CN110612160B - 用于测量流体体积的装置 - Google Patents

用于测量流体体积的装置 Download PDF

Info

Publication number
CN110612160B
CN110612160B CN201880028976.6A CN201880028976A CN110612160B CN 110612160 B CN110612160 B CN 110612160B CN 201880028976 A CN201880028976 A CN 201880028976A CN 110612160 B CN110612160 B CN 110612160B
Authority
CN
China
Prior art keywords
channel
liquid
plate
channels
cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880028976.6A
Other languages
English (en)
Other versions
CN110612160A (zh
Inventor
I·K·格拉斯哥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Biotechnology Co ltd
Original Assignee
Advance Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Biotechnology Co ltd filed Critical Advance Biotechnology Co ltd
Publication of CN110612160A publication Critical patent/CN110612160A/zh
Application granted granted Critical
Publication of CN110612160B publication Critical patent/CN110612160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50857Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using arrays or bundles of open capillaries for holding samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/0092Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume for metering by volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/148Specific details about calibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/024Storing results with means integrated into the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • B01L2300/028Graduation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces

Abstract

一种液体评估系统,可以包括盒,所述盒包括通道,所述通道配置成通过毛细作用将液体拉入通道。盒可以包括第一板和紧邻第一板定位的第二板。每个板的面向内的表面可以包括形成通道的相应区域。每个区域可以对液体具有亲和性。板和对液体具有亲和性的区域的紧邻性导致液体通过毛细作用拉入通道。盒可以包括一个或多个附加属性和/或系统可以包括一个或多个附加部件以执行评估。

Description

用于测量流体体积的装置
相关申请的交叉参考
本专利申请要求提交于2017年3月31日的美国临时申请No.62/479,513的权益,其由此以引用方式并入。
技术领域
本公开总体涉及对所分配液体的评估,并且更具体地,涉及使用盒中的一个或多个通道的液体评估解决方案。
背景技术
液体操纵系统是必不可少的工具,并且已广泛用于生物学、化学和其他领域所使用的实验室中。液体操纵系统的常用示例是移液管。移液管用于将准确体积的液体从一个容器转移到另一个容器,例如用于分析、化学反应和其他目的。移液管通常包括置于移液管的端部的活塞,所述活塞排出空气。可以操作活塞以降低液体上方的气压从而将液体抽吸入移液管末端,或增加气压以迫使液体移出移液管末端。
移液管的使用体积涉及多个数量级,从大约1微升到超过1毫升。固定容积的移液管用于单种体积。可调式移液管操纵各种体积,通常约为单个数量级。因此,实验室通常有多种移液管以覆盖各个范围的体积。
当使用或误用时,移液管可能会超出校准范围。移液管的常规校准是常见的,甚至在许多应用中都需要进行常规校准。例如,国际标准(诸如ISO 8655)规定了移液管所需的准确性和可重复性。
用于确定诸如移液管的液体操纵装置和/或包括液体操纵装置的相应系统的精度的最常见的现有方法使用天平来测量所分配液体的质量。然后,根据液体在液体的测量温度下的已知密度将液体的质量转换为体积。通常,蒸馏水用于此目的。在此测量中,必须将蒸发考虑作为误差源。此外,天平必须非常敏感。例如,为了精确地测量微升体积的液体使精度高于1%,天平的精确度必须高于10微克。
这种精确的天平价格昂贵且不常用。此外,这些天平还容易受到托盘上气流、振动和蒸发导致的误差的影响。将蒸发控制到可忽略的水平是非常困难的,特别是考虑到暴露于空气的表面相对于所分配液体的体积相对大量。此外,这不是对体积进行直接测量。相反,必须使用附加测量将质量测量转换为体积。液体的密度或其温度(其可以转换为密度)的附加测量会降低测量方法的准确性。
测量液体操纵装置精度的替代方法是使用比色测量。在这种方法中,液体操纵装置用于将其中非常精确地控制颜色的一定体积的液体染料分配到具有已知体积的液体的孔中,并测量颜色的变化。结果,这种方法也不能直接测量液体体积。测得的颜色变化必须与附加测量结合使用,以推导出分配的体积。这种方法的准确性也受制于需要多次测量。另外,类似于先前描述的方法,这种方法还需要昂贵的设备、数学运算,并且必须在设备所处的位置处执行。
一种更有效的方法是使用盒来评估液体的体积。在这种方法中,盒可以具有一个或多个孔突片,所述孔突片枢转到其中分配到相应孔中的液体与毛细管接触的位置。表面张力将液体从孔中吸入毛细管。将液-气界面与毛细管上或附近的标记进行比较可以揭示所分配液体的体积。
在许多应用中,期望同时转移多个液体体积。例如,在使用孔板作业时通常是这种情况。作为响应,已经开发了多通道液体操纵装置。例如,存在多通道移液管,通常其具有8个、12个或16个通道。同样,包括机器人系统的其他多通道液体操纵系统通常同时分配多个体积的液体。使用这些多通道液体操纵装置中的每一个多通道液体操纵装置从每个通道分配的液体体积的准确性也需要检查和校准。自然,检查精度和校准多通道液体操纵装置比起单通道液体操纵装置的情况要更为繁琐且困难得多。
迄今为止,为了确定多通道液体操纵装置的精度,必须分开测量从每个通道分配的液体体积,诸如用天平进行重量分析。
发明内容
发明人认识到,当前用于确定诸如多通道移液管的多通道液体操纵装置的精度的方法是较为繁琐且昂贵的,并且需要多次测量,所述多次测量中的每次测量都可能将误差引入测量过程中。
本发明的方面可以提供一种直接的体积测量解决方案,其使用由液体操纵装置分配的液体的一个或多个通道来确定液体操纵装置的精度。在实施例中,多通道液体操纵装置(例如,多通道移液管)可以将液体分配到多个通道中以同时评估液体操纵装置的每个通道。解决方案可以更轻松地实现,而无需购买附加的昂贵设备。本发明的实施例不需要用户执行任何计算来确定液体分配系统的精度到达高肯定度。
通常使用的间接测量方法受蒸发影响。本文所述的本发明的实施例在评估液体期间将蒸发影响显著降低至例如可忽略的水平。
此外,通常使用的间接测量方法需要昂贵的设备,而本文所述的本发明的实施例可以是不需要昂贵仪器的低成本装置。此外,本发明的实施例可以是小型且便携的,从而使得用户能够在其中用户所处的位置处评估液体。
本发明的实施例还可以提供比间接测量方法更准确的液体体积测量,特别是对于较小的液体体积。实际上,随着待测量的液体体积减小,本发明的实施例可以提供优于现有间接测量方法的增加的优点。
此外,本发明的实施例可以在几秒内提供结果,而间接测量方法需要几分钟到几十分钟。
此外,本文所述的本发明的实施例可以同时获取用于确定多个液体等分试样的体积的数据,而现有的间接测量方法(诸如天平或比色装置)必须一次分析一个液体体积。
本发明的方面提供了一种液体评估系统。系统可以包括盒,所述盒包括通道,所述通道配置成通过毛细作用将液体拉入通道。盒可以包括第一板和紧邻第一板定位的第二板。每个板的面向内的表面可以包括形成通道的相应区域。每个区域可以对液体具有亲和性。板和对液体具有亲和性的区域的紧邻性导致液体通过毛细作用拉入通道。盒可以包括一个或多个附加属性和/或系统可以包括一个或多个附加部件以执行评估。
本发明的第一方面提供了一种液体评估系统,其包括:盒,盒包括用于保持液体的通道,盒包括:第一板,其包括形成通道的第一侧的面向内的表面的第一区域;以及第二板,其包括形成通道的第二侧的面向内的表面的第二区域,其中第一区域和第二区域对液体具有亲和性,并且其中第一板和第二板之间的分隔导致液体通过毛细作用拉入通道,其中第一板和第二板形成用于通道的入口区域,并且其中入口区域的深度大于通道在通道的入口处的深度。
本发明的第二方面提供了一种多通道盒,多通道盒包括用于保持液体的多个通道,对于所述多个通道中的每一个通道,盒包括:第一结构,其包括形成通道的第一侧的面向内的表面的第一区域;以及第二结构,其包括形成通道的第二侧的面向内的表面的第二区域,其中第一区域和第二区域对液体具有亲和性,并且其中第一结构和第二结构之间的分隔导致液体通过毛细作用拉入通道,其中第一结构和第二结构形成用于通道的入口区域,并且其中入口区域的深度大于通道在通道的入口处的深度。
本发明的第三方面提供了一种盒,盒包括用于保持液体的通道,盒包括:第一板,其包括形成通道的第一侧的面向内的表面的第一区域;以及第二板,其包括形成通道的第二侧的面向内的表面的第二区域,其中第一区域和第二区域对液体具有亲和性,其中第一板和第二板之间的分隔导致液体通过毛细作用拉入通道,并且其中通道包括沿着通道的长度变化的深度。
本文所述的液体评估系统可以包括盒,所述盒包括用于保持液体的一个或多个通道。系统的实施例还可以包括用于将盒定位在期望的方位以将液体分配到通道中的支架。支架的实施例可以包括一个或多个机械引导件,所述机械引导件用于将液体操纵装置的液体分配通道与用于通道的入口区域对准。系统的实施例还可以包括:成像装置,所述成像装置用于获取用于评估的一个或多个通道的图像数据;和/或计算机系统,所述计算机系统用于存储与评估有关的数据、确定用于评估的一个或多个测量和/或进行评估。
盒的实施例可以包括一个或多个通道,每个通道具有由成对结构形成的相对侧,成对结构具有导致液体通过毛细作用拉入通道的分隔。每个结构的面向内的表面可以包括对液体具有亲和性的一个或多个区域,区域中的每个区域对应于通道。盒可以包括用于每个通道的入口区域,所述入口区域的深度大于通道在通道的入口处的深度。入口区域也可以对液体具有亲和性。每个结构可以由对液体具有亲和性的材料制成。每个结构可以包括在与通道和/或入口区域相对应的区域中的对液体具有亲和性的涂层。
一个或两个结构可以包括形成用于通道的入口区域的渐缩入口表面。渐缩入口表面也可以对液体具有亲和性。渐缩入口表面可以具有任何类型的渐缩,其包括线性或圆化表面。渐缩入口表面可以在入口区域的较大深度和通道的入口之间提供平滑的过渡(例如,没有任何深度的突然改变、表面不规则性等)。入口区域可以包括一个或多个附加特征,诸如凹口,其用于将分配嘴引导至合适位置以用于将液体分配到通道中。入口区域也可以由位于结构中的一个结构中的开口形成。
在实施例中,所述成对结构是紧密地保持在一起的成对板。在另一个实施例中,所述成对结构是开口的相对的内表面,开口延伸穿过由单个模制件形成的盒。在实施例中,通道的深度为四毫米或更小。在更具体的实施例中,通道在通道的入口处的深度为两毫米或更小。
盒可以包括特征的各种组合中的任何组合以方便评估。盒的实施例可以包括一个或多个透明区域,透明区域中的每个透明区域允许通过其观察和/或成像通道中的液体的至少一部分。透明区域可以对应于液体的弯液面的预期位置或液体的整个预期位置。盒可以包括成组标记,其可以用于确定刻度和/或其对应于保持在通道中的液体的一个或多个体积。
可以使用各种解决方案的任意组合来限定通道的横向范围。通道的一些或全部横向范围可以由间隔件限定,所述间隔件与形成通道的一个或两个结构物理接触,从而为液体提供物理屏障。间隔件可以是物理地附接结构的粘合剂。通道的一些或全部横向范围可以由施加到形成通道的结构中的一个或两个结构上的排斥涂层限定。排斥涂层可以具有足以防止液体从通道中流出而例如流入相邻的通道中的宽度。
通道的一些或全部横向范围可以由在结构中的一个或两个结构中形成的凹槽限定。凹槽可以提供防止液体进入凹槽的突变过渡。凹槽可以具有足以防止液体从通道流出进入到凹槽中的横向宽度和深度。
可以使用沿着通道的高度定位的物理结构来维持通道的期望深度。每个物理结构可以具有与在相应位置处的期望深度相对应的尺寸。物理结构可以包括球形间隔件。物理结构可以包括在结构中的一个或两个结构上的表面上形成的突起。
通道可以具有沿着通道的长度变化的深度。变化的深度可以帮助将液体芯吸到通道中和/或将液体的弯液面定位在期望的位置。通道还可以具有沿着通道的长度变化的宽度。可以配置变化的宽度以减少蒸发。通道可以包含一个或多个弯曲部。
说明性评估可以包括确定液体的体积。另一个说明性评估可以包括确定液体的颜色。进一步的说明性评估可以包括确定液体的澄清度。
本发明的说明性方面设计成解决本文所述的一个或多个问题和/或未讨论的一个或多个其他问题。
附图说明
通过以下结合描述本发明的各个方面的附图对本发明的各个方面的详细描述,将更容易理解本公开的这些和其他特征。
图1示出了根据实施例的说明性液体评估系统。
图2A和图2B分别示出了根据实施例与多通道移液管结合使用的说明性支架和说明性多通道盒的分解透视图和透视图。
图3A至图3D示出了根据实施例的说明性多通道盒的各种视图,以及图3E示出了根据实施例的具有蛇形通道的说明性多通道盒。
图4A至图4C示出了根据实施例的各种说明性特征,这些说明性特征中的一个或多个说明性特征可以结合到本文所述的盒中。
图5A和图5B分别示出了根据另一个实施例的说明性盒的正视图和剖视图。
图6A至图6C分别示出了根据又一个实施例的说明性盒的正视图、顶视图和侧剖视图。
图7A和图7B分别示出了根据再一个实施例的说明性盒的正视图和剖视图。
图8A和图8B示出了根据实施例的说明性盒的剖切正视图和侧剖视图。
图9A和图9B示出了根据另一个实施例的说明性盒的正视图和侧剖视图。
图10A至图10D分别示出了根据实施例的由单件形成的说明性盒的正视图、底视图和两个详细视图。
图11示出了根据另一个实施例的说明性液体评估系统。
图12示出了根据实施例的可以在水平取向上使用的说明性多通道盒。
图13示出了根据另一个实施例的可以在水平取向上使用的说明性多通道盒的分解图。
应注意,附图可能不是按比例绘制的。附图仅旨在描绘本发明的典型方面,并且因此不应视为限制本发明的范围。在附图中,相同的标号表示附图之间的相同的元件。
具体实施方式
如上所述,本发明的方面提供了一种液体评估系统。系统可以包括盒,所述盒包括通道,所述通道配置成通过毛细作用将液体拉入通道。盒可以包括第一板和紧邻第一板定位的第二板。每个板的面向内的表面可以包括形成通道的相应区域。每个区域可以对液体具有亲和性。板和对液体具有亲和性的区域的紧邻性导致液体通过毛细作用拉入通道。盒可以包括一个或多个附加属性和/或系统可以包括一个或多个附加部件以执行评估。
应当理解,除非另有说明,否则每个值都是近似值,并且本文包括的值的每个范围都包括限定该范围的端值。如本文所使用的,除非另有说明,术语“大约”包括在所述值的+/-10%以内的值,而术语“基本上”包括在所述值的+/-5%以内的值。除非另有说明,否则当较小的值在较大的值的+/-25%以内时,两个值是“相似的”。当值y满足公式0.1x≤y≤10x时,值y在所述值x的量级。
还如本文所使用的,透明结构允许以法向入射辐射到结构的界面的具有目标波长的辐射的至少百分之十穿过其中。此外,如本文所使用的,反射结构对以法向入射辐射到结构的界面的具有目标波长的辐射的至少百分之十进行反射。
如本文所使用的,盒的顶部是指盒的这样的端部,所述端部包括用于通道的入口区域,通道配置成用于在其中分配液体,而盒的底部是指与具有入口区域的盒的端部相对定位的盒的端部。除非另有说明,否则术语“横向”是指平行于用于通道的入口区域的平面,以及“横向区域”是指用于相应区域的横向平面的二维区域。这些术语的使用是为了方便起见,并且不表示盒在使用过程中的任何取向。
转到附图,图1示出了根据实施例的说明性液体评估系统10。系统10示出为包括支架12,支架配置成将盒14定位在期望的取向,以将液体分配到位于盒14中的一个或多个通道中。一旦已定位盒14,就可以例如使用液体操纵装置2将液体分配到盒14的一个或多个通道中。系统10可以用于使用任何解决方案来评估位于通道中的液体的一个或多个属性。
为此,系统10还示出为包括成像装置16。成像装置16可以使用任何解决方案来获取盒14的通道中的一个或多个通道的图像数据,所述图像数据可以用作液体的一个或多个属性的评估的一部分。说明性成像装置16包括从任何类型的辐射(例如,可见光)生成图像数据的相机、在一个或多个点处或沿着一维、二维或三维梯度感测电容、感应和/或电阻的变化的电路、和/或使用扫描解决方案代替镜头来生成图像的装置等。在实施例中,系统10还可以包括基座18,所述基座配置成将支架12和成像装置16保持在允许成像装置16获取盒14中通道的合适图像数据的取向。例如,基座可以包括一个或多个凹槽和/或标记等,其可以指导用户能够正确放置支架12和成像装置16。在实施例中,使用任何解决方案将支架12或成像装置16中的一个或多个固定到基座18。无论如何,如图所示,成像装置16可以定向成使得视场基本垂直于盒14的正面的平面。
在实施例中,成像装置16可以将图像数据提供给计算机系统20。计算机系统20可以包括一个或多个计算装置的任何组合。每个计算装置可以是任何类型的计算装置。说明性计算装置包括通用计算装置,其编程成执行本文所述的评估过程。然而,应当理解,计算装置可以包括可以执行或不执行程序代码的任何类型的计算装置。当计算机系统20包括多个计算装置时,计算装置可以:位于不同的位置并且可以经由光纤、有线和/或无线链路的任意组合彼此通信;包括一种或多种类型的网络的任意组合;和/或利用各种类型的传输技术和协议的任意组合。
评估过程可以是自动、半自动或手动的。无论如何,计算机系统20可以包括成组接口,所述成组接口使得用户4(例如,人和/或另一个计算装置)能够指导系统10的操作以执行评估和/或以其他方式与系统10交互。例如,用户可以获取评估的结果、观察过去的评估、管理一个或多个评估的数据等。尽管未示出,但是应当理解,系统10可以包括可以适用于评估的各种其他装置的任意组合。此类装置可以包括一个或多个照明(可见或其他辐射)装置、用于环境条件(诸如温度或压力)的传感器、用于评估的液体(例如染料或染色液体)的容器和/或其他。
计算机系统20可以将图像数据与其他数据一起存储为评估的记录。其他数据可以包括与评估相对应的各种数据的任意组合,包括例如:用户、液体操纵装置(例如序列号)、盒(例如序列号、盒标识符等)、和/或液体的识别数据(例如,所用液体的类型、样品的位置等)中的一个或多个的标识信息;日期和时间戳;温度数据;测量数据;评估的结果;和/或其他。在实施例中,计算机系统20可以处理图像数据以评估液体的一个或多个属性。例如,计算机系统20可以处理图像数据以确定(测量)通道中存在的液体的体积、颜色、澄清度和/或其他的一项或多项。
系统10可以配置成与任何类型的液体操纵装置2或系统结合使用。液体操纵装置的示例是移液管。移液管可以包括本领域中使用的各种类型的移液管中的任何类型。在更具体的实施例中,移液管是多通道移液管。移液管可以由人类用户使用,或者由机器人装置在自动或半自动控制下操作。然而,应当理解,移液管仅说明了能够与本文所述的本发明的实施例结合使用的各种类型的人和/或机器操作的液体操纵装置。
结合包括多通道盒的系统进一步描述本发明的说明性方面的其他细节,系统可以用于测量盒的一个或多个通道中的液体的体积。体积测量可以是例如用于确定液体操纵装置(例如,单通道或多通道移液管)的准确性、其中通过液体操纵系统(例如,机器人系统和/或操作移液管的用户等)来分配一定体积的液体的一致性和/或准确性的过程的一部分。多通道盒可以包括多个通道,其中在通道之间具有相应的间隔,通道配置成使得相应的多通道液体操纵装置能够将液体从其分配嘴的每个分配嘴同时分配到盒的不同通道中。
但是,应当理解,本文所述的本发明的实施例不限于多通道盒和/或液体体积测量。为此,本发明的实施例可以包括盒,所述盒包括单通道。另外,本发明的实施例可以用于评估液体体积的一个或多个其他属性,诸如颜色、澄清度和/或其他。此类评估可以是用于评估液体的各种过程的一部分,诸如评估存在一种或多种化学物质、污染物和/或其他。在这种情况下,可以获取液体样品并将其放置在通道中(在经过处理或不经过处理的情况下)以评估液体的相应属性。更进一步,多通道盒的实施例可以包括配置成测量不同体积的液体的通道,例如,以使得能够测试液体操纵系统准确分配不同体积的液体的能力。
无论如何,液体可以是评估所需的和/或适于评估液体操纵系统的任何类型的液体。说明性液体包括各种水性液体中的任何液体,诸如水、生物样品(例如血液)、试剂、缓冲溶液等,各种油基液体中的任何液体,诸如石油产品、脂质等。当作为分析液体操纵系统在分配一定体积的液体时的准确性和/或一致性的一部分执行评估时,可以将液体配置成帮助将体积测量到所需的精确度。例如,液体可以被水蒸馏至特定目标纯度水平,液体已经被染色以具有在视觉上区分液体和盒或其他环境的颜色(例如,通过增加其间的对比度)和/或其他。在其中评估液体的一个或多个其他属性的实施例中,液体可以包括任何类型的液体样品。例如,液体可以包括从许多位置中的任意位置采样的水和/或从患者抽取的血液等。
在图2A和图2B中示出了说明性的支架和盒的其他细节,其分别示出了根据实施例的说明性支架12和说明性多通道盒14的分解透视图和透视图。在附图中,示出了与支架12和盒14结合使用的多通道移液管2。然而,应当理解,这仅说明了可以利用的各种液体操纵装置。支架12可以使用任何解决方案来制造。例如,支架12可以包括一个或多个模制的塑料部件或机加工的部件,其可以永久地或暂时地使用各种解决方案中的任何解决方案彼此固定或使用3D打印来制造。
无论如何,支架12可以配置成将多通道盒14定位在期望的取向上。例如,支架12可以配置成将盒14定位在直立位置。在这种情况下,盒14的通道14A中的每个通道可以具有入口区域,所述入口区域升高到通道14A的出口开口上方。在更具体的实施例中,支架12可以将盒14定位成使得通道14A处于基本竖直的取向。然而,应当理解,通道14A可以具有任何期望的取向,包括水平以及在水平和竖直之间的任何取向。另外,通道14A可以相对于水平线以一定角度定向,使得通道14A的出口开口在通道14A的入口区域上方,例如,以激励重力将通道14A中的液体拉动成保持在通道14A的入口附近。
支架12可以使用任何解决方案来定位盒14。例如,如图所示,支架12可以配置成使得盒14横向插入到期望位置。在这种情况下,支架12可以包括开口和将盒14引导到位的对应的成组引导件12A(例如,轨道)。然而,应当理解,这仅说明了使用支架12定位盒14的许多解决方案。其他解决方案可以从顶部、底部、前部和/或后部等插入盒14。另外,支架12和盒14可以配置成例如使用卡钩或紧固件来固定盒14,所述卡钩或紧固件可以将盒14固定到位并且可以在需要时允许将盒14从支架12移除。无论如何,支架12和盒14可以尺寸设计成使得当盒14插入支架12中并邻接机械止动件时被适当地定位。另外,支架12和盒14可以包括一个或多个特征(例如,互补形状、视觉指示器和/或其他),其确保在其中通道14A的入口位于正确的位置的情况下将盒14插入到支架12中。
一旦盒14定位在支架12中,例如,如图2B所示,就可以将液体分配到支架12的通道14A中的一个或多个通道中。在实施例中,支架12可以包括一个或多个特征以帮助将移液管2的一个或多个分配嘴2A(例如,移液管末端)与盒14的一个或多个通道14A对准,使得液体可以适当地从移液管2的分配嘴2A分配到盒14的通道14A中。例如,支架12示出为包括机械引导件12B。引导件12B可以包括成组通孔,成组通孔中的每个通孔与适当地定位在支架12中的盒14的通道14A竖直对准。另外,支架12示出为包括机械止动件12C,其限定了移液管2的分配嘴2A相对于盒14的通道14A的入口区域的最大插入点。在实施例中,机械止动件12C包括成组通孔,成组通孔中的每个通孔与盒14的通道14A竖直对准并且尺寸设置成仅允许相应的移液管2的分配嘴2A的一部分插入通过其中。
盒14可以包括一个或多个特征以帮助将一定体积的液体分配到通道14A中和/或评估存在于通道14A中的液体。为此,图3A至图3D示出了根据实施例的说明性多通道盒14的各种视图。特别地,图3A和图3B分别示出了多通道盒14的正视图和侧视图,而图3C和图3D示出了在其中存在和不存在液体体积6的情况下通道14A的入口区域14B的详细侧视图。
在实施例中,盒14中的每个通道14A由紧邻第二板42的面向内的表面42A的区域定位的第一板40的面向内的表面40A的区域形成,所述第一板的面向内的表面的区域形成每个通道14A的至少一侧,所述第二板的面向内的表面的区域也形成每个通道14A的至少一侧。结果,每个通道14A可以具有矩形的横向表面区域,其具有由板40、42的面向内的表面40A、42A的区域限定的平行侧。在实施例中,通道14A的横向表面区域具有长形的形状,其可以是矩形、圆角矩形、平行四边形、梯形和/或类似形状。
板40、42中的一个或两个板的面向内的表面40A、42A以及板40、42之间的距离(例如,间隙)可以配置成使得在入口区域14B处分配的液体通过毛细作用拉入通道14A。为此,通道14A在给定位置处的深度(通过入口区域14B下方的面向内的表面40A、42A之间的距离来测量)可以为大约4毫米或更小,在更具体的实施例中,大约2毫米或更小。在更具体的实施例中,深度可以在100微米的量级。然而,应当理解,在实施例中,深度甚至可以小于10微米。通道14A在给定位置处的横向宽度(垂直于深度和通道内的液体流动方向来测量)可以取决于应用而显著变化。在实施例中,横向宽度在50微米和2厘米之间的范围内。但是,应当理解,这些范围之外的宽度是可能的。通道14A的实际尺寸与通道14A的规定尺寸的可接受的偏差也可能基于应用而不同。在说明性实施例中,通道14A的尺寸与规定尺寸的可接受的偏差在+/-500纳米内。
当在入口区域14B处将液体6分配到板40、42中的一个板上时,表面张力可能导致液体6在板上扩散并接触另一个板。替代地,液体6可以分配成使得其接触两个板40、42。无论如何,然后将液体芯吸到通道14A中,如图3A和图3D所示。当通道14A包封液体6的表面的大部分时,仅液体6的表面的小部分暴露于蒸发,从而提供更精确的测量,诸如体积测量。限制液体6的蒸发还可以提供额外的时间来获得测量数据。例如,在分配液体6之后,可以在作为测量液体6的一个或多个属性的一部分进行成像之前重新放置盒14(例如,从支架12移除)。
在更具体的说明性应用中,盒14可以用于评估10微升(μL)体积的液体6分配到通道14A中的准确性。在这种情况下,液体6可以包括配置成用于此种评估的液体。例如,液体6可以是染料或染色液体。为了使液体6的分配体积测量精度为1%或更高,板40、42之间的距离可以是大约100微米,并且应该已知在+/-500纳米内。利用这些值,液体6的10微升体积将填充约100平方毫米的面积。当面积可以被测量至大约0.3%以内时,将知道液体6的实际体积具有优于+/-1%的精度。
在本实施例中,可以使用成像装置16(图1)和计算机系统20(图1)来进行液体6的体积的面积的测量。例如,假设液体6的面积为约4mm×25mm,则每个尺寸应被测量为在约10微米(μm)以内,例如4+/-0.01mm×25+/-0.01mm。如果成像装置获取具有10平方微米像素的图像数据,则包括液体6的通道14A的图像数据的大小为约400×2500像素。在实施例中,已知通道14A的横向尺寸可以具有更高的精确度。该知识可以用于确定图像数据的准确比例尺和/或增加所进行测量的精度。对于诸如染料的有色液体,对在远离染色液体的边界的区域中的液体6进行成像的像素将读取一定量的颜色。由于像素的一部分感测不到颜色,因此对在边界处的染色液体的区域进行成像的像素可能感测到较少的颜色。可以对来自此类像素的数据进行插值以报告相应量的液体。
一个或两个板40、42的面向内的表面40A、42A可以对旨在分配在其中的液体6具有亲和性。为此,对于水性液体,一个或两个板40、42的至少面向内的表面40A、42A可以是亲水性表面。对于油基液体6,一个或两个板40、42的至少面向内的表面可以是亲脂性表面。在实施例中,板40、42的面向内的表面40A、42A对液体6具有近似相同的亲和性。为此,面向内的表面40A、42A可以由相同的材料形成。然而,应当理解,这仅是说明性的。在替代实施例中,面向内的表面中的一个表面对液体6的亲和性可以比另一个表面强得多。
通道14A的入口区域14B可以配置成帮助将液体6吸入通道14A和/或帮助将液体操纵装置的分配嘴引导到入口区域14B。例如,一个或两个板40、42可以包括平滑渐缩的入口表面40B、42B,这使得入口区域14B的深度(通过渐缩入口表面40B、42B之间的平均距离来测量)大于通道14A至少在通道14A的入口处的深度。通道14A的入口可以对应于其中渐缩入口表面40B、42B终止的板40、42的位置。在实施例中,间隔件44仅延伸到通道14A的入口,如图3C所示。然而,应当理解,间隔件44可以进一步向上延伸至入口区域14B中的一些或全部。可以基于许多因素中的任何因素来选择渐缩的量和/或形状,因素包括例如可以用于将液体6分配到通道14A中的液体操纵装置2的分配嘴2A的尺寸。如图所示,每个板40、42的渐缩入口表面40B、42B可以延伸与加宽的距离大致相同的深度,其中弯曲角度限定渐缩入口表面40B、42B。渐缩入口表面40B、42B可以对液体6具有亲和性。包括渐缩入口表面40B、42B可以帮助确保所有液体6进入通道14A,因为突变过渡可能阻止至少一些液体6进入通道14A。
每个板40、42可以由一种或多种合适的材料的任何组合制成。在实施例中,至少面向前的板可以包括一个或多个透明区域,其允许相关的辐射穿过其中,使得可以从中观察和/或成像每个通道14A的至少一部分。在实施例中,面向前的板至少部分地由对可见光透明的材料形成,诸如玻璃。但是,应当理解,可见光仅说明可以用于成像的辐射。此外,应当理解,可以使用一种或多种合适材料的任意组合来形成面向前的板,材料包括玻璃、熔融二氧化硅、石英、聚碳酸酯、丙烯酸等。在实施例中,面向后的板由与面向前的板相同的材料形成。替代地,面向后的板可以至少部分地由反射辐射和/或吸收辐射等的材料形成。在这种情况下,面向后的板可以提供对于观察和/或成像存在于通道14A中的液体6有用的背景。例如,面向后的板可以由玻璃、硅、金属、复合材料、陶瓷、塑料等中的一种或多种形成。
如本文中所讨论的,至少板40、42的面向内的表面40A、42A的限定通道14A的一侧的那部分可以对液体6具有亲和性。在实施例中,板40、42由对液体6具有亲和性的材料形成。在替代实施例中,板40、42的面向内的表面40A、42A的一个或多个区域可以涂覆有对液体6具有亲和性的物质。对于面向前的板,涂层对于用于观察和/或成像通道14A内存在的液体6的至少一部分的相关辐射可以是透明的。对于面向后的板,涂层也可以是透明的或可以反射或吸收辐射。用于水性液体的说明性亲水涂层是二氧化硅,而用于油基液体的说明性亲脂涂层是聚四氟乙烯(PTFE)。
如图3A所示,盒14可以包括各种标记的任意组合,其可以帮助评估液体6。例如,盒14示出为包括成组刻度线14C,其可以限定一个或多个物理距离。刻度线14C可以配置成使得图像数据能够被正确定比例尺。刻度线14C可以位于盒14的外部或位于面向内的表面40A、42A上。为了视觉检查,盒14可以包括成组刻度线14C,其可以在视觉上与每个通道14A相关联。例如,盒14可以包括一个或多个刻度线14C,其与每个通道14A紧邻和/或与每个通道相交并延伸穿过每个通道14A。在任一种情况下,由刻度线14C限定的物理距离可以对应于通道14A内的液体6的一个或多个体积。
此外,盒14可以包括盒14的识别数据14D。识别数据14D可以允许盒14被追踪。例如,当板40、42之间的实际距离在盒之间变化时,识别数据14D可以使得实际距离能够与盒14相关。为此,识别数据14D可以包括一个或多个代码,其可以包含盒14的多个位置中的间隙尺寸。可以例如使用干涉术和/或在边缘上对盒14进行成像等来测量间隙。此类信息可以使得计算机系统能够为盒14上的每个坐标内插或外推间隙。另外,盒14可以包含为盒上的每个坐标或通道指定间隙的公式。对准标记也可以在一个或两个板40、42上。
尽管盒14示出为包括笔直的并且具有均匀的横向宽度的通道14A,但是应当理解,本文所述的盒可以具有这样的通道,其具有一个或多个弯曲部、横向宽度的一种或多种变化、深度的变化和/或其他的任意组合。例如,图3E示出了根据实施例的具有蛇形通道14A的说明性盒。如图所示,蛇形通道14A可以由多个弯曲部形成,从而使得通道14A遵循弯曲路径。蛇形通道14A允许将更大体积的液体放置在给定高度的盒14的每个通道14A中。类似地,对于给定体积的液体,更长、更窄的通道可以允许较小增量的分度,因此用户可能能够更准确地读取液体6的体积。
盒14和/或通道可以包括一个或多个特征以增加可以测量液体的分配体积的精度。为此,图4A至图4C示出了根据实施例的各种说明性特征,这些说明性特征中的一个或多个说明性特征可以结合到本文所述的盒中。在图4A中,盒14可以包括多个通道14A,每个通道具有其自己的测量标记14E(例如,分度)。测量标记14E可以包括在多个高度处与通道相交并延伸穿过通道14A的多个横向线。测量标记14E中的每个测量标记可以对应于给定的体积。在这种情况下,通道14A可以包括一个或多个属性,这些属性导致液体体积的弯液面反复位于给定位置。例如,通道14A可以具有在一些或全部通道14A上减小的深度。在这种情况下,液体将被最强地吸引到具有最窄深度的区域。结果,当通道14A的尺寸和液体体积的一个端部的弯液面的位置已知为高精度时,液体的体积的另一个弯液面相对于成组测量标记14E的位置是仅有的需要精确执行的测量。
图4B示出了具有单通道14A的说明性盒14。在这种情况下,通道14A包括四个竖直部分15A至15D。在与出口开口14F相邻的部分15D中,通道14A的横向宽度连续减小至盒14的出口开口14F。这种构造可以减少通过通道14A的出口开口14F的液体的蒸发,而蒸发本会在具有较大横向面积的出口开口14F的情况下发生。通道14A的中央部分15C可以比与通道14A的进入区域14B相邻的入口部分15A明显更宽。宽的中央部分15C可以允许更容易地观察/成像液体体积,并且对于通道14A的给定高度,可以允许通道14A保持较大体积的液体。过渡部分15B可以位于入口部分15A和中央部分15C之间。包括过渡部分15B可以帮助防止在液体体积内形成气泡。然而,应该理解,在进行测量时,例如通过分析图像数据,可以考虑到在液体体积内存在气泡。另外,过渡部分15B和入口部分15A可以使用测量标记14E(图4A)提供更准确的测量,并且提供在入口区域14B处暴露于蒸发的液体的较小表面积。
如图4C所示,作为通道14A的变化横向尺寸的附加或与其相反,通道14A的实施例可以具有沿着通道14A的一些或全部长度变化的深度。例如,变化的深度可能使得深度朝着通道14A的出口开口14F渐缩。如虚线所示,在用于通道的入口区域14B处的通道14A的深度可以大于(例如,大约为两倍)在通道14A的出口开口14F处的通道14A的深度。然而,应当理解,这仅是说明性的,并且深度可以改变任何期望的量,包括比图4C所示的变化小得多的量。无论如何,所述变化超出了可能是由用于形成结构的制造过程的限制而导致的非预期变化。另外,通道14A的深度可以在远离入口区域14B的方向上增大,而不是如图所示减小。变化的深度还可以增加通道14A中的液体的表面体积比,并且表面张力将导致液体远离入口区域14B芯吸到通道14A的较浅端部。在实施例中,可以通过将板40、42相对于彼此以一定角度固定来实现变化的深度。在另一个实施例中,一个或两个板40、42可以包括一个或多个弯曲部,使得通道14A的至少一部分具有沿着通道14A的至少一部分改变的深度。
可以使用各种通道限定解决方案中的任何方案来限定盒的每个通道14A的横向范围。在实施例中,每个通道14A的横向范围由位于板40、42之间的一个或多个间隔件44(图3C)限定。如上所述,每个间隔件44可能具有这样的厚度,其使得通道14A的深度为2mm或更小,而大多数通道14A的横向宽度明显更大。由于每个通道14A的边缘仅提供通道14A的表面的相对小的部分,所以间隔件44的表面不需要对液体具有亲和性(例如,亲水性或亲脂性)。在实施例中,每个间隔件44由这样的材料形成和/或具有这样的表面,所述材料和/或表面对分配到通道14A中的液体几乎没有亲和性或没有亲和性。此外,可以使用包括模切、光刻、化学蚀刻和/或类似方法的各种解决方案中的任何方案来使每个间隔件44成形。用于间隔件44的说明性材料包括模切粘合剂、粘合剂涂覆的化学蚀刻金属和/或其他。
图5A和图5B示出了根据另一个实施例的说明性盒14的正视图和剖视图。在这种情况下,通道14A中的每个通道的横向范围至少部分地由施加到每个板40、42的面向内的表面40A、42A的排斥涂层46A、46B限定。涂层46A、46B提供疏水的(对于水性液体)表面或疏油的(对于油基液体)表面,这防止了液体在其表面上扩散。为此,如图5B所示,涂层46A、46B不需要彼此接触以在通道14A的整个深度上提供物理屏障。尽管盒14示出为包括排斥涂层46A、46B而其中面向内的表面40A、42A对液体具有亲和性,但是应当理解,盒14的实施例可以包括对液体具有亲和性的涂层而具有排斥液体的面向内的表面。例如,对于水溶液,板40、42可以是塑料的和/或在将是亲水性的区域中进行涂覆等。
无论如何,可以使用诸如光致抗蚀剂的现有技术极其精确地对涂层46A、46B进行图案化,使用光刻技术进行图案化等。涂层46A、46B中的一个或两者可以是透明的、不透明的或半透明的。另外,可以确定沉积在相对的面向内的表面40A、42A上的涂层46A、46B的未对准。例如,对于透明涂层46A、46B,染料在其中染料未完全填充间隙的区域中不会显得暗,而其在其中在一个壁上的涂层不与相对壁上的涂层重叠的区域中会显得暗。对于已知非常精确地图案化的不透明涂层46A、46B,可以假定透明区域的测量横向宽度与已知图案化宽度之间的差异(例如,1.9mm与2.0mm)是未对准的结果(例如,0.1mm)。测量系统(例如,图1所示的计算机系统20)可以采用补偿技术来精确地估计液体的隐藏体积。测量系统可以对透明涂层和半透明涂层采用类似的补偿解决方案。
盒14还可以包括端部间隔件44A、44B,其将板40、42以用于通道14A深度的期望间隔保持在一起。每个端部间隔件44A、44B由如本文所述的任何类型的材料制成。在实施例中,端部间隔件44A、44B可以限定紧邻的通道14A的一个侧的横向范围的至少一部分。替代地,如图5A和图5B所示,涂层46A、46B可以限定所有通道14A的两个侧。
在实施例中,面向内的表面中的仅一个表面涂覆有排斥涂层以限定通道的横向范围。例如,图6A至图6C分别示出了根据另一个实施例的说明性盒14的正视图、顶视图和侧剖视图。在这种情况下,通道14A中的每个通道的横向范围至少部分地由仅涂覆到板42的面向内的表面42A的排斥涂层46限定。虽然通道14A中的液体将在相对表面40A上散布到排斥涂层46之外,但是液体只会散布那么远,因此具有足够的横向宽度的排斥涂层46将防止液体从通道14A横向移出。排斥涂层46所需的横向宽度可以基于液体的属性和/或相邻通道之间的距离而变化。在实施例中,排斥涂层46的横向宽度是通道14A的深度的至少三倍。然而,应该理解,在某些应用中,横向宽度可以以数量级变化。可以使用任何解决方案来准确地估计在相对表面40A上散布到排斥涂层46之外的液体的体积。
如在图6C中最清楚地示出的,通道14A的入口区域14B可以由具有渐缩入口表面的两个板中的一个或两个形成。在该示例中,仅仅板42包括渐缩入口表面42B。在本实施例中,渐缩入口表面42B是线性渐缩。
图7A和图7B示出了根据另一个实施例的说明性盒14的正视图和剖视图,其示出了用于限定通道14A的横向范围的再一个解决方案的使用。在这种情况下,每个面向内的表面40A、42A具有形成在其中的阻挡凹槽48A、48B以限定通道14A的边界。例如,当与吸引性的面向内的表面40A、42A接触的表面与体积之比大于阻挡凹槽48A、48B中的表面与体积之比时,表面张力可以将液体保持在形成于板40、42之间的通道14A中。
每个阻挡凹槽48A、48B所需的深度和/或横向宽度可以基于液体的属性和/或相邻通道之间的距离而变化。在实施例中,每个阻挡凹槽48A、48B的深度是通道14A的深度的至少三倍。此外,阻挡凹槽48A、48B的横向宽度可以超过通道14A的深度。例如,横向宽度可以至少比通道14A的深度宽三倍。然而,应当理解,在某些应用中,横向宽度和深度中的每一个可以以数量级变化。阻挡凹槽48A、48B可以使用任何解决方案形成,诸如化学蚀刻或激光雕刻。
图8A和图8B示出了根据实施例的说明性盒14的剖切正视图和侧剖视图。在这种情况下,盒14示出为包括多个通道14A,通道中的每个通道可以使用本文所述的解决方案来限定。另外,盒14示出为包括端部间隔件44A、44B。如图所示,每个端部间隔件44A、44B可以包括沿着端部间隔件44A、44B的高度定位的多个物理结构45。每个物理结构45可以包括任何类型的结构以确保板40、42之间的期望间隔。
例如,物理结构45可以包括球形间隔件(例如,微珠),其可以具有对应于通道14A的期望深度的直径。在这种情况下,端部间隔件44A、44B可以包括密封剂,球形间隔件嵌入其中,以控制板40、42的间隔。在另一个实施例中,物理结构45可以包括模制或沉积到板40、42中的一个或两个板的面向内的表面上的一个或多个突起(例如,柱)。类似于球形间隔件,突起的尺寸可以确保板40、42之间的适当间隔。当可以以足够的精度制造和放置物理结构45时,物理结构可以具有为通道14A提供渐缩深度的布置,如图4C所示。尽管仅结合位于盒14的端部处的间隔件示出了物理结构,但是应当理解,物理结构可以用于盒的任何通道和/或本文所述的任何间隔件中。
如本文中所讨论的,盒可以包括一个或一个特征,其配置成限制蒸发的影响。另外,盒可以包括一个或多个特征以确保其被正确使用,例如被插入并正确地保持在支架12(图1)中。在实施例中,本文所述的盒包括盖,盖可以配置成限制蒸发和/或确保正确使用本文所述的盒。
例如,图8A和图8B所示的盒还示出为包括位于盒14的底部的盖50。盖50可以覆盖盒14的底部,并使用任何解决方案(例如,粘合剂)附接至其上。盖50可以包括成组开口52,成组开口中的每个开口与盒14中的通道14A的出口开口对准。开口52的横向面积可以显著地比通道14A的出口开口的横向区域小,从而限制了暴露用于蒸发的表面区域。当盖50接触板40、42的底表面时,盖50可以由排斥相应液体的材料形成。说明性材料包括聚乙烯、乙烯基、聚丙烯和/或类似物。
图9A和图9B示出了根据实施例的另一个说明性盒14的正视图和侧剖视图。盒14包括用于盖50的替代构造。特别地,在这种情况下,盖50包括沿着板40、42的底表面的长度延伸的通气间隙54。盖50可以由防水材料形成,和/或通气间隙54可以具有足够大的竖直间隔(例如,在实施例中,为通道深度的至少三倍,但在某些应用中可以小得多),以防止液体从通道14A芯吸出来。通道14A中的空气可以行进通过通气间隙54并经由形成在其中的一个或多个竖向通气凹槽56离开盖50。例如,盖50可以包括形成在板40、42中的一个与盖50之间的单通气凹槽56。
附加于限制蒸发,由于盖50产生了与盒14的顶部不同的盒14的底部,盖50的存在可以提供用于将盒14插入到支架12中的物理和视觉指示器。在这种情况下,支架12可以具有用于盒14的互补开口,所述互补开口仅允许盒14以正确的取向插入。在实施例中,盖50可以配置成能够在没有支架12的情况下使用盒14。例如,盖50可以足够宽,以允许盒14以期望的取向被支撑而无需支架12的辅助。
另外,图8A至图8B和图9A至图9B的盒14示出了在通道14A的入口区域附近包括凹口57。凹口57可以帮助将液体操纵装置的分配嘴与通道14A的入口区域对准。如图所示,凹口57可以具有圆化形状,其可以基于分配嘴的一个或多个属性来确定尺寸。凹口57可以提供用于将分配嘴2A(图2A)定位成与凹口57接触的表面。当定位成与凹口57接触时,离开分配嘴2A的液体将在通道14A的入口区域14B中。另外,第一板40可以对于每个通道14A包括凹口57,而第二板42可以延伸超过通道14A的入口区域。此外,第一板40可以包括通道14A的渐缩入口表面40B,所述渐缩入口表面可以配置成辅助液体进入通道14A。
尽管本文所述的盒示出为由两个不同的板形成,但是应当理解,本文所述的盒的实施例可以由单件材料制成,诸如拉制玻璃、模制或挤压塑料、3D打印材料和/或其他。图10A至图10D分别示出了根据实施例的由单件形成的说明性盒的正视图、底视图和两个详细视图。如图所示,盒14可以包括延伸穿过其中的多个通道14A。每个通道14A可以具有矩形截面,如本文所述,所述矩形截面可以在一个或多个尺寸上变化和/或一次或多次改变方向。
如在图10C和图10D中详细示出的,通道14A的入口区域14B可以包括入口区域14B以帮助将液体操纵装置引导到适当的位置,以将液体分配到相应的通道14A中。入口区域14B可以包括具有半圆柱形形状的入口凹口58,所述半圆柱形形状一直延伸到盒14的侧边缘。凹口58的内部端部可以具有在通道14A上方延伸的弯曲部,以帮助相对于通道14A适当地放置分配嘴。在入口凹口58和通道14A之间的过渡处,表面可以包括渐缩入口表面58B,所述渐缩入口表面可以具有与图9B所示的渐缩入口表面40B的截面形状相似的截面形状。入口凹口58的表面和渐缩入口表面58B可以对液体具有亲和性。尽管结合由单件材料形成的实施例示出和描述了入口凹口58,但是应当理解,由两个板形成的盒的实施例可以包括类似构造的入口凹口。
如本文中所讨论的,附加于配置成在竖立位置中定向时使用,本文所述的盒的实施例还可以配置成在水平定向时和/或在使得出口开口高于用于通道的入口区域的位置中使用。为此,图11示出了根据另一个实施例的说明性液体评估系统60。液体评估系统60示出为包括支架62,支架配置成将盒64定位在期望的取向,以将液体分配到位于盒64中的一个或多个通道中。一旦已定位盒64,就可以例如使用液体操纵装置2将液体分配到盒64的一个或多个通道中。
支架62可以配置成将盒64定位在期望的取向上。在这种情况下,盒64可以以大致水平的取向定位。结果,盒64中的每个通道可以具有与通道在大致相同的水平面上的相应的入口区域。在另一个实施例中,盒64定向成使得每个通道的出口开口高于用于通道的入口区域,例如,以将液体的弯液面保持在通道的入口处。
无论如何,支架62可以包括基座62A和引导件62B,它们可以使得盒64能够定位在适当的近似水平位置,以将液体分配到盒64的一个或多个通道中。为此,引导件62B可以包括一个或多个机械止动件,机械止动件限定了其中要在两个横向方向上插入盒64的程度。当引导件62B接触盒64的底部时,引导件62B可以配置成允许空气例如以类似于本文所述的盖的方式从盒64的通道逸出。
此外,支架62可以包括一个或多个特征以帮助将液体操纵装置(例如,移液管)的一个或多个分配嘴2A(例如,移液管末端)与盒64的一个或多个通道对准,使得可以将液体从液体操纵装置的分配嘴2A适当地分配到盒64的通道中。例如,支架62示出为包括机械引导件62C,其可以包括臂,所述臂可以帮助定位液体操纵装置和/或相应的分配嘴2A。
系统60可以用于使用任何解决方案来评估位于盒64的通道中的液体的一个或多个属性。为此,系统60还示出为包括成像装置16和计算机系统20,其各自可以如本文相对于图1所示的系统10所述地进行操作。如图所示,计算机系统20和成像装置16可以嵌入在支架62的基座62A内。然而,应当理解,这仅说明各种可能的配置。当成像装置16位于基座62A内时,基座可以配置成使得成像装置16能够通过基座62A的顶表面(例如通过具有玻璃区域和/或其他)获取盒64的一个或多个区域的图像数据。
图12示出了根据实施例可以在水平取向上使用的说明性多通道盒64。盒64可以包括成对板40、42和位于其间的间隔件结构44,它们中的每一个可以如本文所述地构造。如图所示,第一板42可以延伸超过另一个板40以暴露出间隔件结构44的一部分,间隔件结构可以包括凹槽引导件66以帮助相对于相应的通道适当地定位分配嘴(例如,移液管末端)。凹槽引导件66和顶板40可以形成用于每个通道的入口区域。顶板40可以包括渐缩入口表面40B,如结合图9B所示。
图13示出了根据另一个实施例可以在水平取向上使用的说明性多通道盒64的分解图。在这种构造中,多通道盒64包括顶板40,顶板具有多个开口68,开口中的每个开口与由位于两个板40、42之间的间隔件结构44限定的通道对准。液体可以通过相应的开口68沉积到通道中。开口可以位于沿着通道的任何位置,诸如在通道的端部处的位置或远离通道的两个端部的位置。每个开口68可以具有渐缩入口表面,其可以配置成类似于图9B所示的渐缩的入口表面40B以便于液体流入相应的通道。
虽然在本文中示出和描述为液体评估系统,但是应当理解,本发明的方面还提供了各种替代实施例。例如,在一个实施例中,本发明提供了一种方法,所述方法使用本文所述的系统来评估单通道或多通道液体操纵装置(例如移液器)的准确性、液体操纵装置操作员(人类或机器人)的准确性中的一个或多个。此类方法可以包括将用于评估的液体分配到本文所述的盒的一个或多个通道中并测量所分配液体的精度。使用不同的盒和/或盒中的不同通道可以将此方法重复一次或多次。可以由计算机系统使用从盒获取的图像数据来执行测量和/或由人来执行测量。
在另一个实施例中,本发明提供了一种用于评估分配到本文所述的盒的通道中的液体的体积的一个或多个属性的方法。液体可以包括样品和/或处理过的样品等,其中关于颜色或透明度中的一种或多种的数据可以与液体体积的一个或多个其他属性相关联。在这种情况下,可以将多个样品和/或一个或多个对照样品放置在本文所述的盒的不同通道中并同时进行比较。另外,诸如照明、温度、通气和/或其他的受控环境条件可以提供用于比较在不同时间成像的不同样本的合适数据。有关环境条件中的一个或多个环境条件的数据可以用于归一化在不同时间采集和成像的样本以进行适当的比较。
如本文所使用的,除非另有说明,否则术语“组”是指一个或多个(即,至少一个),以及短语“任何解决方案”是指任何现在已知或以后开发的解决方案。除非上下文明确地另外指出,否则单数形式“一(a)”、“一个(an)”和“该(the)”也包括复数形式。另外,当在本说明书中使用时,术语“包括(comprises)”、“包括(includes)”、“具有”以及其各自的相关形式指定了所述特征的存在,但是不排除一个或多个其他特征和/或其组的存在或添加。
出于说明和描述的目的已经给出了本发明的各个方面的前述描述。其不旨在穷举性的或将本发明限制于所公开的确切形式,并且显然,许多修改和变化是可能的。对于本领域技术人员而言显而易见的此种修改和变型包括在所附权利要求所限定的本发明的范围内。

Claims (20)

1.一种液体评估系统,所述液体评估系统包括:
盒,所述盒包括用于保持液体和测量液体体积的通道,所述盒包括:
第一板,所述第一板包括面向内的表面的第一区域,所述面向内的表面的第一区域形成所述通道的第一侧和用于所述通道的入口区域的第一侧;以及
第二板,所述第二板包括面向内的表面的第二区域,所述面向内的表面的第二区域形成所述通道的第二侧和用于所述通道的所述入口区域的第二侧,其中所述第一区域和所述第二区域是亲水的或亲脂的,并且其中所述第一板和所述第二板之间的分隔导致所述液体通过毛细作用拉入用于所述通道的所述入口区域和所述通道中,其中所述第一板或所述第二板中的至少一个板包括渐缩入口表面,所述渐缩入口表面形成位于所述第一板和所述第二板之间的所述入口区域的至少一部分,
其中所述第一板或所述第二板中的至少一个板包括成组标记,所述成组标记对应于保持在所述通道中的所述液体的至少一个体积。
2.根据权利要求1所述的液体评估系统,其中用于所述通道的所述入口区域的深度大于紧邻用于所述通道的所述入口区域定位的所述通道在所述通道的入口处的深度。
3.根据权利要求1所述的液体评估系统,其中所述第一板和所述第二板之间的分隔限定通道的深度,并且其中所述渐缩入口表面为所述入口区域提供变化的深度。
4.根据权利要求1所述的液体评估系统,其中所述第一板的所述面向内的表面的所述第一区域包括涂层,其中所述涂层是亲水的或亲脂的中的至少一者。
5.根据权利要求1所述的液体评估系统,其中所述通道或用于所述通道的所述入口区域中的至少一者的横向范围的至少一部分由间隔件限定,其中所述间隔件物理接触所述第一板或所述第二板中的至少一个板。
6.根据权利要求1所述的液体评估系统,其中所述通道或用于所述通道的所述入口区域中的至少一者的横向范围的至少一部分由涂层限定,所述涂层施加到所述第一板的所述面向内的表面或所述第二板的所述面向内的表面中的至少一个,其中所述涂层是疏水的或疏脂的中的至少一者。
7.根据权利要求1所述的液体评估系统,其中所述通道或用于所述通道的所述入口区域中的至少一者的横向范围的至少一部分由在所述第一板的所述面向内的表面中形成的凹槽或在所述第二板的所述面向内的表面中形成的凹槽中的至少一个限定。
8.根据权利要求1所述的液体评估系统,其中所述盒还包括沿着所述第一板和所述第二板之间的高度定位的多个物理结构,其中所述多个物理结构中的每个物理结构具有与所述第一板和所述第二板之间的在所述物理结构的位置处的期望间隔相对应的尺寸。
9.根据权利要求8所述的液体评估系统,其中所述多个物理结构包括多个球形间隔件。
10.根据权利要求8所述的液体评估系统,其中所述多个物理结构包括来自所述第一板的所述面向内的表面或所述第二板的所述面向内的表面中的至少一者的突起。
11.根据权利要求1至10中任一项所述的液体评估系统,其中所述第一板或所述第二板中的一个板比所述第一板或所述第二板中的另一个板延伸得更远而超过位于所述第一板和所述第二板之间的用于所述通道的所述入口区域,以帮助分配所述液体。
12.根据权利要求11所述的液体评估系统,其中用于所述通道的所述入口区域延伸到所述第一板或所述第二板中的所述一个板的比所述第一板或所述第二板中的所述另一个板定位得更远的限定区域中。
13.一种液体评估系统,所述液体评估系统包括:
盒,所述盒包括用于保持液体和测量液体体积的成组通道,所述盒包括:
第一板,所述第一板包括面向内的表面,所述面向内的表面形成所述成组通道中的每个通道的第一侧和用于所述成组通道中的每个通道的入口区域的第一侧,其中所述第一板在所述面向内的表面上具有渐缩入口表面,所述渐缩入口表面形成用于所述成组通道中的每个通道的位于所述第一板和第二板之间的所述入口区域的至少一部分;以及
第二板,所述第二板包括面向内的表面,所述面向内的表面形成所述成组通道中的每个通道的第二侧和用于所述成组通道中的每个通道的所述入口区域的第二侧,其中所述第一板和所述第二板之间的分隔导致所述液体通过毛细作用拉入用于通道的相应入口区域和所述通道中,
其中所述第一板或所述第二板中的至少一个板包括成组标记,所述成组标记对应于保持在所述成组通道中的每个通道中的所述液体的至少一个体积。
14.根据权利要求13所述的液体评估系统,所述盒还包括位于所述第一板和所述第二板之间的成组间隔件,其中所述成组间隔件中的每个间隔件限定所述成组通道中的通道或用于所述成组通道中的通道的入口区域中的至少一者的横向范围。
15.根据权利要求13所述的液体评估系统,其中所述成组通道中的通道或用于所述成组通道中的通道的入口区域中的至少一者的横向范围至少部分地由所述第一板或所述第二板中的至少一个板的面向内的表面的疏水或疏脂的区域限定。
16.根据权利要求13所述的液体评估系统,其中所述第一板包括位于用于所述成组通道中的通道的入口区域处的凹口,其中所述凹口帮助将所述液体分配到用于所述成组通道中的所述通道的所述入口区域中。
17.根据权利要求13至16中任一项所述的液体评估系统,其中所述第一板或所述第二板中的一个板比所述第一板或所述第二板中的另一个板延伸得更远而超过用于所述成组通道中的每个通道的所述入口区域,以帮助分配所述液体。
18.一种液体评估系统,所述液体评估系统包括:
盒,所述盒包括用于保持液体和测量液体体积的成组通道,所述盒包括:
第一板,所述第一板包括面向内的表面,所述面向内的表面形成所述成组通道中的每个通道的第一侧和用于所述成组通道中的每个通道的入口区域的第一侧,其中所述第一板在所述面向内的表面上具有渐缩入口表面,所述渐缩入口表面形成用于所述成组通道中的每个通道的位于所述第一板和第二板之间的所述入口区域的至少一部分;以及
第二板,所述第二板包括面向内的表面,所述面向内的表面形成所述成组通道中的每个通道的第二侧和用于所述成组通道中的每个通道的所述入口区域的第二侧,其中所述第二板比所述第一板延伸得更远而超过用于所述成组通道中的每个通道的所述入口区域,其中所述第一板和所述第二板之间的分隔导致所述液体通过毛细作用拉入用于通道的相应入口区域和所述通道中,其中所述成组通道中的每个通道的所述第一侧和所述第二侧是亲水的或亲脂的中的至少一者,
其中所述第一板或所述第二板中的至少一个板包括成组标记,所述成组标记对应于保持在所述成组通道中的每个通道中的所述液体的至少一个体积。
19.根据权利要求18所述的液体评估系统,所述液体评估系统还包括成像装置,所述成像装置配置成获取所述成组通道的图像数据。
20.根据权利要求18或19所述的液体评估系统,所述液体评估系统还包括用于接收和存储所述成组通道的图像数据的计算机系统。
CN201880028976.6A 2017-03-31 2018-03-30 用于测量流体体积的装置 Active CN110612160B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762479513P 2017-03-31 2017-03-31
US62/479,513 2017-03-31
PCT/US2018/025472 WO2018183896A1 (en) 2017-03-31 2018-03-30 Device for measuring fluid volumes

Publications (2)

Publication Number Publication Date
CN110612160A CN110612160A (zh) 2019-12-24
CN110612160B true CN110612160B (zh) 2022-06-03

Family

ID=62025983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880028976.6A Active CN110612160B (zh) 2017-03-31 2018-03-30 用于测量流体体积的装置

Country Status (4)

Country Link
US (1) US11602751B2 (zh)
EP (1) EP3600663A1 (zh)
CN (1) CN110612160B (zh)
WO (1) WO2018183896A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183896A1 (en) 2017-03-31 2018-10-04 Forward Biotech, Inc. Device for measuring fluid volumes
WO2020154248A1 (en) * 2019-01-21 2020-07-30 Forward Biotech, Inc. Liquid evaluation
CN109974820B (zh) * 2019-03-13 2021-11-30 上海理工大学 笔式胰岛素注射器剂量准确度检测装置及方法
CN110180613B (zh) * 2019-06-27 2020-02-14 电子科技大学 一种基于表面电荷的移液枪
WO2023107663A1 (en) * 2021-12-09 2023-06-15 Forward Biotech, Inc. Liquid evaluation device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2056877T3 (es) 1987-12-23 1994-10-16 Abbott Lab Dispositivo para realizar reacciones de aglutinacion.
GB8911462D0 (en) * 1989-05-18 1989-07-05 Ares Serono Res & Dev Ltd Devices for use in chemical test procedures
GB2275428A (en) * 1993-02-24 1994-08-31 Central Research Lab Ltd Chromatography column
US6193647B1 (en) 1999-04-08 2001-02-27 The Board Of Trustees Of The University Of Illinois Microfluidic embryo and/or oocyte handling device and method
US6225109B1 (en) * 1999-05-27 2001-05-01 Orchid Biosciences, Inc. Genetic analysis device
JP2005504317A (ja) * 2001-09-28 2005-02-10 イビディ ゲムベーハー フロー・チャンバー
US7189580B2 (en) 2001-10-19 2007-03-13 Wisconsin Alumni Research Foundation Method of pumping fluid through a microfluidic device
US6866762B2 (en) * 2001-12-20 2005-03-15 Board Of Regents, University Of Texas System Dielectric gate and methods for fluid injection and control
US6939450B2 (en) * 2002-10-08 2005-09-06 Abbott Laboratories Device having a flow channel
US20050019224A1 (en) * 2003-06-16 2005-01-27 Schering Corporation Virtual well plate system
US20080257754A1 (en) 2003-06-27 2008-10-23 Pugia Michael J Method and apparatus for entry of specimens into a microfluidic device
JP2007504438A (ja) * 2003-09-01 2007-03-01 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 毛管現象を用いるサンプリング装置
WO2005064325A2 (en) * 2003-12-23 2005-07-14 Egene, Inc. Bio-analysis cartridge tracking and protection mechanism
SE529516C2 (sv) 2005-10-24 2007-09-04 Alfa Laval Corp Ab Universell flödesmodul
GB2436616A (en) * 2006-03-29 2007-10-03 Inverness Medical Switzerland Assay device and method
KR20090110289A (ko) 2006-07-04 2009-10-21 에펜도르프 아게 실험실 유체용 모듈 저장 시스템
ATE483522T1 (de) * 2006-09-19 2010-10-15 Suisse Electronique Microtech Vorrichtung und verfahren zum kalibrieren einer pipette oder einer dispenservorrichtung
WO2008070548A2 (en) 2006-12-01 2008-06-12 Nanogen, Inc. Fluidic volume dispense verification tool
US20100254858A1 (en) 2007-11-14 2010-10-07 Prawin Paulraj Microchannel structures having bonded layers including height control features
US20120004139A1 (en) 2008-02-01 2012-01-05 Complete Genomics, Inc. Flow cells for biochemical analysis
EP2213364A1 (en) 2009-01-30 2010-08-04 Albert-Ludwigs-Universität Freiburg Phase guide patterns for liquid manipulation
KR100961874B1 (ko) 2010-04-05 2010-06-09 주식회사 나노엔텍 외부동력 없이 유체가 이동하는 유체분석용 칩
WO2012014405A1 (ja) * 2010-07-26 2012-02-02 株式会社エンプラス マイクロ流路チップ及びマイクロ分析システム
US20120184464A1 (en) * 2010-09-30 2012-07-19 The Regents Of The University Of California System and method for high density assembly and packing of micro-reactors
GB201103917D0 (en) 2011-03-08 2011-04-20 Univ Leiden Apparatus for and methods of processing liquids or liquid based substances
NL2012023C2 (en) 2013-12-24 2015-06-26 Micronit Microfluidics Bv Device and method for measuring a volume of a liquid and method and device for calibrating a liquid dispensing system.
EP3072594A1 (de) 2015-03-26 2016-09-28 Euroimmun Medizinische Labordiagnostika AG Vorrichtung und Verfahren zur Bestimmung des Volumens einer Flüssigkeit
US10532355B2 (en) * 2015-06-05 2020-01-14 Mimetas B.V. Microfluidic plate
NL2015287B1 (en) 2015-08-10 2017-02-28 Micronit Microfluidics Bv Channel for trapping particles to be fed to said channel with a fluid.
WO2018183896A1 (en) 2017-03-31 2018-10-04 Forward Biotech, Inc. Device for measuring fluid volumes

Also Published As

Publication number Publication date
US20200023357A1 (en) 2020-01-23
US11602751B2 (en) 2023-03-14
WO2018183896A1 (en) 2018-10-04
CN110612160A (zh) 2019-12-24
EP3600663A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
CN110612160B (zh) 用于测量流体体积的装置
US5100620A (en) Capillary tube/gap reagent format
US10258981B2 (en) Dispensed liquid measurement device
US8091405B2 (en) Device and method for calibrating a pipette or a dispensing system
CN102027351B (zh) 用于光学检验小液体量的试槽、嵌件、适配器和方法
CN107533009B (zh) 气体检测器管模板及读取气体检测器管的方法
US20070020152A1 (en) Kinematic wellplate mounting method
JP2010502961A (ja) 臨床サンプル容器のための同定システム
US20220118445A1 (en) Liquid Evaluation
US10948335B2 (en) Liquid volumetric measurement device
US8549904B2 (en) Fluidic volume dispense verification tool
WO2014150374A1 (en) Optical volumetric measurement of a dispensed fluid
JP2002328080A (ja) 生体液の分析のためのシステム
EP2804263A1 (en) Connector for connecting bio-sensor and measuring instrument thereof
US20240003930A1 (en) Liquid Evaluation Device
Bissig et al. Calibration of insulin pumps based on discrete doses at given cycle times
Zadeh et al. Real-Time Measurement Technique for Slug Flow Characterisation
CN117957063A (zh) 用于形成用于液体样品的吸光度测量的微型板组件的套件
JP2009536733A (ja) 充填不足の予防機能を備える試験センサ
Rile International Bureau
WO2009048827A1 (en) Enclosed micro-dispenser and reader
US20080084559A1 (en) Microvolume sampling device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant