CN110590528B - 一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法 - Google Patents

一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法 Download PDF

Info

Publication number
CN110590528B
CN110590528B CN201910878893.2A CN201910878893A CN110590528B CN 110590528 B CN110590528 B CN 110590528B CN 201910878893 A CN201910878893 A CN 201910878893A CN 110590528 B CN110590528 B CN 110590528B
Authority
CN
China
Prior art keywords
dihydroanthracene
anthraquinone
oxidation
visible light
selective oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910878893.2A
Other languages
English (en)
Other versions
CN110590528A (zh
Inventor
伏再辉
蒋达波
陈梦柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201910878893.2A priority Critical patent/CN110590528B/zh
Publication of CN110590528A publication Critical patent/CN110590528A/zh
Application granted granted Critical
Publication of CN110590528B publication Critical patent/CN110590528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/04Preparation of quinones by oxidation giving rise to quinoid structures of unsubstituted ring carbon atoms in six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/67Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having two rings, e.g. tetralones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/675Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • C07C49/786Benzophenone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/06Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D311/86Oxygen atoms, e.g. xanthones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及光氧化合成技术领域,公开了一种基于分子氧选择氧化9,10‑二氢蒽定量转化为蒽醌的简便、实用的可见光合成方法。在常温常压纯氧气氛、无任何催化剂和添加剂的条件下,该合成方法能实现100%的原料转化,提供99.3%蒽醌产率;即使在空气气氛中也可获得86.4%的蒽醌产率。而且,该合成方法对具有与9,10‑二氢蒽类似结构的其他化合物的光氧化也显示了好的效果,表明其具有较广的适用性。本发明的可见光合成方法为基于底物自身活化O2参与选择性氧化提供了一个很好的例子,符合“绿色化学”的理念。

Description

一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽 醌的方法
技术领域
本发明涉及光氧化合成技术领域,特别的涉及一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法。
背景技术
在温和条件下发展基于分子氧(O2)选择性氧化有机化合物的简便、高效转化方法是合成含氧化合物的关键技术之一。蒽醌是一种重要的精细化工产品和化学中间体。广泛应用于蒽醌染料和过氧化氢的生产,以及纸张生产的牛皮纸工艺。传统合成蒽醌的方法包括用铬酸或硝酸直接氧化蒽生成蒽醌;以精蒽为原料,空气作氧化剂,五氧化二钒为催化剂,390oC条件下进行气相催化氧化;以苯酐、苯为原料,三氯化铝为催化剂,进行Friedel-Crafts反应,然后用浓硫酸脱水生成蒽醌。然而,这些传统的催化氧化系统存在设备腐蚀严重,能耗高和毒性强等缺点。因此,研究和开发新的转化技术用于蒽醌的绿色合成具有重要意义。
近年来,人们都致力于研究催化合成蒽醌的环境友好的高效催化体系,并取得了一些进展。陆续报道了一系列工作取代了传统的蒽醌合成氧化系统,如金属(Fe,Cu,Co,Ru,Mn)配合物,Ru(tmp)(O)2/ N2O [Chem. Lett. 2002, 31(6):582-583],空气/氧气/硝酸[J.Chem. Techno. Bio. 1982, 32(6):7],H5PV2Mo10O40/O2 [Cheminform,2006, 37(21):2230-2232]和分子筛催化剂[J. Mol. Catal. A Chem. 2008, 281(1-2):154-163]等。J.R. Pankhurst等人将吡咯席夫碱大环化合物的双核CuII配合物结合的FeCl3(CuII-FeCl3)作为9,10-二氢蒽氧化成蒽醌的有效催化剂。可以得到100%9,10-二氢蒽转化率,但较低的蒽醌选择性(87.0%)和高成本限制了其在蒽醌合成中的应用。M. Selvaraj等将介孔CrSBA-15分子筛作为蒽液相氧化合成蒽醌的有效固体催化剂,并获得较高的蒽转化率(90.6%)和蒽醌选择性(100%)。但是,该催化剂的合成路线复杂,在蒽醌的合成工艺中使用大量催化剂(100 wt.%)和叔丁基过氧化氢(TBHP)作为氧化剂,从而增加了合成蒽醌的成本[J.Mol. Catal. A Chem. 2002, 179 (1):221-231]。J. O. Hawthorne等使用吡啶作为溶剂,苄基三甲基铵为催化剂,在温和条件下(温度,70℃;时间,2 h)用O2氧化9,10-二氢蒽可以获得90.0%蒽醌产率。然而,该反应体系中使用的溶剂和催化剂会对环境造成严重危害,这与“绿色化学”的理念背道而驰。
综上所述,开发出一种具有原子转化效率且环保的合成蒽醌的绿色技术已迫在眉睫,本发明提供了一种在常温常压,不使用任何催化剂和添加剂的条件下,能用分子氧将9,10-二氢蒽定量氧化成蒽醌的简便、实用的光合成方法。该方法利用了光活化反应底物引发O2参与选择性氧化、以及生成的目标氧化产物蒽醌具有光催化氧化活性的特性,克服了传统合成蒽醌中存在的能耗高,成本高昂,设备腐蚀严重等缺点。
发明内容
本发明的目的在于提供一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法,解决现有催化氧化体系中存在的催化剂合成路线复杂,生产成本高,环境污染严重和反应条件严苛等问题。
为了解决上述技术问题,本发明所述光氧化9,10-二氢蒽定量转化合成蒽醌的方法,具体包括以下步骤:将9,10-二氢蒽、溶剂加入反应器后,将光源浸入溶液中,在一定条件下,含氧气氛中光照辐射一定时间,即合成了目标产物。
进一步,所述方法不需任何催化剂,添加剂和引发剂。
进一步,所述反应条件为常温常压。
进一步,所述溶剂为乙腈、丙酮、N,N-二甲基甲酰胺(DMF)和N,N-二甲基乙酰胺(DMA),优选为乙腈和丙酮,更优选为丙酮。
进一步,所述光源为配备有UV光过滤器的钨-溴灯(35 W,光强度,535 mW/cm2),中心波长为254 nm 的紫外灯(28 W),配备有中心波长为500 nm的单色滤光片的氙灯(300 W)和配备有中心波长为400 nm的单色滤光片的氙灯(300 W)中的一种。
进一步,所述反应物用量为0.05~1 mmol,优选的反应物用量为0.05~0.1 mmol,更优选为0.1 mmol;
进一步,所述含氧气氛为纯氧和空气中的一种。
进一步,所述光照射时间为15~300 min,优选的光照时间为300 min。
进一步,该方法也可应用于与9,10-二氢蒽结构类似的2-乙基-9,10-二氢蒽、蒽酮、蒽、占吨、9,10-二氢吖啶、芴和二苯甲烷的氧化。光照射时间为12 h。
进一步,在添加目标产物蒽醌(其用量为反应物的1mol%)作为光催化剂下,光氧化反应在15~180 min时间内能被显著加速。
相比现有技术,本发明具有如下突出优点:
1)分别使用廉价的,容易获得的可见光和O2/空气作为照明源和绿色氧化剂;
2)不使用任何催化剂和添加剂;
3)反应条件温和(常温常压),操作简便;
4)在较短的照明时间(5 h)内实现几乎定量的转化;
5)对具有与9,10-二氢蒽类似结构的其他化合物的氧化具有良好的适应性。
具体实施方式
下面结合实施例对本发明所提供一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法进行详细的说明,但是不能把它们限定为对本发明的保护范围。
实施例1
本实施例所述的一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法具体包括以下步骤:取0.1 mmol 9,10-二氢蒽用5.0 mL丙酮溶解形成反应液,纯氧或空气做氧化剂,反应温度为室温。在常压(1 atm)、冷凝条件下,使用35 W的钨-溴灯浸入到反应液中(光内照方式),照射时间为10 h,采用高效液相色谱仪对产物进行定量分析。
对照例1:由实施例1所述的光氧化方法,不同的是,将纯氧或空气换为高纯氮气。
对照例2:由实施例1所述的光氧化方法,不同的是,反应液在黑暗条件、35℃下搅拌10 h。具体结果见表1。
表1
Figure 866039DEST_PATH_IMAGE001
由表1可知,用发明中所述的方法用于9,10-二氢蒽的光氧化,在纯氧中能得到100%的蒽醌收率,甚至在空气中也能得到86.4%的蒽醌收率。对照例1的蒽醌产率仅为3.4%,而在对照例2中没有光照的条件下的蒽醌产率为0。通过对照例1和对照例2,可以得出分子氧和光照射对于实现9,10-二氢蒽的光氧化是缺一不可的。
实施例2:本实施例所述的一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法包括以下步骤:按照实施例1的方法进行,所不同的是,操作步骤中使用的光源、照射方式和光照时间不同,结果见表2。
表2
Figure 65071DEST_PATH_IMAGE002
由表2可知,用发明中所述的方法在不同光源采用外照方式下,用纯氧氧化9,10-二氢蒽,在35 W 可见光,28 W 紫外光(254 nm)和配备有中心波长为400 nm的单色滤光片的300 W氙灯的照射下,都有目标产物蒽醌生成。而在配备有中心波长为500 nm的单色滤光片的300 W氙灯的照射下,蒽醌的收率为0,表明9,10-二氢蒽的光氧化需在可见光区的紫光、特别是低于400 nm紫外光照射下才能实现。
实施例3:本实施例所述的一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法包括以下步骤:按照实施例1的方法进行,所不同的是,操作步骤中的溶剂种类不同,结果见表3。
Figure 110387DEST_PATH_IMAGE003
由表3可知,用发明中所述的方法在不同溶剂中用纯氧氧化9,10-二氢蒽。丙酮作溶剂,蒽醌的收率高达100%。乙腈作溶剂,蒽醌也有高的收率,达90.7%。但是,当使用DMF,特别是DMA作溶剂时,蒽醌的产率极低,甚至没有蒽醌生成。
实施例4:本实施例所述的一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法包括以下步骤:按照实施例1的方法进行,所不同的是,反应物改用9,10-二氢蒽结构类似的2-乙基-9,10-二氢蒽、蒽酮、蒽、占吨、9,10-二氢吖啶、芴或二苯甲烷,结果见表4。
表4
实施例 反应物名称 反应物结构简式 目标产物结构简式 目标产物收率 (%)
1-1 9,10-二氢蒽
Figure 771176DEST_PATH_IMAGE004
Figure 851127DEST_PATH_IMAGE005
100
4-1 2-乙基-9,10-二氢蒽
Figure 939169DEST_PATH_IMAGE006
Figure 471781DEST_PATH_IMAGE007
79.8
4-2
Figure 670681DEST_PATH_IMAGE008
Figure 605139DEST_PATH_IMAGE009
92.4
4-3 蒽酮
Figure 864082DEST_PATH_IMAGE010
Figure 618412DEST_PATH_IMAGE005
96.6
4-4 9,10-二氢吖啶
Figure 870270DEST_PATH_IMAGE011
Figure 659235DEST_PATH_IMAGE012
62.2
4-5 占吨
Figure 89079DEST_PATH_IMAGE013
Figure 596284DEST_PATH_IMAGE014
90.8
4-6
Figure 136987DEST_PATH_IMAGE015
Figure 780458DEST_PATH_IMAGE016
10.8
4-7 二苯甲烷
Figure 381203DEST_PATH_IMAGE017
Figure 375704DEST_PATH_IMAGE018
3.4
4-8
Figure 454519DEST_PATH_IMAGE019
Figure 218075DEST_PATH_IMAGE020
0
由表4可知,用发明中所述的方法氧化与9,10-二氢蒽结构类似的这些反应物,可以看出该方法除了对茚没有氧化效果外,对其它反应物的氧化从低到优秀的目标产物收率,表现出较好的适用性。
实施例5:本实施例所述的一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法包括以下步骤:按照实施例1的方法进行,所不同的是,操作步骤中的底物9,10-二氢蒽用量为0.05 mmol~1mmol,结果见表5。
表5
Figure 255301DEST_PATH_IMAGE021
由以上实施例可知,用发明中所述的方法氧化不同用量的9,10-二氢蒽,蒽醌的收率可达72.9~100%。底物用量为0.05~0.10 mmol时,蒽醌的收率高达100%,随着底物用量的增加,蒽醌的收率逐渐下降。
实施例6:本实施例所述的一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法包括以下步骤:按照实施例1的方法进行,所不同的是,操作步骤中的反应时间为15 min~300min。结果如表6所示。
表6
Figure 205940DEST_PATH_IMAGE022
由表6可知,用发明中所述的方法在不同光照时间下氧化9,10-二氢蒽。反应时间由15 min延长至300 min时,中间氧化产物蒽酮和氧化脱氢产物蒽的收率均呈现出先增高后降低的趋势,而目标氧化产物蒽醌的收率则呈现出持续增高的趋势。
实施例7:本实施例所述的一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法包括以下步骤:按照实施例1的方法进行,所不同的是,在反应液中添加了1%mol的蒽醌作为光催化剂,高效液相色谱定量分析产物,计算蒽醌的产率时扣除预先加入的蒽醌量,具体结果见表7。
表7
Figure 104757DEST_PATH_IMAGE023
由表7可知,用发明中所述的方法,在反应液中添加了1% mol的蒽醌作为光催化剂,当反应时间由15 min延长至300 min时,蒽酮和蒽的收率均呈现出先增高后降低的趋势,而蒽醌的收率则呈现出持续增高的趋势。值得注意的是,添加了1% mol的蒽醌后,在15~180 min时间内,蒽醌的生成速率远大于实施例6中未添加蒽醌的生成速率。由此证实,9,10-二氢蒽的最终氧化产物蒽醌本身可以作为光催化剂加速反应的进行。
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法,其特征在于,包括以下步骤:将9,10-二氢蒽、溶剂加入到光源内置式反应器中,在常温和常压的氧气氛中光照辐射一定时间,即合成了目标产物,所述9,10-二氢蒽用量为0.05~1 mmol,所述溶剂为乙腈、丙酮中的一种,所述光源为配备有UV光过滤器的35 W钨-溴灯,中心波长为254 nm的28 W紫外灯,配备有中心波长为400 nm的单色滤光片的300 W氙灯中的一种,所述含氧气氛为纯氧和空气中的一种,所述光照射时间为15~300 min。
2.根据权利要求1所述的方法,其特征在于,该方法也可应用于与9,10-二氢蒽结构类似的其它反应物2-乙基-9,10-二氢蒽、蒽酮、蒽、占吨、9,10-二氢吖啶、芴、二苯甲烷的氧化,光照射时间为12 h。
3.根据权利要求1所述的方法,其特征在于,可以在光反应之前预先加入目标产物蒽醌作为光催化剂,在15~180 min时间内显著加速9,10-二氢蒽的光氧化,蒽醌用量以摩尔计为反应物摩尔用量的1mol%。
CN201910878893.2A 2019-09-18 2019-09-18 一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法 Active CN110590528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910878893.2A CN110590528B (zh) 2019-09-18 2019-09-18 一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910878893.2A CN110590528B (zh) 2019-09-18 2019-09-18 一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法

Publications (2)

Publication Number Publication Date
CN110590528A CN110590528A (zh) 2019-12-20
CN110590528B true CN110590528B (zh) 2022-07-01

Family

ID=68860445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910878893.2A Active CN110590528B (zh) 2019-09-18 2019-09-18 一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法

Country Status (1)

Country Link
CN (1) CN110590528B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169834A (zh) * 2020-10-16 2021-01-05 湖南师范大学 一种9,10-二氢蒽光自氧化产物蒽醌及衍生物光催化分子氧选择氧化方法
CN116535297A (zh) * 2023-04-17 2023-08-04 大连理工大学 一种光催化分子氧氧化制备芳香酮的绿色间歇和连续方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"g-C3N4-Singlet Oxygen Made Easy for Organic Synthesis: Scope and Limitations";Irene Camuss et al;《ACS Sustainable Chem. Eng》;20190405;第7卷;第8180页Scheme6 *
"Photoinduced Oxidative Formylation of N,N Dimethylanilines with Molecular Oxygen without External Photocatalyst";Shuai Yang et al;《Org. Lett》;20170622;第19卷;第3388页Scheme4 *

Also Published As

Publication number Publication date
CN110590528A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
Baeckvall et al. Biomimetic aerobic 1, 4-oxidation of 1, 3-dienes catalyzed by cobalt tetraphenylporphyrin-hydroquinone-palladium (II). An example of triple catalysis
Maurya et al. Zeolite-Y encapsulated metal complexes of oxovanadium (VI), copper (II) and nickel (II) as catalyst for the oxidation of styrene, cyclohexane and methyl phenyl sulfide
Gao et al. Visible-light photocatalytic aerobic oxidation of sulfides to sulfoxides with a perylene diimide photocatalyst
Jacob et al. Selective oxidation over copper and manganese salens encapsulated in zeolites
Zhang et al. Selective oxidation of sulfides on Pt/BiVO4 photocatalyst under visible light irradiation using water as the oxygen source and dioxygen as the electron acceptor
CN110590528B (zh) 一种可见光驱动分子氧选择氧化9,10-二氢蒽定量转化为蒽醌的方法
Leng et al. Organometallic-polyoxometalate hybrid based on V-Schiff base and phosphovanadomolybdate as a highly effective heterogenous catalyst for hydroxylation of benzene
Chattopadhyay et al. Copper (II)-coordinated organic nanotube: A novel heterogeneous catalyst for various oxidation reactions
Weng et al. A reusable and active lacunary derivative [PW11O39] 7− as benzyl alcohol oxidation catalyst with hydrogen peroxide
Monflier et al. Wacker oxidation of various olefins in the presence of per (2, 6-di-O-methyl)-β-cyclodextrin: mechanistic investigations of a multistep catalysis in a solvent-free two-phase system
Chen et al. Aerobic oxidative cleavage of cinnamaldehyde to benzaldehyde catalyzed by metalloporphyrins under mild conditions
Ku et al. One-step fabrication of mesoporous sulfur-doped carbon nitride for highly selective photocatalytic transformation of native lignin to monophenolic compounds
Yoshida et al. Photocatalytic hydroxylation of aromatic ring by using water as an oxidant
Andrade et al. Organocatalysis Meets Hydrocarbon Oxyfunctionalization: the Role of N‐Hydroxyimides
Abbo et al. Transition metal coordination polymers: Synthesis and catalytic study for hydroxylation of phenol and benzene
Sakthivel et al. Oxidation of styrene using TiO2-graphene oxide composite as solid heterogeneous catalyst with hydroperoxide as oxidant
Sarneski et al. Alkyl hydroperoxide oxidation of alkanes and alkenes with a highly active Mn catalyst.
WO2019232715A1 (en) Selective oxidation of alcohols
Zhao et al. Non-metallic aerobic oxidation of alcohols over anthraquinone based compounds
Zhang et al. Photo-induced oxidative cleavage of CC double bonds of olefins in water
Fan et al. Highly selective oxidation of methane to formaldehyde on tungsten trioxide by lattice oxygen
Mukherjee et al. Mechanistic study of cyclohexene oxidation and its use in modification of industrial waste organics
Cui et al. Reusable homogeneous metal-and additive-free photocatalyst for high-performance aerobic oxidation of alcohols to carboxylic acids
Islam et al. Efficient allylic oxidation of olefins catalyzed by polymer supported metal Schiff base complexes with peroxides
CN108623494B (zh) 一种可见光催化不对称仲胺氧化合成亚胺的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant