或雜芳基。
The benzothiadiazole polymer as described in claim item 2, wherein Ar 2 and Ar 3 are respectively
Figure 03_image012
or
Figure 03_image014
, wherein, n 2 and n 3 are 1, 2 or 3 respectively; and R 12 to R 15 are H, F, Cl, Br, R 6 , ‒CN, ‒OR 7 , ‒SR 8 , ‒C (= O)OR 9 , -Si(R 10 ) 3 , aryl or heteroaryl.
如請求項2所述的苯并噻二唑聚合物,其中,Ar 1
Figure 03_image003
The benzothiadiazole polymer as claimed in claim 2, wherein Ar 1 is
Figure 03_image003
.
一種電子傳輸複合物,包含如請求項1所述的苯并噻二唑聚合物與富勒烯衍生物。An electron transport complex, comprising the benzothiadiazole polymer and fullerene derivatives as described in claim 1. 如請求項5所述的電子傳輸複合物,其中,該苯并噻二唑聚合物的最低未佔有分子軌域與該富勒烯衍生物的最低未佔有分子軌域之能量差小於1.0 eV。The electron transport compound as claimed in claim 5, wherein the energy difference between the lowest unoccupied molecular orbital of the benzothiadiazole polymer and the lowest unoccupied molecular orbital of the fullerene derivative is less than 1.0 eV. 如請求項5所述的電子傳輸複合物,其中,以該電子傳輸複合物的總重為100 wt%計,該苯并噻二唑聚合物的重量範圍為0.1~99 wt%。The electron transport compound as described in Claim 5, wherein, based on the total weight of the electron transport compound being 100 wt%, the weight range of the benzothiadiazole polymer is 0.1-99 wt%. 一種鈣鈦礦光電元件,包含如請求項5所述的電子傳輸複合物。A perovskite photoelectric element, comprising the electron transport compound as described in Claim 5. 如請求項8所述的鈣鈦礦光電元件,其中,該鈣鈦礦光電元件包括一基板、一積層於該基板上的下電極、一積層於該下電極上的下載子傳輸層、一積層於該下載子傳輸層上的鈣鈦礦活性層、一積層於該鈣鈦礦活性層上的上載子傳輸單元、一積層於該上載子傳輸單元上的上電極,該上載子傳輸單元包含該電子傳輸複合物。The perovskite photoelectric element as described in claim 8, wherein the perovskite photoelectric element comprises a substrate, a lower electrode laminated on the substrate, a carrier transport layer laminated on the lower electrode, a laminate A perovskite active layer on the carrier transport layer, an upper carrier transport unit laminated on the perovskite active layer, an upper electrode laminated on the upper carrier transport unit, the upper carrier transport unit includes the Electron transport complex. 如請求項9所述的鈣鈦礦光電元件,其中,該上載子傳輸單元包括一上載子傳輸層,該上載子傳輸層包含該電子傳輸複合物。The perovskite photoelectric element as claimed in claim 9, wherein the upper carrier transport unit includes an upper carrier transport layer, and the upper carrier transport layer includes the electron transport complex. 如請求項10所述的鈣鈦礦光電元件,其中,該上載子傳輸單元還包括至少一上載子修飾層,該上載子傳輸層積層於該鈣鈦礦活性層上,該上載子修飾層積層於該上載子傳輸層上,該上電極積層於該上載子修飾層上。The perovskite photoelectric element according to claim 10, wherein the upper carrier transport unit further includes at least one upper carrier modification layer, the upper carrier transfer layer is laminated on the perovskite active layer, and the upper carrier modification layer is On the upper carrier transport layer, the upper electrode is laminated on the upper carrier modification layer. 如請求項10所述的鈣鈦礦光電元件,其中,該上載子傳輸層的厚度範圍為0.1~200 nm。The perovskite photoelectric element according to claim 10, wherein the upper carrier transport layer has a thickness in the range of 0.1-200 nm.
TW110109855A 2021-03-18 2021-03-18 Perovskite Optoelectronics TWI759149B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110109855A TWI759149B (en) 2021-03-18 2021-03-18 Perovskite Optoelectronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110109855A TWI759149B (en) 2021-03-18 2021-03-18 Perovskite Optoelectronics

Publications (2)

Publication Number Publication Date
TWI759149B TWI759149B (en) 2022-03-21
TW202237690A true TW202237690A (en) 2022-10-01

Family

ID=81711073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109855A TWI759149B (en) 2021-03-18 2021-03-18 Perovskite Optoelectronics

Country Status (1)

Country Link
TW (1) TWI759149B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799207B (en) * 2022-03-24 2023-04-11 位速科技股份有限公司 Perovskite Photovoltaics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015317410A1 (en) * 2014-09-16 2017-04-27 Merck Patent Gmbh Conjugated polymers
CN107994121A (en) * 2017-11-15 2018-05-04 南京邮电大学 A kind of electron transfer layer of modifying improves the method for perovskite solar cell properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799207B (en) * 2022-03-24 2023-04-11 位速科技股份有限公司 Perovskite Photovoltaics

Also Published As

Publication number Publication date
TWI759149B (en) 2022-03-21

Similar Documents

Publication Publication Date Title
Yuan et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core
Li et al. Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%
CN107759621B (en) Bithiophene (selenophene) -modified photoelectric compound and preparation method and application thereof
CN107365411B (en) Hole transport layer containing organic conjugated polymer semiconductor material and application thereof
CN112041321B (en) Anthradithiophene derivatives, process for preparing the same and polymers containing the same
WO2010022058A1 (en) Active materials for photoelectric devices and devices that use the materials
Duan et al. High open circuit voltage polymer solar cells enabled by employing thiazoles in semiconducting polymers
KR101815755B1 (en) Phenazine derivatives with the extended conjugated structure and applied to the organic photovoltaic polymers
JP2011165963A (en) Organic dye and organic thin-film solar cell
KR101743241B1 (en) Naphthalene diimide based copolymers with high electron mobility and synthesizing method of the same
Ge et al. Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells
Shin et al. Effect of the alkyl chain length of C 70-PCBX acceptors on the device performance of P3HT: C 70-PCBX polymer solar cells
TWI759149B (en) Perovskite Optoelectronics
KR102228274B1 (en) conjucated polymer for Low temperature process and organic solar cell using the same
KR101716035B1 (en) Fused ring derivative and organic solar cell comprising the same
TWI727401B (en) Conjugated polymer and application thereof
CN113061234B (en) Perovskite optoelectronic component
Wang et al. Polythiophenes comprising conjugated pendants toward long-term air-stable inverted polymer solar cells with high open circuit voltages
KR102560363B1 (en) Polymer, composition comprising the same and organic solar cell comprising the same
KR101400077B1 (en) new polymer process for producing the polymer and organic optoelectronic devices using the same
KR101930279B1 (en) Preparation of phenazine derivatives with increased solubility and conjugated polymers consisting of phenazine derivatives for organo photoelectric conversion device
KR101821971B1 (en) Electron accepting polymer of formed random terpolymer, producing method of the same and inverted type polymer solar cells comprising the same
KR101744523B1 (en) Copolymer comprising thienopyrrole derivatives, and organic electronic device comprising the same
TWI761141B (en) Copolymers and Organic Photovoltaics
KR20130036983A (en) Electron donating polymer and organic solar cell including the same