CN110609071A - 纳米复合材料、lps电化学适体传感器的制备方法及检测方法 - Google Patents

纳米复合材料、lps电化学适体传感器的制备方法及检测方法 Download PDF

Info

Publication number
CN110609071A
CN110609071A CN201910885311.3A CN201910885311A CN110609071A CN 110609071 A CN110609071 A CN 110609071A CN 201910885311 A CN201910885311 A CN 201910885311A CN 110609071 A CN110609071 A CN 110609071A
Authority
CN
China
Prior art keywords
rgo
lps
ultrapure water
dispersion liquid
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910885311.3A
Other languages
English (en)
Other versions
CN110609071B (zh
Inventor
母昭德
白丽娟
田江漫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN201910885311.3A priority Critical patent/CN110609071B/zh
Publication of CN110609071A publication Critical patent/CN110609071A/zh
Application granted granted Critical
Publication of CN110609071B publication Critical patent/CN110609071B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种P‑rGO‑TNT‑Ag纳米复合材料,还公开了一种用于LPS检测的电化学DNA适体传感器,由以下方法制备得到:1)用Tris‑HCl缓冲液处理LPS适体备用;2)将金电极抛光成镜面,处理电极,干燥备用;3)将电极清洗,电化学活化,水冲洗,干燥;4)将P‑rGO‑TNT‑Ag溶液滴加到金电极表面上,干燥;5)将LPS特异性结合适体滴加在电极上室温孵育;6)将BSA孵育在电极表面,即得。还公开了采用该传感器检测LPS的方法。

Description

纳米复合材料、LPS电化学适体传感器的制备方法及检测方法
技术领域
本发明涉及电化学检测技术领域,具体涉及一种纳米复合材料、LPS电化学适体传感器的制备方法及检测方法。
背景技术
细菌内毒素是革兰氏阴性菌细胞壁外膜上的特有结构,其主要成分是脂多糖(lipopoly-saccharide,LPS),又称之为“热原”。当细菌死亡或自溶后便会释放出内毒素,内毒素进入血液后,可引起发热、内毒素血症,微循环障碍,严重时导致脓毒性休克和弥散性血管内凝血等。生物制品类、注射用药剂、化学药品类、放射性药物、抗生素类、疫苗类、透析液等制剂以及医疗器材类(如一次性注射器,植入性生物材料)必须经过细菌内毒素检测试验合格后才能使用,《中国药典》2015版也对药品、生物制品的细菌内毒素限制进行了明确规定。
目前,常用的LPS检测方法包括家兔热原法,鲎试验法(LAL),高效液相色谱法(HPLC),流式细胞术和酶联免疫测定等检测方法。但家兔热原法存在个体差异、敏感度不高、费时;鲎试验法基于酶促反应,其检测结果容易受到酶和杂质的影响、假阳性率高、反应条件苛刻;HPLC,流式细胞术等操作繁琐、设备昂贵、操作人员需专业培训;酶联免疫测定法建立于抗原抗体的基础之上,易受环境影响,复杂样品的基质干扰大。以上缺点限制其用来快速检测微量LPS。因此,设计高选择性、准确、快速、便捷的方法检测LPS十分必要。
适体(Aptamer),是利用指数富集的配体系统进化(SELEX)技术从人工体外合成的随机寡核苷酸序列库中反复筛选得到的能以极高的亲和力和特异性与靶分子结合的一段寡核苷酸序列,可以是RNA,单链DNA(ssDNA)或者双链DNA(dsDNA)。与抗体相比,适体具有多种优势,如对广泛的靶标(如全细胞,蛋白质和低分子量有机或无机底物)具有高亲和力和高特异性,以及成本低,稳定性好,易于合成和被各种化学基团的修饰。因此,作为理想的识别元件,适体一直被用于电化学传感器构建中,得到的电化学适体传感器具有高灵敏度、快响应、低成本的特点。
新型纳米复合材料的使用是一种传感器信号放大的有效策略,纳米复合物在维持原纳米材料优点的基础上,可进一步增加其活性比表面积和导电性。聚二烯丙基二甲基氯化铵(PDDA)功能化的还原氧化石墨烯(rGO)修饰TiO2纳米管(TNTs)/Ag纳米结合物最终形成的P-rGO-TNT-Ag纳米复合材料具有很好的电催化能力。首先,水分散性PDDA可以改善疏水性rGO的水溶性,通过静电排斥作用避免rGO的聚集,有利于充分发挥其优异的物理化学性能;其次,在rGO表面存在含氧基团,可作为固定金属的结合位点;最后,P-rGO和TNTs具有较大比表面积和较强吸附能力,两者协同作用可以提高电活性物质Ag在单位面积上的负载量,进一步提高电子转移效率。
发明内容
针对上述问题,本发明一方面提供了一种P-rGO-TNT-Ag纳米复合材料,由如下步骤制备得到:1)制备rGO分散液;2)制备P-rGO分散液;3)制备TiO2纳米管(TNTs)分散液;4)制备TNT-Ag分散液;5)将4)制得的TNT-Ag分散液加入2)制得的P-rGO分散液中,然后在室温下搅拌24h,离心、洗涤,再将沉淀物分散在超纯水中,即得到P-rGO-TNT-Ag纳米复合材料溶液。
在上述技术方案中,所述步骤1)中rGO分散液的制备方法为:将10mg GO分散在25mL超纯水中,超声均匀,然后滴加约20μL氨水使pH在8~9左右,再向其中加入250mg抗坏血酸(AA),室温搅拌0.5h后在95℃油浴下继续搅拌1h,离心、洗涤,再将沉淀物分散在10mL超纯水中,即得到rGO分散液;所述步骤2)中P-rGO分散液的制备方法为:将20μL 20wt%聚二烯丙基二甲基氯化铵溶液滴加到1mL步骤1)中制得的rGO分散液中,搅拌0.5h,得到P-rGO分散液;所述步骤3)中TNTs分散液的制备方法为:将1g TiO2粉末加入20mL 10mol/L NaOH溶液中,室温搅拌1h,然后将该溶液转移到反应釜中130℃反应10h,冷却,离心、用1M HCl溶液洗涤至pH=1、再用超纯水洗涤至pH=7,然后将沉淀物分散在10ml超纯水中,即得到TNTs分散液;所述步骤4)中TNT-Ag分散液的制备方法为:取1mL步骤3)中制得的TNTs分散液用超纯水稀释至5mL,然后加入1mL 8.5mg/mL AgNO3溶液,搅拌5min,再向其中加入1mL 3mg/mLNaBH4溶液,继续搅拌1h,离心、洗涤,再将沉淀物分散在5mL超纯水中,即得到TNT-Ag分散液。
本发明另一方面提供了一种用于LPS检测的电化学DNA适体传感器,由以下方法制备得到,该方法包括以下步骤:
1)用20mM Tris-HCl(pH=7.4)缓冲液室温下处理氨基标记的LPS结合适体,储存备用;
2)将金电极用食人鱼洗液(98%H2SO4/30%H2O2=3∶1,v/v)侵泡30min后用超纯水冲洗干净备用;
3)将步骤2)得到的电极分别用0.3μm和0.05μm的Al2O3粉末抛光呈镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声处理电极,干燥备用;
4)将步骤3)得到的电极在0.5M H2SO4中进行电化学活化,然后用超纯水冲洗,干燥;
5)将10μL前述的P-rGO-TNT-Ag溶液滴加到步骤4)清洁的金电极表面上,室温干燥;
6)将20μL步骤1)制得的LPS结合适体,滴加在步骤5)制备得到的电极上室温孵育15h;
7)将20μL 1%BSA溶液滴加到步骤6)得到的电极上室温孵育40min,即得到用于LPS检测的电化学DNA适体传感器。
本发明另一方面提供了一种利用电化学DNA适体传感器检测LPS的方法,包括如下步骤:
1)向上述的适体传感器的电极上滴加不同浓度的目标物内毒素;
2)将电极置于0.1M PBS(pH=7.0)溶液中进行表征,测量其电流变化值;
3)根据步骤2)所得电流变化值与LPS浓度对数值的线性关系,绘制工作曲线;
4)将待测样品用上述的适体传感器检测,将得到的电流值通过步骤3)制得的工作曲线计算得到待测样品的LPS浓度。
本发明制备了聚二烯丙基二甲基氯化铵(PDDA)功能化的还原氧化石墨烯(rGO)修饰TiO2纳米管(TNTs)/Ag纳米结合物最终形成的P-rGO-TNT-Ag纳米复合材料作为传感器的敏感界面;利用P-rGO和TNTs具有较大比表面积和较强吸附能力的特点协同提高单位面积上电活性物质Ag的负载量,进而促进Ag与电极之间的电子传递;然后氨基标记的单链LPS适体通过Ag-NH2键固载在电极表明,最后通过适体与不同浓度目标物的特异性结合引起电化学信号的不同变化,来实现对LPS的定量检测。所制备的电化学适体传感器成功用于LPS的超灵敏检测。与传统的LPS检测方法相比,本发明的优点在于灵敏度高,特异性强,检测迅速,操作方便,设备材料价格低廉,无污染,从而为内毒素的检测提供了新的分析方法。
本发明的有益效果是:
1)通过聚二烯丙基二甲基氯化铵功能化rGO,可以极大地改善了rGO的水溶性,有效避免rGO的聚集,使其能够均匀地铺展在电极表面,有利于充分发挥其优异的物理化学性能
2)P-rGO和TNTs具有较大比表面积和较强吸附能力,两者协同作用可提高Ag的固载量并且促进Ag与电极之间的电子传递,电化学传感器信号放大,提高检测灵敏度。
3)适体用于目标物的识别具有高度的特异性,可提高传感器的选择性,从而为微量LPS的检测提供了新的研究方向和分析方法。
4)涉及的材料均可在实验室条件下合成,操作简单,原材料价格低廉,每次使用量极少,降低了实验成本。
5)整个检测分析方法步骤清晰简便,灵敏度高,信号响应迅速。
6)本方法制备的电化学适体传感器可为内毒素的检测提供新方法;该发明所制备的电化学适体传感器也可应用于生物制品、食品药品和医疗器材的分析检测等方面。
附图说明
图1是本发明电化学适体传感器构建和检测原理示意图。
图2是不同修饰电极在0.1M PBS(pH 7.0)中电压范围从-0.3到0.5V以100mV/s的扫描速率得到的循环伏安表征图。
图3是不同浓度的LPS通过本发明传感器检测的结果,其中,图A为在0.1M PBS(pH7.0)中传感器分别对0,0.00001,0.0001,0.001,0.01,0.1,1,10和100ng/mL的LPS扫描的循环伏安图;图B为传感器氧化峰电流响应值与不同浓度LPS对数值的校准曲线。
图4是传感器稳定性检测结果,其中,图A为50ng/mL LPS孵育的传感器在连续扫描60圈后得到的循环伏安曲线;图B为50fg/mL LPS孵育的传感器在于4℃储存25天并定期检测得到的长期稳定性结果。
图5是五支不同金电极同时孵育50ng/mL LPS所得的传感器在相同条件下扫描后得到的重现性结果。
图6是LPS适体传感器的特异性检测图,其中,干扰物为blank,1ng/mL的NaCl,NaH2PO4,NaHSO3,EDTA-2Na和Glucose。
具体实施方式
下面结合实施例对本发明作进一步说明,但并不因此而限制本发明。
本发明实施例中用到的主要化学试剂如下:
内毒素标准品和聚二烯丙基二甲基氯化铵(PDDA)购自Sigma(USA);TiO2购自上海麦克林生化科技有限公司(中国上海);AgNO3购自上海试剂一厂(中国上海);氧化石墨烯(GO)购自南京先锋纳米有限公司(中国南京);牛血清蛋白(BSA)和抗坏血酸(AA)购自J&KScientific Ltd(中国北京);
LPS结合适体(LBA)的DNA寡核苷酸序列:5′-NH2-(CH2)6-CTTCTGCCCGCCTCCTTCCTAGCCGGATCGCGCTGGCCAGATGATATAAAGGGTCAGCCCCCCAGGAGACGAGATAGGCGGACACT-3′由上海生工有限公司合成。
所用设备及技术参数:
仪器:使用Metrohm Autolab B.V.电化学工作站(瑞士Modular仪器)进行循环伏安法(CV)测定。电化学检测采用三电极系统:修饰后的金电极(直径4mm)作为工作电极,铂丝作为对电极,饱和甘汞电极(SCE)作为参比电极。pH计监测pH值(PHS-3C,雷磁,中国上海)。三电极系统在0.1M PBS(pH 7.0)中以100mV/s的扫描速率从-0.3~0.5V的循环伏安法(CV)。
实施例1制备P-rGO-TNT-Ag纳米复合材料
按照如下步骤操作:
1)将10mg GO分散在25mL超纯水中,超声均匀,然后滴加约20μL氨水使pH在8~9左右,再向其中加入250mg抗坏血酸(AA),室温搅拌0.5h后在95℃油浴下继续搅拌1h,离心、洗涤,再将沉淀物分散在10mL超纯水中,即得到rGO分散液;
2)将20uL 20wt%聚二烯丙基二甲基氯化铵溶液(PDDA)滴加到1mL步骤1)制得的rGO分散液中,搅拌0.5h,得到P-rGO分散液;
3)将1g TiO2粉末加入20mL 10mol/L NaOH溶液中,室温搅拌1h,然后将该溶液转移到反应釜中130℃反应10h,冷却,离心、用1M HCl溶液洗涤至pH=1、再用超纯水洗涤至pH=7,然后将沉淀物分散在10ml超纯水中,即得到TNTs分散液;
4)取1mL步骤3)制得的TNTs分散液用超纯水稀释至5mL,然后加入1mL 8.5mg/mLAgNO3溶液,搅拌5min,再向其中加入1mL 3mg/mL NaBH4溶液,继续搅拌1h,离心、洗涤,再将沉淀物分散在5mL超纯水中,即得到TNT-Ag分散液;
5)将1mL步骤4)制得的TNT-Ag分散液加入1mL步骤2)制得的P-rGO分散液中,然后在室温下搅拌24h,离心(12000rpm,3min)、洗涤3次后,将沉淀物分散在1mL超纯水中,即得到P-rGO-TNT-Ag纳米复合材料溶液。
实施例2制备用于LPS检测的电化学DNA适体传感器
按照如下步骤操作:(构建原理如图1所示)
1)用20mM Tris-HCl(pH=7.4)缓冲液室温下处理氨基标记的LPS结合适体(LBA),置于4℃下备用;
2)将金电极用食人鱼洗液(98%H2SO4/30%H2O2=3∶1,v/v)侵泡30min后用超纯水冲洗干净备用;
3)将步骤2)得到的电极分别用0.3μm和0.05μm的Al2O3粉末抛光呈镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声处理电极各5min,室温干燥备用。
4)将步骤3)得到的电极在0.5M H2SO4中进行电化学活化,电位扫描为-0.3~1.55V,直至获得可稳定的循环伏安图,然后再次用超纯水冲洗并在空气中干燥。
5)将10μL实施例1中制备得到的P-rGO-TNT-Ag溶液滴加到步骤4)清洁的金电极表面上,并在室温下空气干燥;
6)将20μL步骤1)制得的2μM LBA滴加在步骤5)制备得到的电极上室温孵育15h。
7)将20μL 1%BSA溶液滴加到步骤6)得到的电极上室温孵育40min,以封闭剩余的非特异性结合位点,即得到用于LPS检测的电化学DNA适体传感器。所得到的适体传感器和所有材料及试剂在不使用时储存于4℃。
实施例3利用电化学DNA适体传感器检测LPS
利用实施例2构建的电化学DNA适体传感器检测LPS,按照如下步骤操作:
一、绘制工作曲线
1)将实施例2步骤4)至步骤7)的修饰电极分别置于含10mM KCl和2mM MgCl2的0.1M PBS(pH=7.0)中进行表征,测量其电化学响应信号,结果如图2所示:(a)裸金电极;(b)滴加P-rGO-TNT-Ag纳米复合材料;(c)与LBA结合;(d)BSA封闭。
2)向实施例2制得的适体传感器的电极上滴加20μL不同浓度的目标物内毒素,分别测定其电流变化情况。
3)根据所得电流变化值与内毒素浓度对数值的线性关系,绘制工作曲线(如图3B所示)。测定结果表明电流响应值与内毒素在10fg/mL-100ng/mL浓度对数值范围内呈良好的线性关系,线性相关系数为0.9997,检测限为5fg/mL;结果如图3所示。
二、传感器稳定性测试:将实施例2制得的传感器在最佳条件下连续进行60圈CV测量后,其响应电流仅降低约2.42%(如图4A所示),将实施例2制得的传感器于4℃保存并定期检测,与初始电流相比,储存5天后电流响应下降了3.6%,储存15天后电流响应下降了6.1%,储存25天后电流响应仍为初始电流的92.6%(如图4B所示),表明传感器具有良好的稳定性。
三、传感器重现性测试:将实施例2采用五支不同金电极孵育相同LPS浓度制得的传感器进行CV测量后(如图5所示),得到相对标准偏差(RSD)为6.3%,表明传感器重现性良好。
四、传感器特异性测试:为了研究提出的适应传感器的特异性,采用在注射剂中常用的几种附加剂:NaCl,EDTA-2Na,Glucose,NaH2PO4和NaHSO3在相同浓度及条件下测定的不同干扰物质在0.1M PBS(pH=7.0)中电流响应值。结果表明(如图5所示),提出的基于LPS-LBA的高特异性反应的适体传感器具有良好的特异性。
四、实际样品分析应用
为了评估提出的适配体传感器的实际适用性和准确性,将稀释10倍的维生素B1注射液(2mL∶0.1g)样品中加入各种浓度的LPS(如表1所示),然后用所制备的电化学适体传感器进行检测。检测结果如表1所示,相对标准偏差范围为1.41%至8.52%,回收率为95.9%至102.3%。结果表明,本发明制得的适配体传感器对于检测LPS是可行的,可以满足实际分析的需要。
表1采用本发明制备的电化学适配体传感器测定维生素B1注射液样品中的LPS(n=3)

Claims (4)

1.一种P-rGO-TNT-Ag纳米复合材料,其特征在于,由如下步骤制备得到:1)制备rGO分散液;2)制备P-rGO分散液;3)制备TiO2纳米管(TNTs)分散液;4)制备TNT-Ag分散液;5)将4)制得的TNT-Ag分散液加入2)制得的P-rGO分散液中,然后在室温下搅拌24h,离心、洗涤,再将沉淀物分散在超纯水中,即得到P-rGO-TNT-Ag纳米复合材料溶液。
2.如权利要求1所述的P-rGO-TNT-Ag纳米复合材料,其特征在于,所述步骤1)中rGO分散液的制备方法为:将10mg GO分散在25mL超纯水中,超声均匀,然后滴加约20μL氨水使pH在8~9左右,再向其中加入250mg抗坏血酸(AA),室温搅拌0.5h后在95℃油浴下继续搅拌1h,离心、洗涤,再将沉淀物分散在10mL超纯水中,即得到rGO分散液;所述步骤2)中PDDA-rGO分散液的制备方法为:将20μL 20wt%聚二烯丙基二甲基氯化铵(PDDA)溶液滴加到1mL步骤1)中制得的rGO分散液中,搅拌0.5h,得到P-rGO分散液;所述步骤3)中TNTs分散液的制备方法为:将1g TiO2粉末加入20mL 10mol/L NaOH溶液中,室温搅拌1h,然后将该溶液转移到反应釜中130℃反应10h,冷却,离心、用1M HCl溶液洗涤至pH=1、再用超纯水洗涤至pH=7,然后将沉淀物分散在10ml超纯水中,即得到TNTs分散液;所述步骤4)中TNT-Ag分散液的制备方法为:取1mL步骤3)中制得的TNTs分散液用超纯水稀释至5mL,然后加入1mL 8.5mg/mL AgNO3溶液,搅拌5min,再向其中加入1mL 3mg/mL NaBH4溶液,继续搅拌1h,离心、洗涤,再将沉淀物分散在5mL超纯水中,即得到TNT-Ag分散液。
3.一种用于LPS检测的电化学DNA适体传感器,其特征在于,由以下方法制备得到,该方法包括以下步骤:
1)用20mM Tris-HCl(pH=7.4)缓冲液室温下处理氨基标记的LPS结合适体,储存备用;
2)将金电极用食人鱼洗液(98%H2SO4/30%H2O2=3∶1,v/v)侵泡30min后用超纯水冲洗干净备用;
3)将步骤2)得到的电极分别用0.3μm和0.05μm的Al2O3粉末抛光呈镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声处理电极,干燥备用;
4)将步骤3)得到的电极在0.5M H2SO4中进行电化学活化,然后用超纯水冲洗,干燥;
5)将10μL权利要求1所述的P-rGO-TNT-Ag溶液滴加到步骤4)清洁的金电极表面上,室温干燥;
6)将20μL步骤1)制得的LPS结合适体,滴加在步骤5)制备得到的电极上室温孵育15h;
7)将20μL 1%BSA溶液滴加到步骤6)得到的电极上室温孵育40min,即得到用于LPS检测的电化学DNA适体传感器。
4.一种利用电化学DNA适体传感器检测LPS的方法,其特征在于,包括如下步骤:
1)向权利要求3所述的适体传感器的电极上滴加不同浓度的目标物内毒素;
2)将电极置于0.1M PBS(pH=7.0)溶液中进行表征,测量其电流变化值;
3)根据步骤2)所得电流变化值与LPS浓度对数值的线性关系,绘制工作曲线;
4)将待测样品用权利要求3所述的适体传感器检测,将得到的电流值通过步骤3)制得的工作曲线计算得到待测样品的LPS浓度。
CN201910885311.3A 2019-09-09 2019-09-09 纳米复合材料、lps电化学适体传感器的制备方法及检测方法 Expired - Fee Related CN110609071B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910885311.3A CN110609071B (zh) 2019-09-09 2019-09-09 纳米复合材料、lps电化学适体传感器的制备方法及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910885311.3A CN110609071B (zh) 2019-09-09 2019-09-09 纳米复合材料、lps电化学适体传感器的制备方法及检测方法

Publications (2)

Publication Number Publication Date
CN110609071A true CN110609071A (zh) 2019-12-24
CN110609071B CN110609071B (zh) 2022-03-25

Family

ID=68892158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910885311.3A Expired - Fee Related CN110609071B (zh) 2019-09-09 2019-09-09 纳米复合材料、lps电化学适体传感器的制备方法及检测方法

Country Status (1)

Country Link
CN (1) CN110609071B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022169890A1 (en) 2021-02-04 2022-08-11 Fresenius Medical Care Holdings, Inc. Lipopolysaccharide (lps) aptamers and associated methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906662A (zh) * 2010-08-18 2010-12-08 中国科学院半导体研究所 不同粒径银纳米颗粒修饰二氧化钛纳米管的制备方法
CN105699458A (zh) * 2016-02-03 2016-06-22 洪国粦 用于NT-proBNP检测的新型免疫传感器及其制备方法
CN106198695A (zh) * 2016-07-01 2016-12-07 湖北师范大学 一种快速检测氯霉素的电化学适配体传感器
CN107831208A (zh) * 2017-09-27 2018-03-23 重庆医科大学 纳米复合材料、sdm电化学适体传感器的制备方法及检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906662A (zh) * 2010-08-18 2010-12-08 中国科学院半导体研究所 不同粒径银纳米颗粒修饰二氧化钛纳米管的制备方法
CN105699458A (zh) * 2016-02-03 2016-06-22 洪国粦 用于NT-proBNP检测的新型免疫传感器及其制备方法
CN106198695A (zh) * 2016-07-01 2016-12-07 湖北师范大学 一种快速检测氯霉素的电化学适配体传感器
CN107831208A (zh) * 2017-09-27 2018-03-23 重庆医科大学 纳米复合材料、sdm电化学适体传感器的制备方法及检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAI LIJUAN等: "A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using threeway DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification", 《NANOSCALE》 *
WANG LINPING等: "Photoelectrochemical aptasensing of thrombin based on multilayered gold nanoparticle/graphene-TiO2 and enzyme functionalized graphene oxide nanocomposites", 《ELECTROCHIMICA ACTA》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022169890A1 (en) 2021-02-04 2022-08-11 Fresenius Medical Care Holdings, Inc. Lipopolysaccharide (lps) aptamers and associated methods

Also Published As

Publication number Publication date
CN110609071B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Bu et al. Ultrasensitive detection of pathogenic bacteria by CRISPR/Cas12a coupling with a primer exchange reaction
US10605761B2 (en) Electrochemical biosensor based on aptamer/nano silver probe and EXO I enzyme
Yu et al. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples
Bhardwaj et al. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae)
Jiang et al. Microfluidic thread-based electrochemical aptasensor for rapid detection of Vibrio parahaemolyticus
Escamilla-Gómez et al. Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation
Dong et al. Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides
CN112432979B (zh) 纳米复合材料、esat-6电化学适体传感器及其制备与检测方法
WO2016062101A1 (zh) 检测ndm-1的修饰电极及其制备方法和应用
CN110632160B (zh) 一种三维细胞纸芯片传感器及在细菌脂多糖检测中的应用
Hu et al. Enzyme immunosensor based on gold nanoparticles electroposition and Streptavidin-biotin system for detection of S. pullorum & S. gallinarum
Pan et al. Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase
Joung et al. Ultra-sensitive detection of pathogenic microorganism using surface-engineered impedimetric immunosensor
CN109060917B (zh) 一种检测肠致病性大肠杆菌的核酸适配体电化学传感器及其制备方法和应用
CN109072284A (zh) 用于电化学检测相关分子的系统
JP6005053B2 (ja) 微生物の検出および定量方法
CN106568820A (zh) 基于dna信号放大技术合成银纳米簇的电化学生物传感器的制备方法及其应用
Wungu Preliminary study of molecularly imprinted polymer-based potentiometric sensor for glucose
Wan et al. Invertase-mediated system for simple and rapid detection of pathogen
Bigdeli et al. Electrochemical impedance spectroscopy (EIS) for biosensing
Li et al. An aptasensor for the detection of ampicillin in milk using a personal glucose meter
CN110609071B (zh) 纳米复合材料、lps电化学适体传感器的制备方法及检测方法
Yu et al. Highly sensitive endotoxin assay combining peptide/graphene oxide and DNA-modified gold nanoparticles
Zhang et al. A label-free electrochemical biosensor based on a reduced graphene oxide and indole-5-carboxylic acid nanocomposite for the detection of Klebsiella pneumoniae
Ahangari et al. Biosensors functionalized with nanoparticles for rapid detection of Brucella

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220325