WO2019232715A1 - Selective oxidation of alcohols - Google Patents

Selective oxidation of alcohols Download PDF

Info

Publication number
WO2019232715A1
WO2019232715A1 PCT/CN2018/090110 CN2018090110W WO2019232715A1 WO 2019232715 A1 WO2019232715 A1 WO 2019232715A1 CN 2018090110 W CN2018090110 W CN 2018090110W WO 2019232715 A1 WO2019232715 A1 WO 2019232715A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
group
alcohols
catalyst
benzoquinone
Prior art date
Application number
PCT/CN2018/090110
Other languages
French (fr)
Inventor
Jingpeng ZHAO
Vitaly ORDOMSKY
Willinton Yesid HERNANDEZ ENCISO
Wen-juan ZHOU
Mickael Capron
Stéphane STREIFF
Original Assignee
Rhodia Operations
Le Centre National De La Recherche Scientifique
Universite Lille 1 - Sciences Et Technologies
Centrale Lille
Ecole Nationale Superieure De Chimie De Lille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations, Le Centre National De La Recherche Scientifique, Universite Lille 1 - Sciences Et Technologies, Centrale Lille, Ecole Nationale Superieure De Chimie De Lille filed Critical Rhodia Operations
Priority to PCT/CN2018/090110 priority Critical patent/WO2019232715A1/en
Publication of WO2019232715A1 publication Critical patent/WO2019232715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/39Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a secondary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a catalyst system exhibiting high activity and selectivity in the oxidation of alcohols to aldehydes or ketones using molecular oxygen as a terminal oxidant. More specifically, the invention relates to a system comprising quinone-type catalysts, such as 2-ethylanthraquinone. Such catalysts are particularly useful for, but not limited to, the oxidation of primary or secondary aliphatic and aromatic alcohols to the respective aldehydes or ketones. The present invention is also related to a process for oxidizing said alcohols to the respective aldehydes or ketones.
  • Silica immobilized TEMPO as a catalyst in conjunction with nitrosium tetrafluoro borate was shown to convert alcohols into the corresponding aldehydes or ketones employing molecular oxygen as the final oxidant (Shakir, A.J., Paraschivescu, C., Matache, M., Tudose, M., Mischie, A., Spafiu, F., Ionita, P., Tetrahedron Lett. 56 (2015) , 6878 –6881) .
  • Aerobic organocatalytic oxidation of alcohols was achieved by using water-soluble sodium anthraquinone sulfonate. Under visible light activation, this catalyst mediated the selective aerobic oxidation of alkanes or alcohols to aldehydes and ketones (Zhang, W., Gacs, J., Arends, I.W.C.E., and Hollmann, F., ChemCatChem. 9 (2017) , 3821-3826, hereinafter referred to as Reference A) .
  • a catalyst system which comprises quinone-type catalysts, such as anthraquinone, naphthoquinone, phenanthraquinone and benzoquinone type catalysts.
  • the quinone catalyzed oxidation is described by the reaction scheme shown in Figure 1.
  • the catalytic process involves hydrogen abstraction from the alcohol by the quinone with concomitant formation of the hydrogenated quinone and selective production of the respective aldehyde or ketone.
  • Molecular oxygen was used as terminal oxidant, which provokes the regeneration of the quinone and probably formation of H 2 O 2 .
  • the reaction preferably takes place in solution employing an atmosphere of pure oxygen or air and at a temperature in the range of from 80 to 200 °C and a pressure in the range of from 0.1 to 40 MPa.
  • primary or secondary alcohols as used in the present invention describe organic compounds having primary or secondary hydroxyl groups.
  • lower alcohol refers to alcohols having 1 to 10 carbon atoms while the term higher as used herein refers to alcohols having 11 or more carbon atoms.
  • Examples of primary and secondary alcohols thereof include alcohols aliphatic alcohols such as methanol, ethanol, n-and isopropyl alcohol, n-, iso and sec-butyl alcohol, pentyl alcohol, hexyl alcohol, neopentyl alcohol, neohexyl alcohol, heptyl alcohol, octyl alcohol, Iauryl alcohol, tridecyl alcohol, myristyl alcohol, nonadecyl alcohol, eicosyl alcohol; alicyclic alcohols, including but not limited to cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol; heteroocyclic alcohols, including but not limited to 2, 2-dimethyl-1, 3-dioxolane-4-methanol (also referred to as acetone glycerol) ; unsaturated alcohols including but not limited to 3-methyl-3-buten-1-ol, allyl alcohol,
  • quinone-type catalyst refers to a catalyst selected from the group comprising anthraquinone, naphthoquinone, phenanthraquinone and benzoquinone.
  • the catalyst is selected from the group comprising 1, 2-benzoquinone, 1, 4-benzoquinone, 1, 4-naphthoquinone, 9, 10-phenanthraquinone and 9, 10-anthraquinone which may be un-substituted or substituted by at least one substituent.
  • Substituents are selected from the group comprising alkyl, alkylaryl, alkenyl, alkynyl, halogen, hydroxyl, alkoxy, hydroxyalkyl, oxyaryl, oxyheteroaryl, amino, substituted amino, aryl, arylalkyl, heteroaryl, silyl, nitro, sulfonic, or cyano group, and wherein the term alkyl denotes a C 1 -C 12 hydrocarbon group which may be linear, branched or cyclic.
  • quinone-type catalysts compounds contemplated for use in the present invention include, but are not limited to compounds of formulas (I) or (II)
  • R 1 to R 8 independently are hydrogen, alkyl, alkylaryl, alkenyl, alkynyl, halogen, hydroxyl, alkoxy, hydroxyalkyl, oxyaryl, oxyheteroaryl, amino, substituted amino, aryl, arylalkyl, heteroaryl, silyl, nitro, sulfonic, or cyano group, and wherein the term alkyl denotes a C 1 -C 12 hydrocarbon group which may be linear, branched or cyclic.
  • the catalyst is selected from the group consisting of 1, 4-benzoquinone, anthraquinone, 2-ethylanthraquinone, 2, 6-dihydroxyanthraquinone, and disodium anthraquinone-2, 6-disulfonate
  • the catalyst is selected from the group consisting of 1, 4-benzoquinone, and 2-ethylanthraquinone.
  • the immobilized forms of any of the above-described compounds can also be used.
  • a solid support one can use materials such as polymers, composites, carbon materials, or inorganic carriers such as aluminum oxide or titanium oxide or silica.
  • the immobilization of the quinone-type catalyst can be accomplished, for example, by physical adsorption on the surface or via tethering through organic or inorganic linkers.
  • oxidant means compounds capable of directly oxidizing the reduced form of the quinone type catalyst (see scheme of Figure 1) .
  • Suitable oxidizing agents that can be employed include, but are not limited to molecular oxygen, air, hydrogen peroxide, chlorite, chlorate, bromate, hypochlorite, hypobromite, organic hydroperoxides, percarboxylic acids and the like. More particularly, the preferred oxidants are molecular oxygen and air. If oxygen or air are used, ambient pressures may be used. However, pressurized oxygen or air may have benefits in certain applications.
  • oxidizing agents such as hydrogen peroxide, chlorite, chlorate, bromate, hypochlorite, hypobromite, organic hydroperoxides, or percarboxylic acids are used, a molar percentages of from 10 %to 200 %may be used, based on the alcohol substrate used.
  • solvents in the process of the invention may be beneficial to dissolve the catalyst.
  • Particularly prefened solvents include but are not limited to toluene, acetic acid, ethyl acetate, butyl acetate, acetonitrile, tetrahydrofuran, methylene chloride, chloroform, acetone, diethyl ether, methyl tert-butyl ether.
  • Especially preferred solvent is toluene.
  • the solvent is present in an amount of from 0 %to 80 %, preferably from 20 to 80 %based on the volume of the reaction mixture of the present invention.
  • the quinone-type catalyst preferably is used in a concentration of from 0.01 to 10 mol %, more preferably from 0.1 to 5 mol %.
  • the process pressure is preferably in the range of from 0.1 -40 MPa, most preferably from 0.5 to 5 MPa.
  • the reaction can be carried out in a temperature range of from 80 °C to 200 °C, preferably from 90 °C to 180 °C, more preferably from 100 °C to 150 °C.
  • the process of the invention can be carried out in any conventional batch, semi-batch or continuous flow reactor capable of bringing the two phases (the organic phase and the gas phase) in sufficient contact and at the same time being capable of maintaining the reaction temperature and pressure within the desired range.
  • the crude aldehyde or ketone is isolated by phase split by addition of appropriate amount of water, saturated salt solution or by extraction.
  • the solvent used in extraction can be selected from a group of aprotic inert solvents such as methylene chloride, chloroform, ethyl acetate, butyl acetate, methyl acetate, toluene, diethyl ether, methyl tert-butyl ether, pentane, hexane, heptane. Excess solvent may be recycled after isolation of the desired aldehyde or ketone.
  • Especially preferred solvents are methyl tert-butyl ether and ethyl acetate.
  • the crude aldehyde or ketone can be recovered in several ways, including distillation, fractional distillation, either batch or continuous, or use of a thin-film evaporator to concentrate the aldehyde or ketone.
  • the crude aldehyde or ketone can also be purified as described in US patent No. 5,905,175.
  • the oxidation is carried out as follows:
  • the oxidation is carried out using immobilized quinone-type catalyst and consists of the following steps:
  • High reduction potential quinones such as 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) and chloranil can only oxidize activated alcohols (e.g. allylic and benzylic alcohols) , and the high reduction potential quinone is used as a stoichiometric oxidant (not a catalyst) .
  • activated alcohols e.g. allylic and benzylic alcohols
  • quinone is used as a stoichiometric oxidant (not a catalyst) .
  • GC analyses Filtered samples were analyzed using an Agilent 7820A gas chromatograph (GC) equipped with a HP-5 column at a temperature gradient from 50 °C to 290 °C at 6 °C min -1 .
  • GC gas chromatograph
  • GC/MS analyses Filtered samples were injected into a gas chromatography-mass spectrometry (GC/MS) apparatus (Agilent Technologies) with Inert Mass Selective Detector: 7890A gas chromatograph, 5975C Mass Selective Detector, 7693 autosampler. Column: HP-5, 30 m ⁇ 320 ⁇ m ⁇ 0.25 ⁇ m) . The injector was set at 325 °C and splitless injection was used. The column oven temperature was programmed at 80 °C for 1 min, then increased to 325 °C at 20 °C/min for 3 min.
  • GC/MS gas chromatography-mass spectrometry
  • AQ/silica catalyst was synthesized starting from commercially available aminopropyl-functionalized silica (Aldrich) having a relatively high degree of functionalization (1 mmol/g) .
  • 0.3 g of aminopropyl-functionalized silica was placed in a reactor, a solution of 50 mg anthraquinone-2-carboxylic acid in toluene was added, followed by 1.25 g of NaBH 3 CN in toluene.
  • the obtained mixture was stirred overnight at ambient temperature.
  • the mixture was removed from the reactor and any liquids removed by centrifugation.
  • the obtained solids were washed repeatedly with toluene and ethanol to remove any physically adsorbed quinone.
  • the solids were dried at 80 °C under vacuum.
  • Reaction conditions corresponded to those of Examples 1.1 –1.3 with the exceptions that no catalyst was employed, and air was used to pressurize the reactor. No aldehyde or ketone formation was observed via GC or GC/MS.
  • Reaction conditions corresponded to those of Examples 1.1 –1.3 with the exception that TEMPO (2 molar equivalents per mol of alcohol) was employed as the oxidant. Conversion to aldehyde or ketone was higher than 90 %, however, fresh TEMPO had to be added to the reactor for each new reaction cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a catalyst system exhibiting high activity and selectivity in the oxidation of alcohols to aldehydes or ketones using molecular oxygen as a terminal oxidant. Such catalyst system comprises quinone-type compound and is particularly useful for, but not limited to, the oxidation of primary or secondary aliphatic and aromatic alcohols to the respective aldehydes or ketones. Also disclosed is a process for oxidizing said alcohols to the respective aldehydes or ketones.

Description

Selective oxidation of alcohols Technical Field
The present invention relates to a catalyst system exhibiting high activity and selectivity in the oxidation of alcohols to aldehydes or ketones using molecular oxygen as a terminal oxidant. More specifically, the invention relates to a system comprising quinone-type catalysts, such as 2-ethylanthraquinone. Such catalysts are particularly useful for, but not limited to, the oxidation of primary or secondary aliphatic and aromatic alcohols to the respective aldehydes or ketones. The present invention is also related to a process for oxidizing said alcohols to the respective aldehydes or ketones.
Background Art
The catalytic oxidation of alcohols selectively to carbonyl compounds is essential for many important transformations in the synthetic organic chemistry. A large number of oxidants have been reported in the literature and most of them are based on transition metal oxides, such as oxides of chromium and manganese (S. Kirk-Othmer Mitchell, Encyclopedia of Chemical Technology, 4th ed., Wiley-Interscience, New York, Vol. 2, p. 481 (1992) ; Hudlicky, M. "Oxidations in Organic Chemistry" , ACS Monograph No. 186, American Chemical Society, Washington D.C. (1990) ; Sheldon R.A., Kochi J.K., Metal Catalized Oxidation of Organic Compounds, Academic Press, New York (1981) ; Ley, S.V., Madin, A., in Comprehensive Organic Synthesis, Trost B., Fleming, I., Eds.; Pergamon Press, Oxford (1991) ; Vol. 7, p. 251; Mijs, W.J., DeJonge, C.R.H.I., Eds. Organic Synthesis by Oxidation with Metal Compounds, Plenum Press, New York (1986) ) . The methods described require the use of stoichiometric amounts of inorganic oxidants, generally highly toxic  chromium or manganese compounds, which creates issues related to their handling and disposal.
A convenient procedure for the oxidation of primary and secondary alcohols has been reported by Anelli et al. (J. Org. Chem.  52 (1987) , 2559; J. Org. Chem., 54 (1989) , 2970) . The oxidation has been carried out in a two-phase system (CH 2Cl 2/water) utilizing TEMPO ( (2, 2, 6, 6-tetramethylpiperidin-1-yl) oxidanyl) as a catalyst and cheap and readily available NaOCl as an oxidant. The co-catalyst KBr enhances the reaction rate and the aqueous phase is buffered at pH 8.5 -9.5 using NaHCO 3. The use of a quaternary ammonium salt as a phase transfer catalyst furthers the oxidation of alcohols to carboxylic acids. The same procedure was modified by using NaClO 2 as the oxidant in the presence of catalytic amounts of TEMPO and NaOCl. This led to the formation of the carboxylic acid as the main product (U.S. Patent No. 6,127,573) .
A particularly efficient method for the oxidation of primary and secondary alcohols was reported by Tanielyan et al in Catalysis of Organic Reactions: Twenty-first Conference, S.R. Schmidt, ed., CRC Press, Boca Raton (2007) , p. 141. The oxidation is carried out at a temperature of from -5 to 0 ℃ using TEMPO as a catalyst, Na 2B 4O 7 as a co-catalyst and NaOCl as an oxidant. The procedure does not require a reaction solvent and is carried out without KBr promoter.
The search for efficient, easily accessible catalysts and "clean" oxidants such as hydrogen peroxide, hydroperoxides or molecular oxygen for industrial applications is still a challenge (Dijksman, A., Arends, I.W.C.E. and Sheldon R., Chem. Commun., 1999, 1591-1592 ; Marko I.E., Giles, P.R., Tsukazaki, M., Brown, S.M. and Urch, C.J., Science, 274 (5295) (1996) , 2044-2046) . A large number of transition metal complexes and oxidants have been reported to catalyze the selective oxidation of primary alcohols to aldehydes with varying levels of effectiveness such as RuCl 3-NaBrO 3 (Konemoto, S., Tomoioka, S., Oshima, K., Bull. Chem. Soc. Japan 59 (1) (1986) , 105) , Bu 4NRuO 4-4-methylmorpholine-N-oxide  (Griffith, W.P., Ley, S.V., Whitcombe, G.P., White A.D., Chem. Commun. 1987 (21) , 1625) , H 2O 2 and tert-butylhydroperoxide (t-BuOOH) (Tsuji, Y., Ohta, T., Ido, T. et al., J. Organomet. Chem., 270, (1984) , 333, Jiang, T.M., Hwang, J.C., Ho, H.O., Chen, C.Y., J. Chin. Chem. Soc., 35 (1988) , 135) . The methods described have only limited use since the overall yields are low and some of them require the application of precious metal complexes or expensive primary oxidants.
In the area of the aerobic oxidation of alcohols, very few efficient systems are currently available. A catalyst system based on TEMPO and Mn (NO 32-Co (NO 32 or Mn (NO 32-Cu (NO 32 was reported (Cecchetto, A., Fontana, F., Minisci, F. and Recupero, F., Tetrahedron Lett., 42 (2001) , 6651-6653) . The oxidation requires diluted solutions of the starting alcohol in acetic acid solvent (in the range of from 6 to 10 %v/v) and takes place at ambient temperatures and at atmospheric pressure of oxygen. A serious drawback of the method is the rapid deactivation of the catalyst at higher alcohol concentrations, resulting in the catalyst system becoming virtually inactive. Because of this, direct commercial application is not economically feasible as higher alcohol concentrations are typically required in such processes.
Wendlandt, A.E and Shannon, S.S. review quinone-catalyzed selective oxidation of organic molecules (Angew. Chem. Int. Ed. 54 (2015) , 14638 –14658) . The article focusses on  stoichiometric reactants for the oxidation of organic compounds, such as DDQ (2, 3-dicloro-5, 6-dicyano 1, 4-benzophenone) and the bioinspired o-quinone catalyzed oxidation of amines.
Dehydrogenation of alcohols by stoichiometric, quinone-type molecules is further disclosed in Braude, E.A., Linstead, R.P. and Wooldridge K.R., J. Chem. Soc. 1956, 3070 –3074; Ohki, A., Nishiguchi, T., and Fukuzumi, K., Tetrahedron 35 (1979) , 1737 –1743; Becker, H. -D., 
Figure PCTCN2018090110-appb-000001
A., and Adler, E., J. Org. Chem. 45 (1980) , 1596 –1600) .
Another review article titled Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer  –A Biomimetic Approach (Piera, J. and
Figure PCTCN2018090110-appb-000002
J. -E., Angew. Chem. Int. Ed. 47 (2008) , 3506 –3523) covers transition metal (Pd, Ru, Os, Cu) catalyzed oxidation of organic substrates using molecular oxygen and/or hydrogen peroxide as the oxidant and further employing electron transfer mediators such as porphyrins. Metal-free catalyzed oxidations focus on TEMPO as an active agent.
Silica immobilized TEMPO as a catalyst in conjunction with nitrosium tetrafluoro borate was shown to convert alcohols into the corresponding aldehydes or ketones employing molecular oxygen as the final oxidant (Shakir, A.J., Paraschivescu, C., Matache, M., Tudose, M., Mischie, A., Spafiu, F., Ionita, P., Tetrahedron Lett. 56 (2015) , 6878 –6881) .
Photooxidation of alcohols to obtain carboxylic acids and ketones using catalysts such as 2-chloroanthrachinone as an inorganic catalyst under visible light irradiation in a air atmosphere is disclosed by Shimada, Y., Hattori, K., Tada, N., Miura, T. and Itoh, A., Synthesis 45 (2013) , 2684 –2688. The reaction mixtures are mild, such as ambient pressure and temperature. Yield of ketones are low as under the reaction conditions mainly carboxylic acids are being formed.
Aerobic organocatalytic oxidation of alcohols was achieved by using water-soluble sodium anthraquinone sulfonate. Under visible light activation, this catalyst mediated the selective aerobic oxidation of alkanes or alcohols to aldehydes and ketones (Zhang, W., Gacs, J., Arends, I.W.C.E., and Hollmann, F., ChemCatChem. 9 (2017) , 3821-3826, hereinafter referred to as Reference A) .
Despite the extensive work reported in the area of the selective oxidation of primary and secondary alcohols there is still a continuous need for developing highly efficient and economical oxidation methods using molecular oxygen as an environmentally friendly oxidant. It is the object of the present invention to provide such an oxidation method.
Invention
It has unexpectedly been discovered that primary and secondary alcohols can be selectively oxidized to the respective aldehydes or ketones with molecular oxygen in the presence of a catalyst system, which comprises quinone-type catalysts, such as anthraquinone, naphthoquinone, phenanthraquinone and benzoquinone type catalysts.
The quinone catalyzed oxidation is described by the reaction scheme shown in Figure 1. The catalytic process involves hydrogen abstraction from the alcohol by the quinone with concomitant formation of the hydrogenated quinone and selective production of the respective aldehyde or ketone. Molecular oxygen was used as terminal oxidant, which provokes the regeneration of the quinone and probably formation of H 2O 2.
The reaction preferably takes place in solution employing an atmosphere of pure oxygen or air and at a temperature in the range of from 80 to 200 ℃ and a pressure in the range of from 0.1 to 40 MPa.
The term primary or secondary alcohols as used in the present invention describe organic compounds having primary or secondary hydroxyl groups. The term lower alcohol as used herein refers to alcohols having 1 to 10 carbon atoms while the term higher as used herein refers to alcohols having 11 or more carbon atoms. Examples of primary and secondary alcohols thereof include alcohols aliphatic alcohols such as methanol, ethanol, n-and isopropyl alcohol, n-, iso and sec-butyl alcohol, pentyl alcohol, hexyl alcohol, neopentyl alcohol, neohexyl alcohol, heptyl alcohol, octyl alcohol, Iauryl alcohol, tridecyl alcohol, myristyl alcohol, nonadecyl alcohol, eicosyl alcohol; alicyclic alcohols, including but not limited to cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol; heteroocyclic alcohols, including but not limited to 2, 2-dimethyl-1, 3-dioxolane-4-methanol (also referred to as acetone glycerol) ; unsaturated alcohols including but not limited to 3-methyl-3-buten-1-ol, allyl alcohol, crotyl  alcohol and propargyl alcohol; and aromatic alcohols including but not limited to benzyl alcohol, phenyl ethanol, phenyl propanol, and hydroxymethyl furfural.
The term quinone-type catalyst as used herein refers to a catalyst selected from the group comprising anthraquinone, naphthoquinone, phenanthraquinone and benzoquinone.
In a preferred embodiment, the catalyst is selected from the group comprising 1, 2-benzoquinone, 1, 4-benzoquinone, 1, 4-naphthoquinone, 9, 10-phenanthraquinone and 9, 10-anthraquinone which may be un-substituted or substituted by at least one substituent. Substituents are selected from the group comprising alkyl, alkylaryl, alkenyl, alkynyl, halogen, hydroxyl, alkoxy, hydroxyalkyl, oxyaryl, oxyheteroaryl, amino, substituted amino, aryl, arylalkyl, heteroaryl, silyl, nitro, sulfonic, or cyano group, and wherein the term alkyl denotes a C 1 -C 12 hydrocarbon group which may be linear, branched or cyclic.
Examples of quinone-type catalysts compounds contemplated for use in the present invention include, but are not limited to compounds of formulas (I) or (II)
Figure PCTCN2018090110-appb-000003
wherein R 1 to R 8 independently are hydrogen, alkyl, alkylaryl, alkenyl, alkynyl, halogen, hydroxyl, alkoxy, hydroxyalkyl, oxyaryl, oxyheteroaryl,  amino, substituted amino, aryl, arylalkyl, heteroaryl, silyl, nitro, sulfonic, or cyano group, and wherein the term alkyl denotes a C 1 -C 12 hydrocarbon group which may be linear, branched or cyclic.
In a preferred embodiment, the catalyst is selected from the group consisting of 1, 4-benzoquinone, anthraquinone, 2-ethylanthraquinone, 2, 6-dihydroxyanthraquinone, and disodium anthraquinone-2, 6-disulfonate
In a still preferred embodiment, the catalyst is selected from the group consisting of 1, 4-benzoquinone, and 2-ethylanthraquinone.
The immobilized forms of any of the above-described compounds can also be used. As a solid support one can use materials such as polymers, composites, carbon materials, or inorganic carriers such as aluminum oxide or titanium oxide or silica. The immobilization of the quinone-type catalyst can be accomplished, for example, by physical adsorption on the surface or via tethering through organic or inorganic linkers.
The term oxidant as used herein means compounds capable of directly oxidizing the reduced form of the quinone type catalyst (see scheme of Figure 1) . Suitable oxidizing agents that can be employed include, but are not limited to molecular oxygen, air, hydrogen peroxide, chlorite, chlorate, bromate, hypochlorite, hypobromite, organic hydroperoxides, percarboxylic acids and the like. More particularly, the preferred oxidants are molecular oxygen and air. If oxygen or air are used, ambient pressures may be used. However, pressurized oxygen or air may have benefits in certain applications. If oxidizing agents such as hydrogen peroxide, chlorite, chlorate, bromate, hypochlorite, hypobromite, organic hydroperoxides, or percarboxylic acids are used, a molar percentages of from 10 %to 200 %may be used, based on the alcohol substrate used.
The presence of solvents in the process of the invention may be beneficial to dissolve the catalyst. Particularly prefened solvents include but are not limited to toluene, acetic acid, ethyl acetate, butyl acetate, acetonitrile, tetrahydrofuran, methylene chloride, chloroform, acetone, diethyl ether, methyl tert-butyl ether. Especially preferred solvent is toluene.
The solvent is present in an amount of from 0 %to 80 %, preferably from 20 to 80 %based on the volume of the reaction mixture of the present invention.
In the inventive processes, the quinone-type catalyst preferably is used in a concentration of from 0.01 to 10 mol %, more preferably from 0.1 to 5 mol %.
If air or molecular oxygen are the terminal oxidant, the process pressure is preferably in the range of from 0.1 -40 MPa, most preferably from 0.5 to 5 MPa.
The reaction can be carried out in a temperature range of from 80 ℃ to 200 ℃, preferably from 90 ℃ to 180 ℃, more preferably from 100 ℃ to 150 ℃.
The process of the invention can be carried out in any conventional batch, semi-batch or continuous flow reactor capable of bringing the two phases (the organic phase and the gas phase) in sufficient contact and at the same time being capable of maintaining the reaction temperature and pressure within the desired range.
Once the reaction is completed, the crude aldehyde or ketone is isolated by phase split by addition of appropriate amount of water, saturated salt solution or by extraction. The solvent used in extraction can be selected from a group of aprotic inert solvents such as methylene chloride, chloroform, ethyl acetate, butyl acetate, methyl acetate, toluene, diethyl ether, methyl tert-butyl ether, pentane, hexane, heptane. Excess solvent may be recycled after isolation of the desired aldehyde or ketone. Especially preferred solvents are methyl tert-butyl ether and ethyl acetate. The crude aldehyde or ketone can be recovered in several ways, including distillation, fractional distillation, either batch or continuous, or use of a thin-film evaporator to concentrate the aldehyde or ketone. The crude aldehyde or ketone can also be purified as described in US patent No. 5,905,175.
In accordance with one embodiment of the present invention, the oxidation is carried out as follows:
1. Preparing a solution of quinone-type catalyst in toluene.
2. Addition of the alcohol substrate to the catalyst solution.
3. Placing the reaction mixture of catalyst, alcohol and solvent in an autoclave.
4. Pressurization of the autoclave to the desired pressure employing pure O 2.
5. Heating the stirred reaction mixture to the desired temperature.
6. Cooling the reaction after the oxygen uptake is completed.
7. Phase splitting the reaction mixture by addition of water and collecting the organic phase.
In accordance with another embodiment of the present invention, the oxidation is carried out using immobilized quinone-type catalyst and consists of the following steps:
1. Placing commercially available aminopropyl-functionalized silica in a reactor, adding solution of quinone-type catalyst in toluene, followed by required amount of NaBH 3CN.
2. Stirring the obtained reaction mixture overnight at ambient temperature.
3. Removing the mixture from the reactor and removing any liquids by centrifugation.
4. Washing obtained solids repeatedly with toluene and ethanol to remove any physically adsorbed quinone. Drying the solids at 80 ℃ under vacuum.
5. Preparing a solution of alcohol substrate in toluene.
6. Addition of the immobilized quinone-type catalyst to said solution.
7. Heating the stirred reaction solution to the desired temperature under oxygen atmosphere.
8. Cooling the reaction after the oxygen uptake is completed.
9. Filtering the reaction mixture to remove immobilized catalyst.
10. Phase splitting of the reaction mixture by addition of water and collecting the organic phase.
It is the great advantage of the process of the present invention that selective oxidation of alcohols to the respective aldehydes or ketones and reoxidation of the formed hydroquinone with molecular oxygen can be achieved at the same time in the same reactor. The utilization of additional electron transfer mediators (ETM) , such as metal porphyrin, metal phthalocyanine, or metal-salen complexes to effect reoxidation of the hydroquinone is unnecessary. Also TEMPO-catalyzed selective oxidation reactions of alcohols require ETM’s for the reoxidation of the reduced TEMPO.
High reduction potential quinones, such as 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) and chloranil can only oxidize activated alcohols (e.g. allylic and benzylic alcohols) , and the high reduction potential quinone is used as a stoichiometric oxidant (not a catalyst) .
The recently reported (Reference A) aerobic organocatalytic oxidation of alcohols to aldehydes and ketones at ambient conditions under oxygen atmosphere employs sodium anthraquinone sulfonate as the photocatalyst. Visible light (λ > 400 nm) is used to activate the H-abstraction from the starting alcohol to the photoexcited catalyst. As with the present invention, reoxidation of formed hydroquinone with molecular oxygen can be achieved at the same time in the same reactor.
The following examples are provided for illustrative purposes only; the claimed invention shall not be construed as limited to the examples set forth below.
Examples
All reactions were conducted in a 30 ml stainless steel autoclave.
GC analyses: Filtered samples were analyzed using an Agilent 7820A gas chromatograph (GC) equipped with a HP-5 column at a temperature gradient from 50 ℃ to 290 ℃ at 6 ℃ min -1.
GC/MS analyses: Filtered samples were injected into a gas chromatography-mass spectrometry (GC/MS) apparatus (Agilent Technologies) with Inert Mass Selective Detector: 7890A gas  chromatograph, 5975C Mass Selective Detector, 7693 autosampler. Column: HP-5, 30 m × 320 μm × 0.25 μm) . The injector was set at 325 ℃ and splitless injection was used. The column oven temperature was programmed at 80 ℃ for 1 min, then increased to 325 ℃ at 20 ℃/min for 3 min.
Example 1.1 –1.3
Typically, 2.0 g of benzyl alcohol or cyclohexanol (or 0.5 g of HMF) and 1.0 g of toluene solvent were introduced into the autoclave, together with 50.0 mg of 2-ethylanthraquinone (EQ) as the catalyst. The reactor was sealed and pressurized with 1 MPa of pure O 2. The reaction mixture was then vigorously stirred at a given temperature for 2 to 24 h and oxygen uptake monitored. After completion of reaction, the products were analyzed by GC and GC-MS. Reaction conditions and conversion of the alcohol and selectivity as to the respective aldehyde or ketone are listed in Table 1.
Table 1. Selective oxidation of alcohols employing EQ
Figure PCTCN2018090110-appb-000004
*benzaldehyde /**cyclohexanone /***diformyl furan
Example 2.1 –2.9
The selective oxidation capacity of further types of quinones was evaluated employing the same reaction conditions as used in Examples 1.1 to 1.3. Table 2 summarizes the reaction conditions and catalytic results obtained with the selective oxidation of benzyl alcohol and cyclohexanol.
Table 2. Selective oxidation of alcohols employing further quinones
Figure PCTCN2018090110-appb-000005
*BQ = 1, 4-benzoquinone /**DQ = 1, 5-dihydroxy anthraquinone ***SQ = anthraquinone-2 6-disulfonic acid disodium salt
Example 3.1 –3.2
The selective oxidation capacity of anthraquinone (AQ) grafted on the surface of silica (8 -10 wt. %) was evaluated by using the same reaction conditions as described in Examples 1.1 –1.3. Table 3 summarizes the reaction conditions and catalytic results obtained with the selective oxidation of benzyl alcohol, cyclohexanol and HMF.
AQ/silica catalyst was synthesized starting from commercially available aminopropyl-functionalized silica (Aldrich) having a relatively high degree of functionalization (1 mmol/g) . 0.3 g of aminopropyl-functionalized silica was placed in a reactor, a solution of 50 mg anthraquinone-2-carboxylic acid in toluene was added, followed by 1.25 g of NaBH 3CN in toluene. The obtained mixture was stirred overnight at ambient temperature. The mixture was removed from the reactor and any liquids removed by centrifugation. The obtained solids were washed repeatedly with toluene and ethanol to remove any physically adsorbed quinone. The solids were  dried at 80 ℃ under vacuum.
Table 3. Selective oxidation of alcohols employing immobilized anthraquinone
Figure PCTCN2018090110-appb-000006
*benzaldehyde /**cyclohexanone /***diformyl furan
Example 4.1 –4.2
The stability of the grafted AQ/silica catalyst in the oxidation of cyclohexanol was tested by filtering off the catalyst after a reaction cycle and addiing recovered catalyst to a fresh alcohol mixture for a subsequent reaction as described in Examples 1.1 –1.3. Table 4 summarizes the reaction conditions and catalytic results obtained with the selective oxidation of cyclohexanol.
Table 4. Selective oxidation of alcohols employing immobilized anthraquinone
Figure PCTCN2018090110-appb-000007
Comparative Example C1.1 –C1.3
Reaction conditions corresponded to those of Examples 1.1 –1.3 with the  exceptions that no catalyst was employed, and air was used to pressurize the reactor. No aldehyde or ketone formation was observed via GC or GC/MS.
Comparative Example C2.1 –C2.3
Reaction conditions corresponded to those of Examples 1.1 –1.3 with the exception that TEMPO (2 molar equivalents per mol of alcohol) was employed as the oxidant. Conversion to aldehyde or ketone was higher than 90 %, however, fresh TEMPO had to be added to the reactor for each new reaction cycle.

Claims (18)

  1. A process for oxidizing alcohols selected from the group consisting of primary and secondary alcohols to the respective aldehydes or ketones comprising the following steps:
    (a) providing said alcohol and a catalyst selected from the group comprising anthraquinone, naphthoquinone, phenanthraquinone and benzoquinone type catalysts;
    (b) reacting said alcohol in the presence of said catalyst with an oxidant to produce said aldehyde or ketone.
  2. The process as claimed in claim 1, wherein primary and secondary alcohols are selected from the group comprising aliphatic alcohols, including but not limited to methanol, ethanol, n-and isopropyl alcohol, n-, iso and sec-butyl alcohol, pentyl alcohol, hexyl alcohol, neopentyl alcohol, neohexyl alcohol, heptyl alcohol, octyl alcohol, Iauryl alcohol, tridecyl alcohol, myristyl alcohol, nonadecyl alcohol, eicosyl alcohol; alicyclic alcohols, including but not limited to cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, heteroocyclic alcohols, including but not limited to 2, 2-dimethyl-1, 3-dioxolane-4-methanol, unsaturated alcohols including but not limited to 3-methyl-3-buten-1-ol, allyl alcohol, crotyl alcohol and propargyl alcohol, and aromatic alcohols including but not limited to benzyl alcohol, phenyl ethanol, phenyl propanol, and hydroxymethyl furfural.
  3. The process as claimed in claim 1 or 2, wherein the catalyst is selected from the group comprising 1, 2-benzoquinone, 1, 4-benzoquinone, 1, 4-naphthoquinone, 9, 10-phenanthraquinone and 9, 10-anthraquinone which may be un-substituted or substituted by at least one substituent.
  4. The process as claimed in claim 3, wherein substituents are selected from the group comprising alkyl, alkylaryl, alkenyl, alkynyl, halogen, hydroxyl, alkoxy, hydroxyalkyl, oxyaryl, oxyheteroaryl, amino, substituted amino, aryl, arylalkyl, heteroaryl, silyl, nitro, sulfonic, or cyano group, and wherein the term  alkyl denotes a C 1-C 12 hydrocarbon group which may be linear, branched or cyclic.
  5. The process as claimed in one or more of claims 1 to 4, wherein the catalyst is selected from the group consisting of compounds having the formulas (I) and (II) :
    Figure PCTCN2018090110-appb-100001
    wherein R 1–R 8 are independently hydrogen, alkyl, alkylaryl, alkenyl, alkynyl, halogen, hydroxyl, alkoxy, hydroxyalkyl, oxyaryl, oxyheteroaryl, amino, substituted amino, aryl, arylalkyl, heteroaryl, silyl, nitro, sulfonic, or cyano group, and wherein the term alkyl denotes a C 1-C 12 hydrocarbon group which may be linear, branched or cyclic.
  6. The process as claimed in one or more of claims 1 to 5, wherein the catalyst is selected from the group consisting of 1, 4-benzoquinone, anthraquinone, 2-ethylanthraquinone, 2, 6-dihydroxyanthraquinone, disodium anthraquinone-2, 6-disulfonate.
  7. The process as claimed in one or more of claims 1 to 6, wherein the catalyst is selected from the group consisting of 2-ethylanthraquinone and 1, 4-benzoquinone.
  8. The process as claimed in one or more of claims 1 to 7, wherein the catalyst is present in an amount of from 0.01 to 10 mol %, based on the molar amount of the employed alcohol.
  9. The process as claimed in one or more of claims 1 to 8, wherein the catalyst is immobilized on a solid support.
  10. The process as claimed in claim 9, wherein the solid support is selected from the group comprising polymers, composites, carbon materials, or inorganic carriers, the latter including but not limited to silica, aluminum oxide or titanium oxide.
  11. The process as claimed in one or more of claims 1 to 10, wherein the oxidant is selected from the group comprising molecular oxygen, air, hydrogen peroxide, chlorite, chlorate, bromate, hypochlorite, hypobromite, organic hydroperoxides, and percarboxylic acids.
  12. The process as claimed in one or more of claims 1 to 11, wherein the reaction mixture further comprises a solvent.
  13. The process as claimed in claim 12, wherein the solvent is selected from the group comprising: acetic acid, ethyl acetate, butyl acetate, acetonitrile, tetrahydrofuran, methylene chloride, chloroform, toluene, acetone, diethyl ether, methyl tert-butylether and mixtures thereof.
  14. The process as claimed in claims 12 or 13, wherein the solvent is present in an amount of from 0 %to 80 %based on the volume of the reaction mixture of claim 1.
  15. The process as claimed in one or more of claims 1 to 14, wherein the reaction temperature is maintained in a range of from 80 ℃ to 200 ℃.
  16. The process as claimed in one or more of claims 1 to 15, wherein the reaction pressure is maintained in a range of from 0.1 MPa to 40 MPa.
  17. The process as claimed in one or more of claims 1 to 16, further comprising the step of purification of said aldehyde or ketone by one or more of the group comprising batch or continuous distillation, batch or continuous fractional distillation, or a thin film evaporation.
  18. Use of anthraquinone, naphthoquinone, phenanthraquinone and benzoquinone type catalysts for the selective oxidation of of primary and secondary alcohols to the respective aldehydes or ketones.
PCT/CN2018/090110 2018-06-06 2018-06-06 Selective oxidation of alcohols WO2019232715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090110 WO2019232715A1 (en) 2018-06-06 2018-06-06 Selective oxidation of alcohols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090110 WO2019232715A1 (en) 2018-06-06 2018-06-06 Selective oxidation of alcohols

Publications (1)

Publication Number Publication Date
WO2019232715A1 true WO2019232715A1 (en) 2019-12-12

Family

ID=68769102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090110 WO2019232715A1 (en) 2018-06-06 2018-06-06 Selective oxidation of alcohols

Country Status (1)

Country Link
WO (1) WO2019232715A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159515A (en) * 2020-09-10 2021-01-01 贵州师范大学 Based on SiO2Method for preparing TEMPO free radical functionalized hollow conjugated microporous polymer by using template and application
CN113845427A (en) * 2021-09-07 2021-12-28 华东师范大学 Aryl alcohol, aryl ketone, aryl carboxylic acid compound and synthesis method and application thereof
CN115433072A (en) * 2022-08-22 2022-12-06 浙江工业大学 A kind of photocatalytic oxidation prepares the method for aryl ketone
CN115722270A (en) * 2022-11-28 2023-03-03 东南大学 PI-TiO with core-shell structure 2 Preparation method and application of catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964192A (en) * 2011-09-01 2013-03-13 中国科学院大连化学物理研究所 Method for preparing aldehyde or ketone by alcohol oxidation
CN102964191A (en) * 2011-08-31 2013-03-13 中国科学院大连化学物理研究所 Method for preparing aldehyde and ketone by alcohol oxidation
CN103787848A (en) * 2012-11-01 2014-05-14 中国科学院大连化学物理研究所 Method for preparing alkynyl ketone by oxidizing propargyl alcohol
CN103880617A (en) * 2012-12-20 2014-06-25 中国科学院大连化学物理研究所 Method for preparing acetylenic ketone through oxidizing propargyl alcohol
CN104341280A (en) * 2013-07-25 2015-02-11 中国科学院大连化学物理研究所 Method for preparing aldehyde and ketone through alcohol oxidation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964191A (en) * 2011-08-31 2013-03-13 中国科学院大连化学物理研究所 Method for preparing aldehyde and ketone by alcohol oxidation
CN102964192A (en) * 2011-09-01 2013-03-13 中国科学院大连化学物理研究所 Method for preparing aldehyde or ketone by alcohol oxidation
CN103787848A (en) * 2012-11-01 2014-05-14 中国科学院大连化学物理研究所 Method for preparing alkynyl ketone by oxidizing propargyl alcohol
CN103880617A (en) * 2012-12-20 2014-06-25 中国科学院大连化学物理研究所 Method for preparing acetylenic ketone through oxidizing propargyl alcohol
CN104341280A (en) * 2013-07-25 2015-02-11 中国科学院大连化学物理研究所 Method for preparing aldehyde and ketone through alcohol oxidation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COSNER, CASEY C. ET AL.: "Selective Oxidation of Benzylic and Allylic Alcohols Using Mn(OAc)3/Catalytic 2, 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone", ORGANIC LETTERS, vol. 13, no. 8, 11 March 2011 (2011-03-11), pages 2071 - 2073, XP055667239 *
HU , YONGKE ET AL.: "Fe(N03)3/2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ): An efficient catalyst system for selective oxidation of alcohols under aerobic conditions", CATALYSIS COMMUNICATIONS, vol. 103, 22 September 2017 (2017-09-22), pages 42 - 46, XP085233798, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2017.09.019 *
WANG, LIANYUE ET AL.: "Selective Oxidation of Unsaturated Alcohols Catalyzed by Sodium Nitrite and 2, 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone with Molecular Oxygen under Mild Conditions", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 33, 9 December 2011 (2011-12-09), pages 790 - 794, XP055667234 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159515A (en) * 2020-09-10 2021-01-01 贵州师范大学 Based on SiO2Method for preparing TEMPO free radical functionalized hollow conjugated microporous polymer by using template and application
CN113845427A (en) * 2021-09-07 2021-12-28 华东师范大学 Aryl alcohol, aryl ketone, aryl carboxylic acid compound and synthesis method and application thereof
CN115433072A (en) * 2022-08-22 2022-12-06 浙江工业大学 A kind of photocatalytic oxidation prepares the method for aryl ketone
CN115433072B (en) * 2022-08-22 2023-08-08 浙江工业大学 A kind of photocatalytic oxidation prepares the method for aryl ketone
CN115722270A (en) * 2022-11-28 2023-03-03 东南大学 PI-TiO with core-shell structure 2 Preparation method and application of catalyst

Similar Documents

Publication Publication Date Title
WO2019232715A1 (en) Selective oxidation of alcohols
Ishii et al. A new strategy for alkane oxidation with O2 using N‐hydroxyphthalimide (NHPI) as a radical catalyst
Wöltinger et al. Zeolite‐Encapsulated Cobalt Salophen Complexes as Efficient Oxygen‐Activating Catalysts in Palladium‐Catalyzed Aerobic 1, 4‐Oxidation of 1, 3‐Dienes
Murphy et al. Allylic oxofunctionalization of cyclic olefins with homogeneous and heterogeneous catalysts
Khenkin et al. Reaction of Aldehydes with the H5PV2Mo10O40Polyoxometalate and Cooxidation of Alkanes with Molecular Oxygen
US7741514B2 (en) Catalyst comprising N-substituted cyclic imide compound and process for producing organic compound using the catalyst
JP4464476B2 (en) Oxidation method
Mirkhani et al. Catalytic epoxidation of olefins with hydrogen peroxide by hybrid complex containing nickel (III) Schiff base complex covalently linked to polyoxometalate
EP2130583A1 (en) Method for producing carbonyl compound
US10836700B1 (en) Process for preparing ketone or carboxylic acid by catalytic oxidation of secondary or primary alcohol
Tangestaninejad et al. Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese (III) salophen supported on multi-wall carbon nanotubes
Nechab et al. New aerobic oxidation of benzylic compounds: efficient catalysis by N-hydroxy-3, 4, 5, 6-tetraphenylphthalimide (NHTPPI)/CuCl under mild conditions and low catalyst loading
CN102276422B (en) Method for catalyzing benzene and hydrogen peroxide to synthesize phenol by using Cu-loading Schiff base
Islam et al. Synthesis of a reusable polymer anchored cobalt (II) complex for the aerobic oxidation of alkyl aromatics and unsaturated organic compounds
US20100317869A1 (en) Immobilized cyclic imide catalyst and process for oxidation of organic compounds with the same
KR20010006477A (en) Oxidation Catalyst System and Method of Oxidation with the Same
EP1238704B1 (en) Catalyst comprising a cyclic imide compound and process for producing organic compounds using the catalyst
CN111269087B (en) Method for catalyzing cumene oxidation by trace copper-promoted carbon nano tube
WO2002044110A1 (en) An oxidation reaction process catalysized by phase-transfer catalyst controlling reaction
US20040014985A1 (en) Method for separation of reaction products from catalysts
US6881870B2 (en) Process for producing adamantanol and adamantanone
CN101613252B (en) Method for synthesizing oxygen-containing compounds by selective oxidization of hydrocarbons in the presence of metal and quinine catalyst
Jianqi et al. Benzylic Oxidation Catalyzed by Cobalt (II)-Terpyridine Coordination Polymers
CN114149389B (en) Preparation method of naphthoquinone epoxy compound
US7214837B2 (en) Process for preparation of a mixture of alcohols and ketones by liquid phase oxidation of higher alkanes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921532

Country of ref document: EP

Kind code of ref document: A1