CN110579450A - 一种防止煤自燃的定向阻化技术 - Google Patents

一种防止煤自燃的定向阻化技术 Download PDF

Info

Publication number
CN110579450A
CN110579450A CN201910844253.XA CN201910844253A CN110579450A CN 110579450 A CN110579450 A CN 110579450A CN 201910844253 A CN201910844253 A CN 201910844253A CN 110579450 A CN110579450 A CN 110579450A
Authority
CN
China
Prior art keywords
coal
sample
directional
detected
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910844253.XA
Other languages
English (en)
Other versions
CN110579450B (zh
Inventor
张玉涛
杨超萍
李亚清
张园勃
史学强
张静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Qiyue Yunteng Energy Technology Co ltd
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201910844253.XA priority Critical patent/CN110579450B/zh
Publication of CN110579450A publication Critical patent/CN110579450A/zh
Application granted granted Critical
Publication of CN110579450B publication Critical patent/CN110579450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3572Preparation of samples, e.g. salt matrices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

本发明属于煤矿安全技术领域,具体涉及一种防止煤自燃的定向阻化技术。具体方案为,一种阻化方法,对煤矿取样,将煤样静置、研磨、干燥,得待测样品;对待测样品进行傅里叶漫反射红外实验,测定待测样品中的活性官能团;对待测样品进行同步热分析;构建待测样品活性分子结构模型,结合模型建立待测样品反应机理;根据反应机理制备定向阻化剂。该阻化剂具有良好的温敏性和热稳定性,在低温下可溶于水,流动性较好,可渗透于煤体内部,形成均匀包裹覆盖;受热后可排出水分形成凝胶,粘附于煤体表面,阻隔煤‑氧接触,抑制‑OH的产生,又可与‑COO‑缔合,销毁羧基,具有良好的定向阻燃功能。

Description

一种防止煤自燃的定向阻化技术
技术领域
本发明属于煤矿安全技术领域,具体涉及一种防止煤自燃的定向阻化技术。
背景技术
“富煤,贫油,少气”是我国能源的鲜明特点。我国煤炭资源总量5.9万亿吨,占一次能源资源总量的94%,而与之相对的,大量使用煤炭资源也使得我国成为煤自然起火最严重的国家之一。在我国的核心煤矿中,由于煤自燃引起的事故约占矿井安全事故的90%。
面对这种情况,阻化剂在防控煤自燃火灾上的应用逐渐走入人们的视野。1966年,美国一篇专利报导,可以采用亚磷酸脂(含量50~80%)和二羟三烷基醌(含量15~50%)混合,阻止煤的氧化。1969年硬化阻化剂诞生,1975年在豪斯阿登煤矿利用阻化剂浆液成功地扑灭了一次自然发火。
虽然国内外大量学者已针对阻化剂做了大量工作,然而由于煤自燃问题的复杂性和前期分析技术的限制,现有相关研究仍停留在宏观阻化效果上,对于微观阻化机理的研究较少;而不同变质程度的煤种,具有不同的氧化放热机理,也对应着不同的微观阻化机理。如何基于不同煤种的氧化反应特性,提供一系列具有可调控的、既具有普适性又具有针对性的系列高效阻化剂,既是理论难题,更是技术难题。
发明内容
本发明的目的是提供一种防止煤自燃的定向阻化技术。
为实现上述发明目的,本发明所采用的技术方案是:一种防止煤自燃的定向阻化方法,包括如下步骤:
(1)对待防止自燃煤矿进行取样,将煤样静置、研磨、干燥,得待测样品;
(2)对所述待测样品进行傅里叶漫反射红外实验,测定待测样品中的含氧官能团、脂肪烃和芳香烃含量;
(3)对待测样品进行同步热分析;
(4)构建待测样品活性分子结构模型,结合所述模型建立待测样品反应机理;
(5)根据所述反应机理制备定向阻化剂。
优选的,所述含氧官能团包括-OH、C=O、-C-O-C、-COO-。
优选的,步骤(5)所述定向阻化剂为可抑制-OH生成、可与-COO-结合的阻化剂。
优选的,所述定向阻化剂为由N-异丙基丙烯酰胺、丙烯酸钠、新镁铝水滑石制备的共聚物。
优选的,所述定向阻化剂为P(NIPAm-co-SA)-Zn/Mg/Al-CO3-LDHs。
优选的,所述定向阻化剂的制备方法包括如下步骤:
(1)将表面活性剂溶于有机相中,至表面活性剂终浓度为1~2g/ml,混匀获得油相;
(2)氮气氛围下,按摩尔比,将NIPAm:SA:水滑石=15~5:1~3:3~5混于去离子水中,并加入过硫酸铵、引发剂,混匀,获得水相;水相终体积为油相体积的1/3~1/4。
(3)将水相缓慢加入油相中,反应3~4h,反应结束后,收集反应物,洗涤、真空干燥后,得所述定向阻化剂。
本发明具有以下有益效果:
1、本发明从原煤样变质程度出发,根据不同的变质程度分析出原煤样可能的燃烧机理,进而根据该燃烧机理针对性制备阻化剂。从根本上提升了阻化剂的阻化效率。
具体的,本发明利用傅里叶漫反射红外光谱技术,对不同煤矿的煤样进行主要官能团分析,根据特征吸收峰的位置,采用分峰软件Peakfit对不同煤矿不同变质程度原煤红外光谱做拟合分峰处理,分析主要光谱红外吸收官能团面积,对不同变质程度煤样主要官能团进行分析对比。
随后将煤样在氧化升温过程中的原位漫反射三维红外光谱图,通过对谱图进行分析,并结合原煤样的官能团分布特征,得出煤中脂肪烃、芳香烃、含氧官能团在氧化过程中的变化规律。利用Gaussian 16软件识别在煤自燃过程中起关键作用的活性结构的种类及其结构特性,并结合所测数据对模拟进行矫正,将实验数据与模拟结果结合起来,构建出了以活性结构为基本单元的小分子结构模型。
基于傅里叶漫反射红外技术所得到的煤样氧化主要官能团,利用密度泛函在BLYP/6-311G水平上研究煤与氧分子的反应,通过煤表面键长、键角的变化及演变来确定煤氧化反应历程及反应机理,从而基于链式反应机理,结合煤自燃过程中活性官能团的种类、反应历程及氧化特性,研制出系列可以惰化主要活性官能团反应活性、终断链式反应、延缓煤自燃氧化反应速率的系列定向阻化剂的制备方法。
2、本发明还提供了一系列基于煤变质程度而针对性制备的阻化剂PL。所述PL具有良好的温度敏感特性和优异的热稳定性,在低温下可溶于水,流动性较好,可渗透于煤体内部,形成均匀包裹覆盖。使用本发明提供的方法制备的PL,可将最低共溶温度(LCST)控制在55~65℃。当煤整体温度达到LCST后,发生吸热的体积相转变,PL排出水分形成凝胶,既能粘附于煤体表面,阻隔煤-氧进一步接触,抑制-OH的产生,又可以与-COO-缔合,销毁羧基,因而具有良好的定向阻燃功能。
本发明制备的PL还可针对各煤矿煤样特性及现场不同场合的应用需求、根据不同煤的变质程度,调节NIPAm、SA和水滑石的含量,针对性抑制-OH的产生或惰化-COO-的活性,进而提供系列定向阻化剂。
具体实施方式
一、本发明提供了一种对比分析不同煤矿的原煤样变质程度的测试方法,具体包括如下步骤:
(1)取原煤样,氮气保护下研磨至过200目筛,再在40℃下真空干燥24h以上,完全干燥后,获得待测样品,密封保存。
(2)对所述待测样品进行傅里叶漫反射红外实验。实验参数设置为温度25℃,空气气氛,测定参数设定为:分辨率4.0cm-1,检测频率范围设定为400~4000cm-1,扫描采集次数设定为32次。得出待测样品的含氧官能团(-OH、C=O、-C-O-C、-COO-)含量、脂肪烃(-CH3、-CH2-)含量、芳香烃(C=C、Ar-CH)含量。
(3)采用Vertex 70V型傅里叶红外光谱仪对原煤样进行氧化升温分析,观察主要官能团的种类和数量变化,确定关键反应结构和反应阶段。具体处理方法是:称取5mg待测样品与750mg的KBr研磨混合均匀后,取200g混合物放入压片机中,压至15Mpa,受压10min后将压片放入傅里叶红外扫描仪中进行测试,参数设置为4.0cm-1,检测频率范围600~4000cm-1,扫描采集次数32次。
(4)采用顺磁共振波谱仪的控温系统对原煤样进行程序升温,在20℃、50℃、70℃、100℃、120℃、150℃、200℃下依次进行氧化反应3min,随后记录ESR曲线。具体操作是,称取10mg待测样品装入样品管进行EPR测试,参数设置:微波辐射频率935MHz,微波功率1mW,中心磁场3360G,扫场宽度100G,信号接收调制100KHz,调制宽度0.2mT,时间常数0.03s,扫描时间40s,放大倍数为20倍。
从而获得待测样品的EPR主要参数情况,进而得出各待测样品自由基浓度的变化规律。
二、本发明还基于原煤样变质程度,针对性提供了制备高效定向阻化剂的方法,具体包括如下步骤:
(1)分析含氧官能团、芳香烃和脂肪烃的含量。
(2)采用量子化学理论,计算各活性结构单元的反应路径、动力学参数及燃烧终产物的结构参数。进而得出原煤样的反应机理。
(3)根据步骤(2)的反应机理,针对性配置阻化剂,惰化关键性活性官能团,终止反应,从而起到阻止煤自燃的效果。
结合傅里叶原位漫反射红外和电子自旋共振测试技术实时分析煤自燃中各类活性基团和自由基浓度的变化,基于羟基、羧基、羰基、脂肪烃在官能团结构单元群上作为活性结构存在,且主要的活性反应前线轨道集中在氧氢键和碳氢键,·OH是连接煤中原生基团与次生基团的关键等,采用量子化学计算方法对构建的活性结构单元进行验证,证实活性反应位点在活性结构单元的活性基团上。从轨道能量的角度找到分子轨道的排布和最易发生电子转移的分子轨道(前线轨道),从而确定该分子轨道的化学键,明确该化学键的活性位点,并证实其分布在所构建的结构单元上。采用量子化学理论计算所示各活性结构单元的反应路径、动力学参数以及反应物产物的结构参数。基于此研究羟基反应的过程,通过量子化学研究,获得各煤样的具体反应机理。
定向阻化剂的关键在于:抑制-OH自由基的生成,同时与-COO-结合,销毁羧基,从而实现阻燃的作用。
以N-异丙基丙烯酰胺(NIPAm)和丙烯酸钠(SA)进行共聚反应,并在反应中添加一定比例的锌镁铝水滑石,从而合成P(NIPAm-co-SA)-Zn/Mg/Al-CO3-LDHs(简化为PL)定向阻化剂。所述锌镁铝水滑石购自邵阳天堂助剂化工有限公司。
具体制备方法为:
(1)在浓度为0.1~0.3mol/L的NaOH溶液中加入过量的丙烯酸水溶液,搅拌反应2~6h,随后减压蒸发去除溶剂及残余丙烯酸,获得SA。
(2)将吐温-80溶于有机相液体石蜡中至终浓度为1~2g/ml,在氮气氛围下搅拌至吐温-80充分分散,获得油相。
(3)氮气氛围下,按摩尔比,将NIPAm:SA:水滑石=15~5:1~3:3~5混于去离子水中,并加入过硫酸铵0.3g/ml、引发剂N,N,N’,N’-四甲基乙二胺1μl,混匀,得水相。水相终体积为油相体积的1/3~1/4。
(3)在20~30℃、250rpm下,将水相缓慢加入油相中,反应3~4h,反应结束后,收集反应物,分别用无水乙醇和去离子水浸泡、真空干燥后,即得所需的PL。
具体使用时,可以将PL在低温下溶于水,复配为阻化剂溶液,直接对待阻化煤矿进行喷洒,也可以将阻化剂溶液灌入深位煤体中,实现阻化作用。
下面结合具体实施例,对本发明进行进一步阐释。
实施例一:原煤样变质程度的测试
1、分别选取大南湖褐煤、赵楼焦煤和白羊岭无烟煤按上述步骤一的方法进行测试。
2、测试结果如下所示:
(1)各煤样中主要官能团含量情况如表1所示。
表1各煤样中主要官能团占比情况对比表
-OH是煤氧化过程中的活泼基团,在煤氧化初期就参与了反应,C=O是煤氧化过程中的重要过渡基团,由脂肪烃侧链-CH3/-CH2-氧化后生成,随后-OH与吸附的氧气进一步反应生成C=O。由此推测,低温氧化过程中自由基含量增加是因为煤中混合自由基与氧反应生成了羰基类自由基所致,燃点温度后,碳氧双键断裂,生成醛,酮,羧酸等官能团,醛、酮、和羧酸基官能团发生羧化或脱羧反应进而生成CO2、CO和各类烷烃气体。
(2)不同温度下各原煤样的主要参数各不相同,分别如表2、3、4所示。
表2大南湖褐煤主要参数表
表3赵楼焦煤主要参数表
表4白羊岭无烟煤主要参数表
从表2、3、4可以看出,g因子与自由基浓度呈负相关关系;大南湖褐煤的线宽随温度升高、波动增加,表示小分子自由基与吸附的氧气发化学反应,转化为豫驰时间更长的大分子自由基。而赵楼焦煤和白羊岭无烟煤的线宽均随温度升高、波动缓慢下降,证明这两种煤样中的大分子自由基开始参与化学反应,逐步分解为小分子自由基。另外,三种原煤样的自由基浓度随温度变化也呈现不同的变化规律。大南湖褐煤在70℃以前,自由基浓度与温度呈正相关关系,这是因为低变质程度煤中的自由基多为极不稳定的小分子自由基。小分子自由基与煤的主体大分子结构之间以氢键相连,温度升高,氢键断裂,使得自由基浓度迅速增大。在常温下,赵楼焦煤和白羊岭无烟煤自由基浓度均远高于大南湖褐煤,且随温度变化,自由基浓度相对较稳定;说明其煤分子中的大分子自由基较为稳定,不会与吸附的氧气自发发生化学反应尤其是链式化学反应,需要一定的外界能量来诱发此反应,因此反应初期生成的新自由基较少,从而在70℃之前自由基浓度与温度呈负相关关系。随着温度的进一步升高,大分子自由基被激活,分子中化学键断裂,诱发链式化学反应,生成大量自由基碎片,自由基浓度上升。
实施例二:阻化剂的制备
1、在实施例一获得的数据基础上,分别分析各原煤样中官能团含量占比:含氧官能团>芳香烃>脂肪烃。在含氧官能团中,大南湖褐煤和赵楼焦煤的-OH含量最高,白羊岭无烟煤中-C-O-C-含量最高;三种煤中,-COO-的含量均最低。
2、以赵楼焦煤为例,羟基官能团结构单元的反应机理具体如下所示:
(1)
(2)
(3)
(4)
羧基官能团失氢反应机理如下所示:
(5)
(6)
从式(1)~(4)的反应机理可以看出,·OH可以将-COOH转化为-C-O-O·,将C=O和-CH2-CH2-转换为C·,C·可进一步吸附氧气生成-C-O-O·,-C-O-O·分解产生·OH,因此,-C-O-O·、C·和·OH均为诱发煤自燃链式反应的重要活性自由基单元。所生成的-C-O-O·和·OH均可发生夺氢反应,氧原子夺氢重新生成·OH,·OH夺氢生成水。
3、制备定向阻化剂。按上述方法制备7组阻化剂,其余制备条件相同,各组阻化剂的配方如表5所示,表5中的数值为各组分的摩尔比。
表5阻化剂配方参照表
阻化剂 NIPAm SA 水滑石
组1 5 1 3
组2 7.9 1 3
组3 15 3 3
组4 20 3 3
组5 15 1 3
组6 15 5 3
组7 10 3 5
组8 15 3 5
4、分别测定添加阻化剂前三种待测煤粉的煤自燃活性温度,大南湖褐煤为168℃,赵楼焦煤为178℃,白羊岭无烟煤为173℃。
将各组煤样静置48h以上后,将步骤3制备的7种阻化剂于15~25℃溶于水,制成浓度10%的溶液,按100g煤粉添加5ml阻化剂溶液的比例,分别与三种待测煤粉混匀,随后以2.5℃/min的升温效率,从室温逐渐升温至300℃,检测对三种原煤样的阻化率(参照MT/T700-1997);测试过程中,空气流量为100ml。各组结果如表6所示。
表6各组平均阻化率效果展示

Claims (6)

1.一种防止煤自燃的定向阻化方法,其特征在于:包括如下步骤:
(1)对待防止自燃煤矿进行取样,将煤样静置、研磨、干燥,得待测样品;
(2)对所述待测样品进行傅里叶漫反射红外实验,测定待测样品中的含氧官能团、脂肪烃和芳香烃含量;
(3)对待测样品进行同步热分析;
(4)构建待测样品活性分子结构模型,结合所述模型建立待测样品反应机理;
(5)根据所述反应机理制备定向阻化剂。
2.根据权利要求1所述的定向阻化方法,其特征在于:所述含氧官能团包括-OH、C=O、-C-O-C、-COO-。
3.根据权利要求1所述的定向阻化方法,其特征在于:步骤(5)所述定向阻化剂为可抑制-OH生成、可与-COO-结合的阻化剂。
4.根据权利要求3所述的定向阻化方法,其特征在于:所述定向阻化剂为由N-异丙基丙烯酰胺、丙烯酸钠、新镁铝水滑石制备的共聚物。
5.根据权利要求4所述的定向阻化方法,其特征在于:所述定向阻化剂为P(NIPAm-co-SA)-Zn/Mg/Al-CO3-LDHs。
6.根据权利要求4或5所述的定向阻化方法,其特征在于:所述定向阻化剂的制备方法包括如下步骤:
(1)将表面活性剂溶于有机相中,至表面活性剂终浓度为1~2g/ml,混匀获得油相;
(2)氮气氛围下,按摩尔比,将NIPAm:SA:水滑石=15~5:1~3:3~5混于去离子水中,并加入过硫酸铵、引发剂,混匀,获得水相;水相终体积为油相体积的1/3~1/4;
(3)将水相缓慢加入油相中,反应3~4h,反应结束后,收集反应物,洗涤、真空干燥后,得所述定向阻化剂。
CN201910844253.XA 2019-09-06 2019-09-06 一种防止煤自燃的定向阻化技术 Active CN110579450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910844253.XA CN110579450B (zh) 2019-09-06 2019-09-06 一种防止煤自燃的定向阻化技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910844253.XA CN110579450B (zh) 2019-09-06 2019-09-06 一种防止煤自燃的定向阻化技术

Publications (2)

Publication Number Publication Date
CN110579450A true CN110579450A (zh) 2019-12-17
CN110579450B CN110579450B (zh) 2021-12-10

Family

ID=68812628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910844253.XA Active CN110579450B (zh) 2019-09-06 2019-09-06 一种防止煤自燃的定向阻化技术

Country Status (1)

Country Link
CN (1) CN110579450B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113454A (zh) * 2021-11-08 2022-03-01 太原工业学院 一种阻化剂效果测试试验装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173603A (zh) * 2006-04-13 2008-05-07 施蓝姆伯格技术公司 通过快速氧化增强地下煤层甲烷井
CN101487399A (zh) * 2008-07-29 2009-07-22 辽宁工程技术大学 预防煤炭自燃的阻化剂及制备和使用方法
CN102966369A (zh) * 2012-12-10 2013-03-13 中国矿业大学 一种基于煤低温氧化机理的防治煤自燃的复合阻化剂
CN110005464A (zh) * 2019-04-22 2019-07-12 西安科技大学 一种基于稀土类水滑石的煤自燃阻化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173603A (zh) * 2006-04-13 2008-05-07 施蓝姆伯格技术公司 通过快速氧化增强地下煤层甲烷井
CN101487399A (zh) * 2008-07-29 2009-07-22 辽宁工程技术大学 预防煤炭自燃的阻化剂及制备和使用方法
CN102966369A (zh) * 2012-12-10 2013-03-13 中国矿业大学 一种基于煤低温氧化机理的防治煤自燃的复合阻化剂
CN110005464A (zh) * 2019-04-22 2019-07-12 西安科技大学 一种基于稀土类水滑石的煤自燃阻化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘文: "《全国中医药行业高等教育"十三五"规划教材 药用高分子材料学》", 31 July 2017, 中国中医药出版社 *
杨 漪: "基于氧化特性的煤自燃阻化剂机理及性能研究", 《万方数据库》 *
王要令: "煤自燃新型协效阻化剂的研究", 《消防科学与技术》 *
陆伟等: "煤自燃逐步自活化反应理论", 《中国矿业大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113454A (zh) * 2021-11-08 2022-03-01 太原工业学院 一种阻化剂效果测试试验装置及方法
CN114113454B (zh) * 2021-11-08 2024-03-29 太原工业学院 一种阻化剂效果测试试验装置及方法

Also Published As

Publication number Publication date
CN110579450B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
Huang et al. Research on a new composite hydrogel inhibitor of tea polyphenols modified with polypropylene and mixed with halloysite nanotubes
Tsai et al. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion
CN110579450B (zh) 一种防止煤自燃的定向阻化技术
CN108641266B (zh) 基于氧化还原双重阻断的煤自燃智能复合阻化剂及其制法
CN102807651B (zh) 一种水性带锈防锈高分子乳液的制备方法
CN110305268A (zh) 一种复合阻化剂及制备方法
CN105085838A (zh) 改性纳米SiO2-AA-AM共聚物的制备方法
Zeng et al. Synthesis of polyaspartic acid/chitosan graft copolymer and evaluation of its scale inhibition and corrosion inhibition performance
CN105666612A (zh) 一种阻燃热改性木材及其制备方法
CN104210002B (zh) 一种复合阻燃剂、制备方法及其用途
CN107556420A (zh) 一种盐湖提铀用双水杨醛缩邻苯二胺改性树脂的制备方法
Lacôte et al. NHC-boranes: air-and water-tolerant coinitiators for type II photopolymerizations
Zhang et al. Self-condensing vinyl polymerization of acrylamide
Deng et al. Study on the effect of inorganic and organic sodium on coal spontaneous combustion
Huang et al. Study on the inhibition performance of double network physicochemical nanocomposite gel inhibitor on coal spontaneous combustion
CN103012668A (zh) 一种阳离子聚丙烯酰胺水包水乳液的制备方法
CN105085837A (zh) 改性纳米SiO2-AA-AM共聚物
CN111377444B (zh) 一种石油焦基活性炭及其制备方法
CN110219691B (zh) 一种防治煤自燃的环保型复合阻化剂及其制备方法
Ménoret et al. Retarded Anionic Polymerization, 5. Influence of the Structure of Dialkylmagnesium Additives on the Reactivity of Polystyryllithium Species
Pham et al. Mechanisms and kinetics of non-isothermal polymerization of N, N′-bismaleimide-4, 4′-diphenylmethane with 2-thiobarbituric acid
CN101870753A (zh) 用于高温水泥缓凝剂的聚合物及其制备方法
CN105461961B (zh) 一种阻燃产品及其制备方法
Yang et al. Kinetics and mechanism of carbamate reaction of 4-hydroxybenzyl alcohol with phenyl isocyanate
Misra et al. Grafting onto wool. VIII. Graft copolymerization of methyl methacrylate (MMA) by use of Ce4+‐amine system as redox initiator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240111

Address after: Room 302-1, Building 4, Western Life Science Park, Intersection of Keyuan Fourth Road and Fengdong Avenue, Fengdong New City, Xixian New District, Xi'an City, Shaanxi Province, 710000

Patentee after: Shaanxi Qiyue Yunteng Energy Technology Co.,Ltd.

Address before: 710054 No. 58, Yanta Road, Shaanxi, Xi'an

Patentee before: XI'AN University OF SCIENCE AND TECHNOLOGY