CN110620222A - 一种改性锰酸锂动力电池的正极材料及其制备方法 - Google Patents

一种改性锰酸锂动力电池的正极材料及其制备方法 Download PDF

Info

Publication number
CN110620222A
CN110620222A CN201910861383.4A CN201910861383A CN110620222A CN 110620222 A CN110620222 A CN 110620222A CN 201910861383 A CN201910861383 A CN 201910861383A CN 110620222 A CN110620222 A CN 110620222A
Authority
CN
China
Prior art keywords
lithium
lanthanum
titanium
positive electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910861383.4A
Other languages
English (en)
Inventor
皮远建
张福建
彭吕红
许赫奕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Dianfeng Electronics Co Ltd
Original Assignee
Shenzhen Dianfeng Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Dianfeng Electronics Co Ltd filed Critical Shenzhen Dianfeng Electronics Co Ltd
Priority to CN201910861383.4A priority Critical patent/CN110620222A/zh
Publication of CN110620222A publication Critical patent/CN110620222A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1207Permanganates ([MnO]4-) or manganates ([MnO4]2-)
    • C01G45/1214Permanganates ([MnO]4-) or manganates ([MnO4]2-) containing alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于电学领域,具体涉及一种改性锰酸锂动力电池的正极材料及其制备方法。本发明提供的改性锰酸锂动力电池的正极材料,采用锰酸锂和锂快离子导体多孔锂钛氧镧表层组成核壳状复合结构,将表面修饰与微纳结构设计相结合。本发明提供的锂钛氧镧包覆改性锰酸锂动力电池,不仅加大了锂离子迁移速率、进一步提高了材料倍率性能,而且有效地防止了表面锰的溶解以及与电解液之间发生的化学性变化,进而改善材料的循环性能。

Description

一种改性锰酸锂动力电池的正极材料及其制备方法
技术领域
本发明属于电学领域,具体涉及一种改性锰酸锂动力电池的正极材料及其制备方法。
背景技术
正极材料是锂离子电池的重要组成部分,正极材料的性能好坏直接关系到锂离子电池性能的优劣。目前锂离子电池的正极材料主要分为四种:具有层状结构的LiCoO2和LiNi1/3Co1/3Mn1/3O2、尖晶石结构的LiMn2O4和橄榄石结构的LiFePO4。LiCoO2(理论比容量为274mAh·g-1,实际比容量约为140mAh·g-1)因具有工作电压高(3.6V)、放电平稳、循环性能好、制备工艺简单等优点,目前是商品化小功率电池的主要正极材料。由于钴资源缺乏,安全性不是很好,价格昂贵,污染环境,特别是目前的钴价持续上涨,给锂离子电池生产企业的生存带来了巨大的压力。与LiCoO2相比,同为层状结构的LiNi1/3Co1/3Mn1/3O2(理论比容量为278mAh·g-1,实际比容量约为150mAh·g-1)成本偏高、安全性较好,但首次放电效率和放电电压平台较低。橄榄石结构的LiFePO4(理论比容量为170mAh·g-1,实际比容量约为145mAh·g-1)具有优异的常温循环性能和环境友好性。然而,其苛刻的合成条件、较高的制备成本、较低的能量密度和较差的低温循环性能制约了其进一步产业化。
在众多锂离子电池正极材料中,尖晶石LiMn2O4(理论比容量为148mAh·g-1,实际比容量约为120mAh·g-1)较之LiCoO2、LiNiO2和层状LiMnO2等正极材料具有资源丰富、价格便宜、稳定性好、工作电压高、可大功率充放电、无污染等优点,其三维的隧道结构比层状化合物更有利于锂离子的嵌入和脱出,在锂离子电池正极材料竞争中极具潜力,特别是在电动汽车(EV)和混合动力汽车(HEV)上表现出了非常好的应用前景,成为倍受研究者们关注的对象,是当前被认为最具应用前景而研究得最多、开发力度最大的正极材料之一。
然而,尖晶石LiMn2O4循环性能尤其是高温循环性能有待提高,因循环过程中的容量衰减快,阻碍了锰酸锂的进一步应用。当前认为,Jahn-Teller效应、锰的溶解以及电解液的氧化分解等是造成尖晶石LiMn2O4容量衰减的主要原因。尽管聚合物电解质的使用在一定程度上缓解了这种问题,但没有从根本上得到解决。表面包覆和体相掺杂改性被认为是最简单、能有效改善尖晶石电化学性能的方法,表面包覆可以防止其表面锰的溶解以及与电解液之间发生的化学性变化。然而,大多研究人员和企业采用的表面包覆存在以下问题:(1)包覆电子导电性良好的的材料,如包覆Ni、Ag、Al2O3和SiO2等,可以阻止锰酸锂与电解液的接触,锰酸锂颗粒之间的导电性良好,但同时也阻碍了锂离子的进一步迁移,使其离子导电性变差,材料的电化学性能恶化;(2)包覆离子导电性良好的材料,如CoO1+x/ZrO2,锂离子迁移变好,但包覆后锰酸锂颗粒之间的电子导电性变差,电化学性能恶化。理想的包覆层应是即具有离子导电性又具有电子导电性的材料。
中国专利申请CN108365215A公开了一种镍锰酸锂电池正极的方法,该电池正极材料采用草酸锂、氯化锰、柠檬酸镍按一定比例混合制成,生产工艺简单,易于操作,能耗少,成本低,容易实现大规模的工业化生产,生产效率高,但是,这种电池正极材料的导电性能较差,导致电池正负极通电性能差。
综上可知,现有技术普遍存在着电极材料导电性能差,容易使材料的电化学性能恶化,使电池容量衰减快,限制了锰酸锂电池的应用范围的缺点。
发明内容
针对现有技术普遍存在的缺点,本发明结合锂快离子导体的固有的电化学性能特点和尖晶石锰酸锂作为锂离子动力电池的应用前景,提出表面修饰和微纳结构设计相结合,采用共沉淀法制备动力锂离子电池用锂钛氧镧包覆锰酸锂复合正极材料,该材料由锰酸锂和锂快离子导体多孔锂钛氧镧表层组成核壳状复合结构,不仅加大了锂离子迁移速率、进一步提高了材料倍率性能,而且有效地防止了表面锰的溶解以及与电解液之间发生的化学性变化,进而改善材料的循环性能。
为了达到上述目的,本发明采用的技术方案为:
一种改性锰酸锂动力电池的正极材料,所述正极材料为(La2/3-XLi3X)TiO3·LiMn2O4,其中,X可以为0,1/18,1/9,1/6。
所述改性锰酸锂动力电池的正极材料的制备方法,包括如下步骤:
S1、称取硝酸镧2.5g,碳酸锂3.2g,二氧化钛2.8g,均用快离子导体锂钛氧镧包覆,然后分别溶于去离子水中,然后向各溶液中加入快离子导体锂钛氧镧,在真空条件下处理2-3h,得混合镧溶液A,混合锂溶液B,混合钛溶液C;
S2、保持真空环境,向步骤S1所得混合镧溶液A中加入氢氧化钠作为沉淀剂,向步骤S1所得混合锂溶液B中加入硫酸钠溶液作为沉淀剂,向步骤S1所得混合钛溶液C中加入磷酸钠溶液作为沉淀剂,并调节各溶液的pH值为8~9,然后将三种溶液分别置于反应釜中,经冷却、过滤、洗涤、干燥,得镧盐前驱体,锂盐前驱体,钛盐前驱体;
S3、将步骤S2所得镧盐前驱体,锂盐前驱体,钛盐材料前驱体混合,得复合快离子导体锂钛氧镧包埋前驱体;
S4、将步骤S3所得复合快离子导体锂钛氧镧包埋前驱体高温煅烧5~7h,得锂钛氧镧/锰酸锂正极材料;
S5、将步骤S4所得锂钛氧镧/锰酸锂正极材料利用ICP光谱仪、X射线衍射仪、SEM扫描电镜、X射线能谱仪、粒度分布仪等方法对材料的组成、物相、形貌和粒度进行分析,即得。
优选地,所述步骤S1中的真空条件为功率200~400W,频率为45~55KHz。
优选地,所述步骤S2中置于反应釜中的反应条件为温度为400~600℃,反应时间为16-22h。
优选地,所述步骤S3中镧盐前驱体,锂盐前驱体,钛盐前驱体的计量比为:6-9:6:3-4。
优选地,所述步骤S3中镧盐前驱体,锂盐前驱体,钛盐前驱体的计量比分别为:8:6:3.5。
优选地,所述步骤S4中高温煅烧过程具体条件为400~800℃。
与现有技术相比,本发明提供的改性锰酸锂动力电池的正极材料具有如下优势:
(1)本发明提供的改性锰酸锂动力电池的正极材料,利用快离子导体锂钛氧镧对锂离子动力电池正极材料进行包覆,在保证较好电子导电率的同时,有效的提高了锰酸锂的离子迁移率,进而提高了材料的电化学性能;
(2)本发明提供的改性锰酸锂动力电池的正极材料,其立足点在于我国优势资源,降低成本的同时,使我国的资源得到高效利用;
(3)本发明提供的改性锰酸锂动力电池的正极材料,极其提高原有锰酸锂电池的循环寿命和搁置性能。
附图说明
图1为多孔锂钛氧镧包覆锰酸锂正极材料TEM图。
具体实施方式
下面结合具体实施例对本发明作进一步解释,但是应当注意的是,以下实施例仅用以解释本发明,而不能用来限制本发明,所有与本发明相同或相近的技术方案均在本发明的保护范围之内。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料为市售商品。
所述ICP光谱仪可购自聚光科技(杭州)股份有限公司;所述X射线衍射仪可购自北京时代四合科技有限公司;所述SEM扫描电镜可购自成都中科溯源检测技术有限公司;所述X射线能谱仪可购自赛默飞世尔科技(中国)有限公司;所述粒度分布仪可购自弗尔德(上海)仪器设备有限公司;所述振实密度测定仪可购自北京中仪万成科技有限公司;所述锂电池容量测试仪可购自深圳市三只铅笔科技有限公司。
实施例1一种改性锰酸锂动力电池的正极材料
一种改性锰酸锂动力电池的正极材料,所述正极材料为La2/3TiO3·LiMn2O4
所述改性锰酸锂动力电池的正极材料的制备方法为:
S1、称取硝酸镧2.5g,碳酸锂3.2g,二氧化钛2.8g,均用快离子导体锂钛氧镧包覆,然后分别溶于去离子水中,然后向各溶液中加入快离子导体锂钛氧镧,在真空条件下处理2h,得混合镧溶液A,混合锂溶液B,混合钛溶液C;
S2、保持真空环境,向步骤S1所得混合镧溶液A中加入氢氧化钠作为沉淀剂,向步骤S1所得混合锂溶液B中加入硫酸钠溶液作为沉淀剂,向步骤S1所得混合钛溶液C中加入磷酸钠溶液作为沉淀剂,并调节各溶液的pH值为8,然后将三种溶液分别置于反应釜中,于400℃的条件下反应16h,经冷却、过滤、洗涤、干燥,得镧盐前驱体,锂盐前驱体,钛盐前驱体;
S3、将步骤S2所得镧盐前驱体,锂盐前驱体,钛盐材料前驱体按6:6:3的计量比混合,得复合快离子导体锂钛氧镧包埋前驱体;
S4、将步骤S3所得复合快离子导体锂钛氧镧包埋前驱体于400℃下高温煅烧5h,得锂钛氧镧/锰酸锂正极材料;
S5、将步骤S4所得锂钛氧镧/锰酸锂正极材料利用ICP光谱仪、X射线衍射仪、SEM扫描电镜、X射线能谱仪、粒度分布仪等方法对材料的组成、物相、形貌和粒度进行分析,即得。
实施例2一种改性锰酸锂动力电池的正极材料
一种改性锰酸锂动力电池的正极材料,所述正极材料为(La2/3-1/18Li3/18)TiO3·LiMn2O4
所述改性锰酸锂动力电池的正极材料的制备方法为:
S1、称取硝酸镧2.5g,碳酸锂3.2g,二氧化钛2.8g,均用快离子导体锂钛氧镧包覆,然后分别溶于去离子水中,然后向各溶液中加入快离子导体锂钛氧镧,在真空条件下处理3h,得混合镧溶液A,混合锂溶液B,混合钛溶液C;
S2、保持真空环境,向步骤S1所得混合镧溶液A中加入氢氧化钠作为沉淀剂,向步骤S1所得混合锂溶液B中加入硫酸钠溶液作为沉淀剂,向步骤S1所得混合钛溶液C中加入磷酸钠溶液作为沉淀剂,并调节各溶液的pH值为9,然后将三种溶液分别置于反应釜中,于600℃的条件下反应22h,经冷却、过滤、洗涤、干燥,得镧盐前驱体,锂盐前驱体,钛盐前驱体;
S3、将步骤S2所得镧盐前驱体,锂盐前驱体,钛盐材料前驱体按9:6:4的计量比混合,得复合快离子导体锂钛氧镧包埋前驱体;
S4、将步骤S3所得复合快离子导体锂钛氧镧包埋前驱体于800℃下高温煅烧7h,得锂钛氧镧/锰酸锂正极材料;
S5、将步骤S4所得锂钛氧镧/锰酸锂正极材料利用ICP光谱仪、X射线衍射仪、SEM扫描电镜、X射线能谱仪、粒度分布仪等方法对材料的组成、物相、形貌和粒度进行分析,即得。
实施例3一种改性锰酸锂动力电池的正极材料
一种改性锰酸锂动力电池的正极材料,所述正极材料为(La2/3-1/9Li1/3)TiO3·LiMn2O4。所述多孔锂钛氧镧包覆锰酸锂正极材料TEM图见图1。
所述改性锰酸锂动力电池的正极材料的制备方法为:
S1、称取硝酸镧2.5g,碳酸锂3.2g,二氧化钛2.8g,均用快离子导体锂钛氧镧包覆,然后分别溶于去离子水中,然后向各溶液中加入快离子导体锂钛氧镧,在真空条件下处理2.5h,得混合镧溶液A,混合锂溶液B,混合钛溶液C;
S2、保持真空环境,向步骤S1所得混合镧溶液A中加入氢氧化钠作为沉淀剂,向步骤S1所得混合锂溶液B中加入硫酸钠溶液作为沉淀剂,向步骤S1所得混合钛溶液C中加入磷酸钠溶液作为沉淀剂,并调节各溶液的pH值为8.5,然后将三种溶液分别置于反应釜中,于500℃的条件下反应20h,经冷却、过滤、洗涤、干燥,得镧盐前驱体,锂盐前驱体,钛盐前驱体;
S3、将步骤S2所得镧盐前驱体,锂盐前驱体,钛盐材料前驱体按:6:3.5的计量比混合,得复合快离子导体锂钛氧镧包埋前驱体;
S4、将步骤S3所得复合快离子导体锂钛氧镧包埋前驱体于600℃下高温煅烧6h,得锂钛氧镧/锰酸锂正极材料;
S5、将步骤S4所得锂钛氧镧/锰酸锂正极材料利用ICP光谱仪、X射线衍射仪、SEM扫描电镜、X射线能谱仪、粒度分布仪等方法对材料的组成、物相、形貌和粒度进行分析,即得。
实施例4一种改性锰酸锂动力电池的正极材料
一种改性锰酸锂动力电池的正极材料,所述正极材料为(La2/3-1/6Li1/2)TiO3·LiMn2O4
所述改性锰酸锂动力电池的正极材料的制备方法为:
S1、称取硝酸镧2.5g,碳酸锂3.2g,二氧化钛2.8g,均用快离子导体锂钛氧镧包覆,然后分别溶于去离子水中,然后向各溶液中加入快离子导体锂钛氧镧,在真空条件下处理2.7h,得混合镧溶液A,混合锂溶液B,混合钛溶液C;
S2、保持真空环境,向步骤S1所得混合镧溶液A中加入氢氧化钠作为沉淀剂,向步骤S1所得混合锂溶液B中加入硫酸钠溶液作为沉淀剂,向步骤S1所得混合钛溶液C中加入磷酸钠溶液作为沉淀剂,并调节各溶液的pH值为8.3,然后将三种溶液分别置于反应釜中,于480℃的条件下反应18h,经冷却、过滤、洗涤、干燥,得镧盐前驱体,锂盐前驱体,钛盐前驱体;
S3、将步骤S2所得镧盐前驱体,锂盐前驱体,钛盐材料前驱体按7:6:4的计量比混合,得复合快离子导体锂钛氧镧包埋前驱体;
S4、将步骤S3所得复合快离子导体锂钛氧镧包埋前驱体于500℃下高温煅烧6h,得锂钛氧镧/锰酸锂正极材料;
S5、将步骤S4所得锂钛氧镧/锰酸锂正极材料利用ICP光谱仪、X射线衍射仪、SEM扫描电镜、X射线能谱仪、粒度分布仪等方法对材料的组成、物相、形貌和粒度进行分析,即得。
对比例一种锰酸锂动力电池的正极材料
一种锰酸锂动力电池的正极材料,所述正极材料为(La2/3-1/9Li1/3)TiO3·LiMn2O4
所述锰酸锂动力电池的正极材料的制备方法与实施例3类似;
与实施例3的区别在于,对比例中不用快离子导体锂钛氧镧对锂离子动力电池正极材料进行包覆,采用普通包覆形式包覆。
试验例1产品性能评价
1.试验样品:本发明实施例1-4制得的改性锰酸锂动力电池的正极材料
2.试验方法:利用ICP光谱仪、X射线衍射仪、SEM扫描电镜、X射线能谱仪、粒度分布仪等方法对本发明正极材料的组成、物相、形貌和粒度进行分析。
3.试验结果:具体的试验结果见表1。
表1不同试验样品的产品性能
由表1可知,本发明实施例1-4制得的改性锰酸锂动力电池的正极材料在合成工艺、价格、循环性能、材料的振实密度及矿产资源含量等方面具有很大的优势。尤其是实施例3中各参数值最高,故实施例3为本发明最佳实施例。
试验例2不同产品性能对比
1.试验样品:实施例3及对比例制得的锰酸锂动力电池的正极材料
2.试验方法:振实密度用振实密度测定仪测试的,放电容量和常温循环性能用锂电池容量测试仪测试,高温循环测试是将电池放在60度的高低温箱中,连线接上锂电池容量测试仪测试。
3.试验结果:具体试验结果见表2。
表2不同试验产品性能对比
检验项目 实施例3 对比例
正极振实密度 2.38 2.12
放电比容量(mAh/g) 121 105
常温循环性能(次) 1420 680
高温循环性能(次) 800 410
由表2可知,本发明实施例3制得的改性锰酸锂动力电池在循环性能、材料的振实密及放电比容量等方面显著高于对比例,可以看出,本申请对锰酸锂正极材料进行改性后,效果显著提高。
最后应当说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种改性锰酸锂动力电池的正极材料,其特征在于,所述正极材料为(La2/3-XLi3X)TiO3·LiMn2O4,其中,X可以为0,1/18,1/9,1/6。
2.一种如权利要求1所述的改性锰酸锂动力电池的正极材料的制备方法,其特征在于,包括如下步骤:
S1、称取硝酸镧2.5g,碳酸锂3.2g,二氧化钛2.8g,均用快离子导体锂钛氧镧包覆,然后分别溶于去离子水中,然后向各溶液中加入快离子导体锂钛氧镧,在真空条件下处理2-3h,得混合镧溶液A,混合锂溶液B,混合钛溶液C;
S2、保持真空环境,向步骤S1所得混合镧溶液A中加入氢氧化钠作为沉淀剂,向步骤S1所得混合锂溶液B中加入硫酸钠溶液作为沉淀剂,向步骤S1所得混合钛溶液C中加入磷酸钠溶液作为沉淀剂,并调节各溶液的pH值为8~9,然后将三种溶液分别置于反应釜中,经冷却、过滤、洗涤、干燥,得镧盐前驱体,锂盐前驱体,钛盐前驱体;
S3、将步骤S2所得镧盐前驱体,锂盐前驱体,钛盐材料前驱体混合,得复合快离子导体锂钛氧镧包埋前驱体;
S4、将步骤S3所得复合快离子导体锂钛氧镧包埋前驱体高温煅烧5~7h,得锂钛氧镧/锰酸锂正极材料;
S5、将步骤S4所得锂钛氧镧/锰酸锂正极材料利用ICP光谱仪、X射线衍射仪、SEM扫描电镜、X射线能谱仪、粒度分布仪等方法对材料的组成、物相、形貌和粒度进行分析,即得。
3.如权利要求2所述的改性锰酸锂动力电池的正极材料的制备方法,其特征在于,所述步骤S1中的真空条件为功率200~400W,频率为45~55KHz。
4.如权利要求2所述的改性锰酸锂动力电池的正极材料的制备方法,其特征在于,所述步骤S2中置于反应釜中的反应条件为温度为400~600℃,反应时间为16-22h。
5.如权利要求2所述的改性锰酸锂动力电池的正极材料的制备方法,其特征在于,所述步骤S3中镧盐前驱体,锂盐前驱体,钛盐前驱体的计量比为:6-9:6:3-4。
6.如权利要求5所述的改性锰酸锂动力电池的正极材料的制备方法,其特征在于,所述步骤S3中镧盐前驱体,锂盐前驱体,钛盐前驱体的计量比分别为:8:6:3.5。
7.如权利要求2所述的改性锰酸锂动力电池的正极材料的制备方法,其特征在于,所述步骤S4中高温煅烧过程具体条件为400~800℃。
CN201910861383.4A 2019-09-12 2019-09-12 一种改性锰酸锂动力电池的正极材料及其制备方法 Pending CN110620222A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910861383.4A CN110620222A (zh) 2019-09-12 2019-09-12 一种改性锰酸锂动力电池的正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910861383.4A CN110620222A (zh) 2019-09-12 2019-09-12 一种改性锰酸锂动力电池的正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110620222A true CN110620222A (zh) 2019-12-27

Family

ID=68922856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910861383.4A Pending CN110620222A (zh) 2019-09-12 2019-09-12 一种改性锰酸锂动力电池的正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110620222A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002905A (zh) * 2020-08-26 2020-11-27 中南大学 一种磷酸钛镧锂修饰的无钴正极材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738451A (zh) * 2012-07-13 2012-10-17 河南师范大学 一种改性锂离子电池正极材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738451A (zh) * 2012-07-13 2012-10-17 河南师范大学 一种改性锂离子电池正极材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002905A (zh) * 2020-08-26 2020-11-27 中南大学 一种磷酸钛镧锂修饰的无钴正极材料及其制备方法

Similar Documents

Publication Publication Date Title
Xu et al. Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide
Dai et al. Ultrathin-Y2O3-coated LiNi0. 8Co0. 1Mn0. 1O2 as cathode materials for Li-ion batteries: synthesis, performance and reversibility
Ming et al. Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications
CN109461928B (zh) 一种高能量密度多元正极材料及其制备方法
CN105938899B (zh) 一种快离子导体包覆改性锂离子电池正极材料的制备方法及应用
Wang et al. Enhanced electrochemical performance of Li-rich cathode Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification with lithium ion conductor Li3PO4
Liu et al. Effect of MnO2 modification on electrochemical performance of LiNi0. 2Li0. 2Mn0. 6O2 layered solid solution cathode
Hou et al. Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping
Zhu et al. Enhanced electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 via titanium and boron co-doping
CN103996820A (zh) 锂离子电池及其具有协同作用的混合正极电极及活性材料
Zhang et al. Boosted electrochemical performance of LiNi0. 5Mn1. 5O4 via synergistic modification of Li+-Conductive Li2ZrO3 coating layer and superficial Zr-doping
CN104009252A (zh) 一种钠离子电池及其制备方法
Liu et al. Enhanced electrochemical performances of layered cathode material Li1. 5Ni0. 25Mn0. 75O2. 5 by coating with LiAlO2
CN105932251B (zh) 一种金属氧化物包覆锂离子电池正极材料的制备方法及其应用
Wang et al. Effects of fast lithium-ion conductive coating layer on the nickel rich layered oxide cathode material
Li et al. Surface modification of Sr-doped LaMnO3 coating by spray drying on Ni-rich LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium-ion batteries
Lv et al. Electrochemical properties of high-voltage LiNi 0.5 Mn 1.5 O 4 synthesized by a solid-state method
Shen et al. Realizing ultrahigh-voltage performance of single-crystalline LiNi0. 55Co0. 15Mn0. 3O2 cathode materials by simultaneous Zr-doping and B2O3-coating
Chen et al. The effects of multifunctional coating on Li-rich cathode material with hollow spherical structure for Li ion battery
Xu et al. Understanding the electrochemical superiority of 0.6 Li [Li1/3Mn2/3] O2-0.4 Li [Ni1/3Co1/3Mn1/3] O2 nanofibers as cathode material for lithium ion batteries
Tang et al. La doping and coating enabled by one-step method for high performance Li1. 2Mn0. 54Ni0. 13Co0. 13O2 Li-rich cathode
Huang et al. Effect of sintering temperature on the electrochemical performance of Li-rich Mn-basfed cathode material Li1. 2Mn0. 54Ni0. 13Co0. 13O2 by co-precipitation method
CN104733706B (zh) 一种高振实密度复合正极材料的制备方法
CN103887485A (zh) 一种锂离子电池用掺杂纳米五氧化二钒薄膜电极材料
CN110620222A (zh) 一种改性锰酸锂动力电池的正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191227

RJ01 Rejection of invention patent application after publication