CN110586068A - 一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用 - Google Patents

一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用 Download PDF

Info

Publication number
CN110586068A
CN110586068A CN201910843787.0A CN201910843787A CN110586068A CN 110586068 A CN110586068 A CN 110586068A CN 201910843787 A CN201910843787 A CN 201910843787A CN 110586068 A CN110586068 A CN 110586068A
Authority
CN
China
Prior art keywords
bivo
photoelectrocatalysis
modified
doped
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910843787.0A
Other languages
English (en)
Other versions
CN110586068B (zh
Inventor
薛娟琴
李金锴
雷大士
李姝昊
毕强
唐长斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201910843787.0A priority Critical patent/CN110586068B/zh
Publication of CN110586068A publication Critical patent/CN110586068A/zh
Application granted granted Critical
Publication of CN110586068B publication Critical patent/CN110586068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明属于半导体光电催化氧化技术领域,具体涉及一种镱离子掺杂改性BiVO4光电催化电极制备方法、产品及应用。先采用水热法制备Yb3+掺杂改性的BiVO4粉末,然后将粉体均匀分散在聚乙二醇和无水乙醇体积比为2:1的混合体系中,制成粘稠度适中的浆料,将浆料滴涂在FTO导电玻璃的导电面,通过湿式刮膜器将其刮涂均匀,置于恒温鼓风干燥箱中,80℃烘干6h后取出。在室温下将其置于马弗炉中,高温焙烧后得到Yb3+掺杂改性BiVO4光电极。本发明制备得到的Yb3+掺杂改性BiVO4光电极相比于未改性的BiVO4光电极具有更高的光电催化活性。本发明操作步骤简单,反应条件简单易得,膜厚可控,而且整个制备过程无有毒、有害物质的产生,不会对环境造成污染、安全、环保。

Description

一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及 其应用
技术领域
本发明涉及半导体光电催化氧化领域,特别涉及一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用。
背景技术
工业化的快速发展产生了大量的废水,有机染料是废水的主要组分之一。广泛存在的环境问题和健康问题来自纺织、塑料、皮革和化妆品工业造成的有机染料。由于有机染料可以吸收太阳光,因此像亚甲基蓝这样的发色团染料通过抑制光合活性来影响水中的浮游植物。这些有致癌作用的污染物通过食物链和与受污染的水直接接触,对哺乳动物构成威胁。许多传统的水处理方法,如生物氧化、吸附、光催化和絮凝-离子沉淀已用于去除废水中的有机化合物。其中光催化氧化能力强、成本低、环境友好,被认为是一种有前途的“绿色”污水处理技术。
BiVO4作为一种新型的可见光响应半导体光催化剂,具有带隙宽度窄(约2.4eV),无毒和稳定性强等特点;当其受到大于禁带宽度能量的光子照射后,电子从价带跃迁到导带, 产生了电子-空穴对,电子具有还原性,空穴具有氧化性,空穴与氧化物半导体纳米粒子表面的-OH反应生成氧化性很高的羟基自由基,活泼的羟基自由基可以把许多难降解的有机物氧化为CO2和H2O等无机物。然而,较高的光生电子和空穴的复合率也大大降低了其催化效率。
发明内容
为了克服上述现有技术的不足,本发明提供一种镱离子掺杂改性BiVO4光电催化电极的制备方法及其应用。
本发明的技术方案之一在于提供一种镱离子掺杂改性BiVO4光电催化电极的制备方法;
本发明的技术方案之二在于提供上述一种镱离子掺杂改性BiVO4光电催化电极的制备方法所制备的Yb掺杂改性BiVO4光电催化电极;
本发明的技术方案之三在于提供上述镱离子掺杂改性BiVO4光电催化电极在光电催化材料的应用。
本发明的技术方案之一,一种Yb掺杂改性BiVO4光电催化电极的制备方法,具体包括以下步骤:
步骤一:水热法制备Yb掺杂的BiVO4粉末
向BiVO4前驱体混合溶液中添加Yb(NO3)3·3H2O,进行水热反应,结束后过滤烘干制得的Yb掺杂的BiVO4粉末;
步骤二:Yb掺杂的BiVO4粉末光电极的制备
向步骤一制备的Yb掺杂改性的BiVO4粉末加入聚乙二醇和无水乙醇的混合体系中,搅拌均匀,得到具有一定粘稠性的悬浮液,超声得到BiVO4浆料,得到的浆料滴涂在FTO导电玻璃的导电面,置于恒温鼓风干燥箱中,充分干燥后得到涂有Yb掺杂改性的BiVO4光电催化材料的导电玻璃,将得到的涂有Yb掺杂改性的BiVO4光电催化材料的导电玻璃置于马弗炉中高温煅烧后随炉冷却至室温后得到Yb掺杂改性的BiVO4光电极。
优选的是,上述步骤一中,10mmol Bi(NO3)3·5H2O溶解在40mL 4mol/L的稀硝酸中,记为溶液A,待溶液A完全溶解后,将0.18g Yb(NO3)3·5H2O加入溶液A,磁力搅拌半小时,10mmol NH4VO3溶解在40mL 4mol/L的氢氧化钠溶液中,记为溶液B,将溶液B逐滴加入溶液A中,搅拌至溶液呈现亮黄色,得到BiVO4前驱体,用4mol/L NaOH 将pH调至8,磁力搅拌后将前驱体倒入100mL聚四氟乙烯水热反应釜中,180℃反应3h。反应结束后待水热反应釜自然冷却,取下层沉淀分别用去离子水和无水乙醇洗涤3次, 80℃烘干12h,得到Yb掺杂的BiVO4粉末;
优选的是,步骤二中,FTO导电玻璃分别用丙酮,去离子水,乙醇分别超声清洗10分钟,在80℃条件下烘干2h;
优选的是,步骤二中,所述聚乙二醇和无水乙醇的混合体系中聚乙二醇和无水乙醇的体积比为2:1;
优选的是,步骤二中,Yb掺杂改性BiVO4粉末的添加量为1g/10ml聚乙二醇;
优选的是,步骤二中,超声时间为30min,温度为30℃~40℃,膜层厚度为30μm,干燥温度为80℃,干燥时间为6h,焙烧温度为500℃,时间为3h;
本发明的技术方案之二,提供上述Yb掺杂改性BiVO4光电催化电极的制备方法所制备的Yb掺杂改性BiVO4光电催化电极。
本发明的技术方案之三,提供上述Yb掺杂改性BiVO4光电催化电极在光电催化材料的应用,将其用于对染料废水进行光电催化具有极高的降解率;
优选的是,所述的染料废水中的染料为亚甲基蓝、甲基橙或罗丹明B中的一种或几种。
本发明至少包括以下有益效果:
本发明的Yb3+掺杂改性BiVO4的制备方法制备的Yb3+掺杂改性BiVO4比未掺杂的BiVO4光电极具有更高的光电催化活性,Yb3+的掺杂能有效拓宽可见光响应波长,扩大吸收范围;同时离子半径较小的Yb3+可取代离子半径较大的Bi3+,导致材料电荷不平衡,为了补偿电荷可能在临近处形成氧空位,带有正电荷的氧空位吸引光生电子,进而抑制光生电子和空穴的复合,从而提高BiVO4材料的光电催化活性。
本发明在温和的条件下制备了具有可见光响应的棒状Yb掺杂改性BiVO4光催化剂,通过将其涂覆在FTO导电玻璃上制备出了具有光电催化性能的Yb掺杂改性BiVO4光电极,并用于进行高效光电催化降解有机污染物。Yb3+的掺杂使BiVO4晶格内部产生了更多的氧空位,氧空位可通过吸引光生电子来抑制光生电子和空穴的复合,提高其光电催化的活性。在光电催化降解亚甲基蓝溶液的实验中,Yb掺杂改性BiVO4光电极降解速率常数可以达到 0.845h-1。亚甲基蓝的降解主要通过羟基自由基,超氧自由基以及空穴对其进行的氧化来进行的。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为实施例1-6制备的不同Yb3+掺杂量样品的XRD图谱;
图2为实施例1-6制备的不同Yb3+掺杂量电极的形貌;
图3为实施例1-6制得的Yb3+掺杂改性BiVO4光电极催化降解亚甲基蓝的光电催化活性图;
图4为实施例1-6制得的Yb3+掺杂改性BiVO4光电极催化降解亚甲基蓝的光电催化动力学拟合图;
图5为实施例1-7制备的不同Yb3+掺杂量电极的EIS及光电流图谱。
具体实施方式
下面对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
为更清楚的说明本发明的技术方案,将以具体的实施例进一步说明。
实施例1
步骤一:水热法制备BiVO4粉末
10mmol Bi(NO3)3·5H2O溶解在40mL4mol/L的稀硝酸中,记为溶液A,磁力搅拌,10mmol NH4VO3溶解在40mL 4mol/L的氢氧化钠溶液中,记为溶液B,将溶液B逐滴加入溶液A中,搅拌至溶液呈现亮黄色,得到BiVO4前驱体,用4M NaOH将pH调至8,磁力搅拌后将前驱体倒入100mL聚四氟乙烯水热反应釜中,180℃反应3h。反应结束后待水热反应釜自然冷却,取下层沉淀分别用去离子水和无水乙醇洗涤3次,80℃烘干12h,得到BiVO4粉末。
步骤二:BiVO4光电极的制备
步骤一制得的BiVO4粉末1g加入10ml聚乙二醇和5ml无水乙醇的混合体系中,搅拌均匀,得到具有一定粘稠性的悬浮液,35℃超声30min得到BiVO4浆料,得到的浆料滴涂在FTO导电玻璃的导电面,置于恒温鼓风干燥箱中,80℃,干燥6h后得到涂有BiVO4的光电催化材料的导电玻璃,将得到的导电玻璃置于马弗炉中500℃煅烧3h后随炉冷却至室温后得到BiVO4光电极(BiVO4)。
实施例2
制备过程同实施例1,区别在于向步骤一A溶液中加入0.09g Yb(NO3)3·5H2O,得到Yb掺杂量为2at%%的改性的BiVO4光电极(2%Yb-BiVO4)。
实施例3
制备过程同实施例1,区别在于向步骤一A溶液中加入0.135g Yb(NO3)3·5H2O,得到Yb掺杂量为3at%的改性的BiVO4光电极(3%Yb-BiVO4)。
实施例4
制备过程同实施例1,区别在于向步骤一A溶液中加入0.18g Yb(NO3)3·5H2O,得到Yb掺杂量为4at%的改性的BiVO4光电极(4%Yb-BiVO4)。
实施例5
制备过程同实施例1,区别在于向步骤一A溶液中加入0.225g Yb(NO3)3·5H2O,得到Yb掺杂量为5at%的改性的BiVO4光电极(5%Yb-BiVO4)。
实施例6
制备过程同实施例1,区别在于向步骤一A溶液中加入0.27g Yb(NO3)3·5H2O,得到Yb掺杂量为6at%的改性的BiVO4光电极(6%Yb-BiVO4)。
图1为实施例1-6制备的不同Yb3+掺杂量样品的XRD图谱,不同掺杂量下合成的BiVO4样品均有良好的结晶度和清晰的衍射峰。当掺杂量较小时,参照标准卡片JCPDS 14-0688我们可以观察到其生成的是纯净的单斜相BiVO4,在19.10°,29.04°,30.70°处的特征峰分别对应(011),(121),(040)晶面。随着掺杂量的增大,当掺杂量达到3%时,参照标准卡片JCPDS 14-0133我们可以观察到其生成的是纯净的四方相BiVO4,在 18.40°,24.46°和32.87°的特征峰分别对应(101),(200),(112)晶面。然而在复合材料上并没有出现Yb3+的衍射峰,这可能是由于Yb3+浓度较低未达到X射线衍射的最低检测限。
图2为实施例1-6制备的不同Yb3+掺杂量电极的形貌。从图2(a)中可清晰地看出,纯BiVO4材料由不规则的片状晶体聚集而成,并总体呈现出雪花状。随着Yb3+的掺杂,如图2(b,c)所示,当掺杂量为2at%和3at%时,其呈现出光滑的四方棒状形态,长度大约为1-2μm。如图2(d)当掺杂量达到4at%时,其四方棒的表面不再光滑,而是附着了一层致密的片状结构,四方棒的长度大约为1-2μm,此时的材料因其具有较大的比表面和较多的活性位点,从而具有最高的光电催化活性。随着Yb3+的掺杂量继续增大,BiVO4棒的尺寸也在不断减小,但是较小的尺寸可能会使材料表面出现复合中心的机会增大,当光生电子和空穴的复合作用在催化过程中起主导作用时,会出现催化活性下降的现象。从图中也可以清晰地看到,当Yb3+的掺杂量为5at%和6at%时,其在FTO导电玻璃表面出现了严重的团聚现象,团聚现象也是造成比表面积变小,导电性变差,光生电子和空穴的复合能力增强。
应用例
采用实施例1-6所制备的电极对染料废水的催化过程如下:
采用光电催化反应器,光源是可见光氙灯,光电极是实施例制备的光电催化电极,模拟染料废水是亚甲基蓝溶液;
步骤一:将光电催化电极置于100mL浓度为10mg·L-1的亚甲基蓝溶液中,暗反应20分钟使其达到吸附-解吸平衡,以消除物理吸附对催化过程的影响。
步骤二:使用加装AM1.5G滤波片的氙灯光源对光电极进行垂直照射,同时通过直流电源对其施加1.0V的外加偏压,每20min取样4mL,总降解时间为120min。
以上步骤均在磁力搅拌的条件下进行。
步骤三:待降解结束后采用紫外-可见分光光度计在亚甲基蓝的最大吸收波长(664nm) 处测定其吸光度,通过亚甲基蓝标准曲线计算得到其降解率。
图3为本发明的制得的Yb3+掺杂改性BiVO4光电极催化降解亚甲基蓝的催化活性图,通过图3可知,在一定范围内,随着Yb3+掺杂量的提高,其光电催化性能加强,当掺杂量达到4at%时,其光电催化性能达到最优,当掺杂量超过5at%时,其光电催化性能随着掺杂量的升高而降低。
图4为本发明的制得的Yb3+掺杂改性BiVO4光电极催化降解亚甲基蓝光电催化动力学拟合图,由图可知,当Yb3+掺杂量为4at%时,Yb3+掺杂改性BiVO4光电极的催化性能最高。
图5为实施例1-6制备的不同Yb3+掺杂量电极的EIS及光电流图谱。为了评估不同Yb3+的掺杂量BiVO4电极的电子转移能力,我们对其进行了EIS测试。如图5(a)所示,在Nyquist图上,图中的插图表示其等效电路。圆弧曲线反映的是电极表面电子转移过程受到了阻抗,圆弧直径越小,阻碍作用也就越小,说明其电荷转移电阻Rct越小,电极的导电性能就越强。从图中可以看出,未改性的BiVO4电极具有最大的圆弧半径,其Rct 的值为11KΩ,随着Yb3+掺杂量的不断增大,其圆弧半径逐渐减小,说明其电荷转移性能越来越强。这是因为进入导带的电子数量会随着掺杂浓度提高而增加。当Yb3+掺杂量达到 4at%时,其圆弧半径最小,说明此时的电荷转移性能最强,其Rct值为2.4KΩ。当Yb3+掺杂量大于4at%时,其圆弧半径变大,这可能是因为过量的Yb3+掺杂使BiVO4催化剂在 FTO导电玻璃表面发生了团聚,使电子的传输距离减小,光生电子和空穴的符合率增加,影响了其电荷转移性能,从而降低其光电催化活性。
其光电流图谱如图5(b)所示,其中4%Yb-BiVO4电极表现出了最大的光电流密度,其光电流密度为1.2mA/cm2。相比于未掺杂的BiVO4电极(0.25mA/cm2),其光电流密度增加了4.8倍,这说明Yb3+的掺杂有效降低了光生电子和空穴的复合率,提高了光电催化活性。
检测结果显示随着Yb3+掺杂量的增加,降解效果有着明显的提升。未掺杂的BVO电极在2h内对亚甲基蓝的降解率为40%,当掺杂量达到4at%时,4%Yb-BiVO4电极在2h内 对亚甲基蓝的降解率达到了最高值的83.2%,这已经超过了未掺杂的BiVO4电极的208%。 在降解过程中不同Yb3+掺杂的光电极的反应常数由大到小排列分别为4%Yb-BiVO4 (0.845h-1)>5%Yb-BiVO4(0.542h-1)>6%Yb-BiVO4(0.502h-1)>3%Yb-BiVO4(0.284h-1)> 2%Yb-BiVO4(0.281h-1)>BiVO4(0.246h-1)。这表明4%Yb-BiVO4光电极表现出了最佳的光电 降解亚甲基蓝的性能。通过掺杂Yb3+可明显提高BVO的光电催化性能可以归因为Yb3+取代晶格中的Bi3+,使其晶格内产生带正电的氧空位,氧空位可吸引光生电子,抑制光生 电子和空穴的复合。然而过量的Yb3+掺杂量会使电子的传输距离减小,光生电子和空穴的 复合率增加,从而降低其光电催化活性。
本发明在实验时发现在步骤一A溶液中加入0.045g Yb(NO3)3·5H2O,得到Yb3+掺杂量为1at%%的改性的BiVO4光电极(1%Yb-BiVO4)的光电催化效果与未掺杂的BiVO4电极的光电催化效果相差甚微。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里的示出。

Claims (9)

1.一种镱离子掺杂改性BiVO4光电催化电极制备方法,其特征在于,包括以下步骤:
步骤一:水热法制备Yb掺杂的BiVO4粉末
向BiVO4前驱体混合溶液中添加Yb(NO3)3·3H2O,进行水热反应,结束后过滤烘干制得Yb掺杂的BiVO4粉末;
步骤二:Yb掺杂的BiVO4粉末光电极的制备
向步骤一制备的Yb掺杂改性的BiVO4粉末加入聚乙二醇和无水乙醇的混合体系中,搅拌均匀,得到粘稠性的悬浮液,超声得到BiVO4浆料,得到的浆料滴涂在FTO导电玻璃的导电面,置于恒温鼓风干燥箱中,充分干燥后得到涂有Yb掺杂改性的BiVO4光电催化材料的导电玻璃,将得到的涂有Yb掺杂改性的BiVO4光电催化材料的导电玻璃置于马弗炉中高温煅烧后随炉冷却至室温后得到Yb掺杂改性的BiVO4光电极。
2.如权利要求1所述的一种镱离子掺杂改性BiVO4光电催化电极制备方法,其特征在于,所述步骤一中,10mmol Bi(NO3)3·5H2O溶解在40mL 4mol/L的稀硝酸中,记为溶液A,待溶液A完全溶解后,将Yb(NO3)3·5H2O加入溶液A,磁力搅拌半小时,10mmol NH4VO3溶解在40mL4mol/L氢氧化钠溶液中,记为溶液B,将溶液B逐滴加入溶液A中,搅拌至溶液呈现亮黄色,得到BiVO4前驱体,用4M NaOH将pH调至8,磁力搅拌后将前驱体倒入100mL聚四氟乙烯水热反应釜中,180℃反应3h。反应结束后待水热反应釜自然冷却,取下层沉淀分别用去离子水和无水乙醇洗涤3次,80℃烘干12h,得到Yb掺杂的BiVO4粉末。
3.如权利要求1所述的一种镱离子掺杂改性BiVO4光电催化电极制备方法,其特征在于,所述步骤二中,FTO导电玻璃在滴涂浆料前分别用丙酮,去离子水,乙醇分别超声清洗10分钟,在80℃条件下烘干2h。
4.如权利要求1所述的一种镱离子掺杂改性BiVO4光电催化电极制备方法,其特征在于,步骤二中,所述聚乙二醇和无水乙醇的混合体系中聚乙二醇和无水乙醇的体积比为2:1。
5.如权利要求1所述的一种镱离子掺杂改性BiVO4光电催化电极制备方法,其特征在于,步骤二中,Yb掺杂改性BiVO4粉末的添加量为1g/10ml聚乙二醇。
6.如权利要求1所述的一种镱离子掺杂改性BiVO4光电催化电极制备方法,其特征在于,步骤二中,超声时间为30min,温度为30℃~40℃,膜层厚度为30μm,干燥温度为80℃,干燥时间为6h,焙烧温度为500℃,时间为3h。
7.如权利要求1-6所述的方法制备的镱离子掺杂改性BiVO4光电催化电极。
8.一种如权利要求7所述的镱离子掺杂改性BiVO4光电催化电极在光电催化材料的应用,其特征在于,用于对染料废水进行光电催化。
9.如权利要求8所述的镱离子掺杂改性BiVO4光电催化电极在光电催化材料的应用,其特征在于,所述的染料废水中的染料为亚甲基蓝、甲基橙或罗丹明B中的一种或几种。
CN201910843787.0A 2019-09-06 2019-09-06 一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用 Active CN110586068B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910843787.0A CN110586068B (zh) 2019-09-06 2019-09-06 一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910843787.0A CN110586068B (zh) 2019-09-06 2019-09-06 一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用

Publications (2)

Publication Number Publication Date
CN110586068A true CN110586068A (zh) 2019-12-20
CN110586068B CN110586068B (zh) 2022-03-25

Family

ID=68858326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910843787.0A Active CN110586068B (zh) 2019-09-06 2019-09-06 一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用

Country Status (1)

Country Link
CN (1) CN110586068B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070675A (ja) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd 半導体電極とそれを用いたエネルギ変換システム
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用
WO2015151775A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 水分解用光電極、水分解装置
CN106096279A (zh) * 2016-06-14 2016-11-09 西安建筑科技大学 一种稀土掺杂改性钛基二氧化锡电极性能的预测方法
CN110075824A (zh) * 2019-04-18 2019-08-02 西安建筑科技大学 一种Yb掺杂改性锡酸锌光电极的制备及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070675A (ja) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd 半導体電極とそれを用いたエネルギ変換システム
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用
WO2015151775A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 水分解用光電極、水分解装置
CN106096279A (zh) * 2016-06-14 2016-11-09 西安建筑科技大学 一种稀土掺杂改性钛基二氧化锡电极性能的预测方法
CN110075824A (zh) * 2019-04-18 2019-08-02 西安建筑科技大学 一种Yb掺杂改性锡酸锌光电极的制备及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JING HUANG ET.AL: ""Enhanced photocatalytic activity of tetragonal BiVO4: Influenced by rare earth ion Yb3+", 《MATERIALS LETTERS》 *
周奥等: "新型Ag-BiVO_4电极的光电催化性能研究", 《三峡大学学报(自然科学版)》 *

Also Published As

Publication number Publication date
CN110586068B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Kite et al. Nanostructured TiO2 sensitized with MoS2 nanoflowers for enhanced photodegradation efficiency toward methyl orange
Kumar et al. Wide spectral degradation of Norfloxacin by Ag@ BiPO4/BiOBr/BiFeO3 nano-assembly: elucidating the photocatalytic mechanism under different light sources
Li et al. Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance
Chen et al. Synthesis of Bi2MoO6 nanosheets with rich oxygen vacancies by postsynthesis etching treatment for enhanced photocatalytic performance
Shi et al. Enhancement of visible‐light photocatalytic degradation performance over nitrogen‐deficient g‐C3N4/KNbO3 heterojunction photocatalyst
Imam et al. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review
Zhang et al. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting
Paramanik et al. Stupendous photocatalytic activity of p-BiOI/n-PbTiO3 heterojunction: the significant role of oxygen vacancies and interface coupling
Li et al. Enhanced visible‐light photocatalytic degradation of humic acid by palladium‐modified nitrogen‐doped titanium oxide
CN108502922B (zh) 一种锐钛矿二氧化钛微球及其制备方法
Pudukudy et al. WO3 nanocrystals decorated Ag3PO4 tetrapods as an efficient visible-light responsive Z-scheme photocatalyst for the enhanced degradation of tetracycline in aqueous medium
Zou et al. Preparation of Ni Doped ZnO‐TiO2 Composites and Their Enhanced Photocatalytic Activity
Chen et al. Improved performance of BiVO4 via surface-deposited magnetic CuFe2O4 for phenol oxidation and O2 reduction and evolution under visible light
CN109453792B (zh) 一种在光芬顿反应中抗光腐蚀的硫化物异质结材料的制备方法
CN113731430B (zh) 双Z型CuO/CuBi2O4/Bi2O3复合光催化剂及其制备方法和应用
Yu et al. Fabrication of heterostructured CdS/TiO2 nanotube arrays composites for photoreduction of U (VI) under visible light
CN111111710A (zh) 一种纳米核壳结构溴氧化铋-钨酸铋可见光催化剂及其制备方法和应用
Ammar et al. Visible-light-induced photodegradation of ofloxacin antibiotic by facile assembled BiFeO3/Bi-modified g-C3N4 heterojunctions
Li et al. Enhanced visible‐light activity of Ti3+ self‐doped TiO2 with co‐exposed {001} and {101} facets
Pouretedal et al. Preparation, characterization and catalytic activity of tin dioxide and zero-valent tin nanoparticles
Qi et al. Construction of In2S3/ag-Ag2S-AgInS2/TNR Nanoarrays with excellent Photoelectrochemical and photocatalytic properties
CN110586068B (zh) 一种镱离子掺杂改性BiVO4光电催化电极的制备方法、产品及其应用
Ren et al. Controlled vertical growing of Bi2O3 nano sheets on diatomite disks and its high visible-light photocatalytic performance
CN107973367B (zh) 一种Fe掺杂包裹型TiO2光催化剂降解废水的工艺
Shi et al. Hollow sphere manganese–ceria solid solution enhances photocatalytic activity in tetracycline degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant