CN110575546A - 一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用 - Google Patents

一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用 Download PDF

Info

Publication number
CN110575546A
CN110575546A CN201910847823.0A CN201910847823A CN110575546A CN 110575546 A CN110575546 A CN 110575546A CN 201910847823 A CN201910847823 A CN 201910847823A CN 110575546 A CN110575546 A CN 110575546A
Authority
CN
China
Prior art keywords
tumor
drug
nano
mmc
cell nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910847823.0A
Other languages
English (en)
Inventor
单素艳
刘勇
林蜜蜜
晏露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Medical University
Original Assignee
Wenzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Medical University filed Critical Wenzhou Medical University
Priority to CN201910847823.0A priority Critical patent/CN110575546A/zh
Publication of CN110575546A publication Critical patent/CN110575546A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于纳米药物与生物医学领域,公开了一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用。本发明将具有细胞核靶向能力的多肽与石墨粉共混球磨,在常温常压下,制备具有高度肿瘤靶向能力和核靶向能力的多肽功能化石墨烯(TG)。进而采用乙酸等离子技术在TG上引入羧基,将抗肿瘤药物丝裂霉素C(MMC)通过接载在TG上。所制备的的抗肿瘤纳米药物MMC‑TG具有良好的肿瘤细胞核靶向能力,可高度选择性的靶向到肿瘤细胞,肿瘤杀伤率达95%以上,但同时对正常细胞的损伤很小。实验结果证实了所研制的纳米药物最先在细胞核发挥作用,具有高效的肿瘤细胞核靶向能力、肿瘤杀伤能力和肿瘤转移抑制能力。

Description

一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用
技术领域
本发明属于纳米药物与生物医学领域,具体涉及一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用。
背景技术
肿瘤细胞的快速增殖性和易转移性,造成了大多数癌症的不可治愈性,给人类生命健康带来了极大的威胁。譬如脉络膜黑色素瘤,是一种成人最常见的眼部恶性肿瘤,病死率高,五年存活率低于50%,主要就是由于这类肿瘤的全身高转移率造成的。尽管临床上已经开发了多种技术治疗脉络膜黑色素瘤,包括手术切除,激光治疗,放疗和全身化疗等,但是这些方法都只针对原位肿瘤,对转移瘤束手无策,除了给病人造成了巨大的痛苦,并未能提高病人的存活率。肿瘤细胞的易转移性,根源在细胞核,因为细胞核是基因遗传和转录的源头。因此,针对细胞核设计高靶向的抗肿瘤药物,将会为抑制肿瘤细胞的转移提供一条高效便捷的途径。纳米技术和纳米材料的快速发展,开发了一系列可以穿透某些生理屏障的纳米药物载体,不仅有望提高药物的生物利用率,也为研制高度核靶向的纳米药物提供了可行性。当前已开发的纳米载体材料,比如由金属,金属氧化物,半导体和聚合物等,虽然能够将药物靶向递送至肿瘤微环境,但效率低下,并且纳米药物无法穿透细胞核膜。
石墨烯及其衍生物具有独特的尺寸效应和理化性能。石墨烯内在结构上独特的大Π键使得基于石墨烯的纳米药物载体具有一定的负电性,对于具有弱酸正电性的肿瘤微环境具有较好的亲和力。同时直径小于200nm的石墨烯纳米片,能够穿过通透性较高的肿瘤区新生血管,聚集到肿瘤微环境,形成纳米富集效应。因此石墨烯纳米片被认为是高性能的肿瘤靶向药物载体。本发明进一步在石墨烯上修饰具有核靶向能力的TAT多肽,从而实现对于肿瘤细胞核的高度靶向识别和药物输送。TAT是一种阳离子穿膜肽,具有很强的细胞膜穿透性和核膜穿透性,能够到达细胞核,为纳米药物载体提供高效的细胞膜穿透能力和核靶向能力。我们进一步在所制备的TG纳米载体上共价接载常规抗肿瘤药物丝裂霉素C(MMC),构建高度核靶向的抗肿瘤纳米药物MMC-TG。MMC能够作用于细胞核,通过解聚DNA,抑制DNA 的复制来发挥作用。
综上所述,本发明针对肿瘤细胞易转移的临床瓶颈问题,致力于构建高效核靶向性的抗肿瘤纳米药物MMC-TG,为抗肿瘤药物的下一步发展提供新的思维与方向。
发明内容:
本发明针对肿瘤细胞易转移的临床瓶颈问题,提供了一种简便高效的核靶向药物纳米载体TG与核靶向抗肿瘤药物MMC-TG的制备方法。
本发明的另一目的在于提供了一种核靶向抗肿瘤药物MMC-TG的制备方法的应用,该药物能够准确靶向到肿瘤细胞,并高效穿透细胞膜和核膜,进入细胞核,对肿瘤细胞(如脉络膜黑色素瘤)的抑制率高达95%以上,并同时不对正常细胞造成较大损伤。
为解决上述技术问题,本发明采用如下技术方案:
一种简便高效的核靶向药物纳米载体TG的制备方法,包括下述步骤:
多肽TAT(RKKRRQRRR)和石墨粉按质量比1:1~1:5的比例混合后置于球磨罐内,以300-500rpm的转速室温球磨3-5个小时。球磨结束后加入去离子水,洗出其中的产物,分别采用1000-3000转速离心处理5-15分钟,之后再采用5000-8000rpm的高速离心处理5-15 分钟,依次除去沉淀中的杂质。然最后将沉淀分散于去离子水中,即为TAT多肽功能化的石墨烯(TG)。
一种高度核靶向性抗肿瘤纳米药物的制备方法包括:
1)将上述制得的TG在-80℃通过真空冷冻干燥制成粉末,采用乙酸等离子技术对TG粉末表面进行羧基化修饰;
3)采用摩尔浓度比为1:1-1:3的N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)活化TG表面羧基后,加入丝裂霉素C(MMC)(TG与MMC的质量比为 1:1-1:3),4℃搅拌1-3天,3000-5000rpm离心5-15分钟取沉淀,即得到纳米药物MMC-TG。
本发明的保护内容还包括,制备的高度核靶向性抗肿瘤纳米药物在肿瘤核靶向、抑制肿瘤转移、以及高效杀伤肿瘤细胞中的应用。
与现有技术相比,本发明具有以下优点:
TAT容易在生物环境溶解,普通方法合成的TAT加石墨烯加药物后,很难进细胞核。通过本发明的方法,减小了纳米复合物尺寸,又能保持TAT的穿膜活性进入细胞。MMC起作用是通过抑制DNA。但是传统用法不能进入细胞核,所以无法发挥作用,肿瘤抑制率很有限。我们的制备方法能够把药物送到细胞核起作用,从而使得肿瘤抑制率达95%以上。
本发明制备的高核靶向抗肿瘤纳米药物MMC-TG从肿瘤细胞转移的源头细胞核着手,解决了肿瘤细胞易转移的瓶颈问题。所制备的纳米药物能够高效靶向到肿瘤微环境,穿透细胞膜和核膜,并进入到细胞核发挥作用。抗肿瘤药物直接在肿瘤细胞核内发挥效能,有效抑制了细胞核的分裂增殖与迁移,大大提高了药物的杀伤作用,并有效抑制了肿瘤的侵袭性和转移性。所合成的MMC-TG纳米药物对于肿瘤细胞如脉络膜黑色素瘤细胞的杀伤率高达95%以上,但对正常细胞的损伤很小。
附图说明
图1为高核靶向抗肿瘤纳米药物载体TG的合成示意图。
图2为所制备的纳米载体TG的实物图。
图3为所合成的高度核靶向性抗肿瘤纳米药物MMC-TG的原子力表征图。
图4为所制备的纳米药物MMC-TG的靶向抗肿瘤效果评价;
其中,(a)为纳米药物MMC-TG与正常细胞视网膜色素上皮细胞(ARPE-19)和脉络膜黑色素细胞(OCM-1)共培养72h后的细胞存活率检测结果;(b)为未处理的MMC与两种细胞共培养72h后的细胞存活率检测结果。
图5为所制备的纳米药物载体TG经过蓝色荧光剂FITC标记后与肿瘤细胞OCM-1共培养后的共聚焦显微镜图;
其中(a)为未用纳米材料处理的对照组OCM-1细胞的荧光共聚焦显微镜图;(b)为TG与OCM-1共培养后的共聚焦荧光显微镜图。实验中,细胞核采用DAPI染料标记成蓝色荧光,细胞骨架用红色荧光的鬼比环肽标记。
图6为所制备的纳米药物MMC-TG与OCM-1共培养后的细胞切片透射电镜表征图;
其中,(a)为对照组未经处理的OCM-1细胞的透射电镜图;(b)为MMC-TG与OCM-1 细胞共培养后24h后的细胞透射电镜图;(c)为MMC-TG与OCM-1共培养后72h后的细胞透射电镜图。
具体实施方式
本发明所述技术方案,如未特别说明,均为本领域的常规方案;所述试剂或材料,如未特别说明,均来源于商业渠道。
下面结合附图以及具体实施例,可以更好地说明本发明。
实施例1.
一种高度核靶向性抗肿瘤纳米药物的制备方法,包括下述步骤:
1)将TAT多肽与石墨粉按质量比1:1-1:5的比例混合后置于球磨罐内。以300-500rpm 的转速室温球磨3-5个小时。球磨结束后加入去离子水,洗出其中的产物。分别采用1000-3000转速离心处理5-15分钟,之后再采用5000-8000rpm的高速离心处理5-15分钟转速的高速离心处理,依次除去沉淀中的杂质。然最后将沉淀分散于去离子水中,即为TAT多肽功能化的石墨烯(TG)。从图1可以看出,通过边缘功能化球磨法,能够简便高效的将TAT多肽接载到石墨烯二维平面。从图2中可以看出,所制备的纳米药物载体TG具有很好的水向分散性。并且我们研究发现,将TG分散在去离子水中7天之后,依然能看到均匀的分散液,未发现明显的团聚和沉淀现象。
2)将TG在-80℃通过真空冷冻干燥制成粉末,采用乙酸等离子技术对TG粉末表面进行羧基化修饰。
3)采用摩尔浓度比为1:1-1:3的N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)活化TG表面羧基后,加入丝裂霉素C(MMC)(TG与MMC的质量比为 1:1-1:3),4℃搅拌48h,离心取沉淀,即得到纳米药物MMC-TG。
实施例2:
实施例1制备的MMC-TG纳米药物的理化性质:
从图3中可以看出,所制备的石墨烯片的高度在0.8nm左右,说明是单层石墨烯。在共价接载MMC药物之后,纳米材料的厚度上升到了4.3nm。
实施例3.
实施例1制备的纳米药物MMC-TG的靶向抗肿瘤效果评价。
我们采用Transwell双细胞共培养体系考察MMC-TG的靶向抗肿瘤效果。Transwell板是一种特殊的细胞培养板,分为上层和下层,两层之间是通透性的膜,膜上培养液中的成分可以自由穿过通透膜而细胞却不能穿过。本实验在Transwell板的上室和下室同时分别培养 ARPE-19正常细胞和OCM-1肿瘤细胞,然后加入MMC-TG和MMC与细胞共同培养72h后,检测细胞活力。从图3中(a)和(b)中可以看出,MMC-TG与两种细胞共培养72h后, MMC浓度达到4μg/mL时,OCM-1肿瘤细胞的存活率下降到5%以下,而ARPE-19正常细胞的存活率依然在50%以上。单纯的药物MMC同时作用于两种细胞时,两种细胞的存活率基本相似,甚至部分实验组中正常ARPE-19细胞被杀灭得更多。说明实施例1制备的MMC-TG 纳米对肿瘤细胞具有良好的靶向杀伤性,而未经处理的MMC药物不具有肿瘤靶向抑制性。
实施例4.
实施例1制备的纳米药物载体TG的肿瘤细胞核靶向性检测
从图4中可以看出,绿色荧光标记的TG纳米药物载体在与OCM-1细胞作用24h之后,大部分纳米材料就出现在了细胞核中。在纳米材料与肿瘤细胞作用72h之后,大部分纳米材料依然只出现在细胞核中,证实了TG纳米材料优异的肿瘤细胞膜穿透能力和核靶向能力。
实施例5.
实施例1制备的纳米药物MMC-TG的肿瘤细胞核靶向性检测与抗肿瘤机制分析
从图5中可以看出,MMC-TG与OCM-1共同作用24h之后,细胞核内容物出现溶解现象。共同作用72h后,核膜完全溶解,细胞核消失,同时细胞质也开始溶解。结果再次证实了MMC-TG具有优异的肿瘤细胞膜穿透能力和核靶向能力,能够进入细胞核,并最先在细胞核发挥作用,从而从源头上抑制肿瘤细胞的快速增殖与全身转移。
序列表
<110> 温州医科大学
<120> 一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 9
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Arg Lys Lys Arg Arg Gln Arg Arg Arg
1 5

Claims (3)

1.一种高度核靶向性抗肿瘤纳米药物的制备方法,包括:
1)将TAT多肽与石墨粉按质量比1:1-1:5的比例混合后置于球磨罐内;以300-500 rpm的转速室温球磨3-5个小时;球磨结束后加入去离子水,洗出其中的产物;分别采用1000-8000 rpm转速的高速离心处理,依次除去沉淀中的杂质;最后将沉淀分散于去离子水中,得到TAT多肽功能化的石墨烯(TG);
2) 将TG在-80℃通过真空冷冻干燥制成粉末,采用乙酸等离子技术对TG粉末表面进行羧基化修饰;
3)采用N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)活化TG表面羧基后,加入丝裂霉素C(MMC),4℃搅拌24-48h,离心取沉淀,即得到纳米药物MMC-TG。
2.根据权利要求1所述的制备方法,其特征在于:球磨原料TAT和石墨粉的比例为1:1-1:5,球磨转速为300-500 rpm, 球磨时间为3-5个小时;球磨法制备得到的TG通过乙酸等离子技术引入羧基,然后通过酰胺键共价接载丝裂霉素(MMC),制备得到新型抗肿瘤纳米药物MMC-TG。
3.权利要求1的方法制备的抗肿瘤纳米药物MMC-TG在肿瘤细胞核靶向、高效杀伤肿瘤、以及抑制肿瘤转移中的应用。
CN201910847823.0A 2019-09-09 2019-09-09 一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用 Pending CN110575546A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910847823.0A CN110575546A (zh) 2019-09-09 2019-09-09 一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910847823.0A CN110575546A (zh) 2019-09-09 2019-09-09 一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN110575546A true CN110575546A (zh) 2019-12-17

Family

ID=68812780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910847823.0A Pending CN110575546A (zh) 2019-09-09 2019-09-09 一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110575546A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111870702A (zh) * 2020-06-22 2020-11-03 温州医科大学 一种纳米眼用药物的制备方法及其应用
CN113181120A (zh) * 2021-02-07 2021-07-30 香港理工大学深圳研究院 一种制备用于靶向肿瘤干细胞的产品的方法、产品及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108125982A (zh) * 2017-12-08 2018-06-08 温州医科大学 一种靶向肿瘤细胞核的石墨烯量子点的制备方法及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108125982A (zh) * 2017-12-08 2018-06-08 温州医科大学 一种靶向肿瘤细胞核的石墨烯量子点的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
林蜜蜜 等: "核靶向性石墨烯药物载体在抑制脉络膜黑色素瘤上的应用", 《第八届中国眼科学和视觉科学研究大会论文集》 *
贾书娟: "核靶向性石墨烯药物载体在抑制脉络膜黑色素瘤上的应用", 《万方数据知识服务平台》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111870702A (zh) * 2020-06-22 2020-11-03 温州医科大学 一种纳米眼用药物的制备方法及其应用
CN111870702B (zh) * 2020-06-22 2023-08-18 温州医科大学 一种纳米眼用药物的制备方法及其应用
CN113181120A (zh) * 2021-02-07 2021-07-30 香港理工大学深圳研究院 一种制备用于靶向肿瘤干细胞的产品的方法、产品及应用

Similar Documents

Publication Publication Date Title
Li et al. Technical synthesis and biomedical applications of graphene quantum dots
Liu et al. Challenges in cell membrane-camouflaged drug delivery systems: development strategies and future prospects
Gong et al. Functionalized ultrasmall fluorinated graphene with high NIR absorbance for controlled delivery of mixed anticancer drugs
Massaro et al. Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene therapy
Jia et al. 8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery
Sironmani et al. Silver nanoparticles–universal multifunctional nanoparticles for bio sensing, imaging for diagnostics and targeted drug delivery for therapeutic applications
Muazim et al. Graphene oxide—A platform towards theranostics
CN104645338B (zh) 一种针对脑肿瘤的dna靶向纳米载药分子的制备方法
He et al. Biomineralized synthesis of palladium nanoflowers for photothermal treatment of cancer and wound healing
Dong et al. Multifunctionalized gold sub‐nanometer particles for sensitizing radiotherapy against glioblastoma
Zhang et al. Graphene oxide and adenosine triphosphate as a source for functionalized carbon dots with applications in pH-triggered drug delivery and cell imaging
Espinoza et al. Synthesis and characterization of silica nanoparticles from rice ashes coated with chitosan/cancer cell membrane for hepatocellular cancer treatment
WO2022007298A1 (zh) 一种具有快速粘液渗透作用的复合纳米微球及其制备方法和应用
CN109549954B (zh) 一种磷基材料制剂及其制备方法和应用
Mengesha et al. Nanodiamonds for drug delivery systems
CN110575546A (zh) 一种高度核靶向性抗肿瘤纳米药物的制备方法及其应用
CN108295257A (zh) 一种石墨炔纳米片基多功能载药体系及其制备方法和应用
Jia et al. Multi-functional self-assembly nanoparticles originating from small molecule natural product for oral insulin delivery through modulating tight junctions
Mumtaz et al. Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review
Yang et al. Ferrocene-based multifunctional nanoparticles for combined chemo/chemodynamic/photothermal therapy
Liu et al. Mouse model to explore the therapeutic effect of nano-doxorubicin drug delivery system on bladder cancer
CN107970454A (zh) 一种氧化石墨烯-脂质纳米复合材料的制备方法及应用
Liu et al. Construction of targeted delivery system for curcumin loaded on magnetic α-Fe2O3/Fe3O4 heterogeneous nanotubes and its apoptosis mechanism on MCF-7 cell
Zhang et al. Elevating mitochondrial reactive oxygen species by mitochondria-targeted inhibition of superoxide dismutase with a mesoporous silica nanocarrier for cancer therapy
CN104784700B (zh) 一种药物共载复合物、胶束及胶束的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191217