CN110563981A - 一种取向氮化硼复合膜的制备方法 - Google Patents

一种取向氮化硼复合膜的制备方法 Download PDF

Info

Publication number
CN110563981A
CN110563981A CN201910429799.9A CN201910429799A CN110563981A CN 110563981 A CN110563981 A CN 110563981A CN 201910429799 A CN201910429799 A CN 201910429799A CN 110563981 A CN110563981 A CN 110563981A
Authority
CN
China
Prior art keywords
boron nitride
composite material
magnetic field
ferroferric oxide
pdms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910429799.9A
Other languages
English (en)
Inventor
陈玉伟
李金博
刘玉红
杨吉颖
赵忠政
张白浪
张建明
段咏欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201910429799.9A priority Critical patent/CN110563981A/zh
Publication of CN110563981A publication Critical patent/CN110563981A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及一种取向氮化硼复合膜的制备方法,具体为氮化硼接枝四氧化三铁以改善氮化硼在磁场中的响应性。通过氮化硼磁性体在磁场中的响应行为,使其在复合材料中形成定向的取向结构,以制备氮化硼的各向异性复合材料。本发明主要强调取向结构对介电性能的提高。本发明利用多巴胺的包覆作用以及它与四氧化三铁的耦合作用,实现了氮化硼与四氧化三铁结合,从而实现了氮化硼在磁场中取向,取向结构的形成提高了氮化硼复合材料的介电性能。本发明涉及的多巴胺对粒子包覆后与四氧化三铁耦合技术不仅可应用于氮化硼一种粒子,对于大多数粒子都可实现磁性改性和取向。

Description

一种取向氮化硼复合膜的制备方法
【技术领域】
本发明涉及电器电子材料技术领域,特别涉及一种电容储能元件电子领域。
【背景技术】
各向异性复合材料因其性能在各个方向上有所不同,而且在某一方向上性能得到了很大的提升,因此得到了很广泛的使用,这类材料由于特有的各向异性结构和性能而应用于一些特殊的领域,例如用于电子封装材料的导电胶膜、柔性电极的取向碳纳米管等领域。制备各向异性复合材料成为当前研究热点,但是大多数粒子不具有简单制备各项异性材料的方式方法,于是提出改性,使其具有磁响应,从而制备各向异性的复合材料。
电子电力器件的小型化、集成化的发展与材料发展息息相关。电容作为电力电子元件的重要的部件,其小体积电容的实现需要高介电材料。保持大电容的情况下减小电容体积比较实际的做法是提高介电常数,通过制备各向异性复合材料来提高材料的介电常数。
氮化硼是一种片层材料,由硼元素和氮元素构成,有多种晶体,其中包括六方氮化硼和立方氮化硼等晶体。六方氮化硼为片层结构,导热性好,耐腐蚀,介电常数也比较高,填充到基体中能有效提高材料的导热性和介电常数,因此引起了人们的广泛关注和研究。
聚二甲基硅氧烷(PDMS)是一种主链由交替排列的硅原子和氧原子构成的高分子化合物,侧基和端基以主要是以烃基为主。PDMS总体上有导热性、表面张力小、耐寒性和耐热性等性质特点。其存在形式分固态和液态两种,液态的PDMS无色无味无毒呈现粘稠状,粘度随温度变化小。
利用电磁场作为动力介质能够诱导粒子发生取向排列的技术早在二十世纪八十年代就被人们发现,这是因为在外加磁场环境中,由于物质具有铁磁性,在施加磁场后会产生对液体介质中的粒子起主要影响的磁化作用。在这种环境下,粒子的热运动与磁场作用抗争,当磁场作用大于热运动时,粒子沿着磁场的方向的取向排列。
因此,本发明将通过对氮化硼磁性体/聚二甲基硅氧烷的复合材料在外加磁场的情况下进行加热固化,制备出一种高介电柔性膜。
【发明内容】
本发明意在提供一种利用氮化硼磁性体和PDMS制备高介电柔性膜的方法,以增加背景技术中提到物质的应用范围。为实现上述目的,提出了如下技术方案:
一种高介电柔性膜其制备包括如下步骤:
(1)氮化硼磁性体制备:将30ml PH=9.90的缓冲溶液与10ml无水乙醇混合起来,然后将0.2g六方氮化硼加入到该混合溶液中,超声30min。然后加入80mg的盐酸多巴胺,常温反应9小时,得到BN@PDA。
把0.2g三氯化铁加入到80ml乙二醇中,然后加入2.0g聚乙二醇和0.2g BN@PDA。超声5min,然后加入6.0g醋酸钠,在60℃下搅拌反应2h.然后转入反应釜中,在180℃反应9h,反应完后,用乙醇反复洗涤三次(离心转速7200转,离心时间30min),除去小分子。在60℃烘干干燥,得到BN-Fe3O4
(2)制备氮化硼磁性体/聚二甲基硅氧烷复合材料:根据所需浓度比例取PDMS与BN-Fe3O4在非介质匀质机中混合均匀,按照固化剂和PDMS为1:10的比例加入固化剂并再用匀质机再真空状态下搅拌脱泡,脱泡后的混合液即液体形式的BN-Fe3O4/PDMS的复合材料。
(3)制备高介电柔性膜:利用玻璃制作所需模具,将制备BN-Fe3O4/PDMS的复合材料的液体倒入模具内部后在上层表面压上玻璃,上下两面覆盖加热片。利用电磁铁装置,产生外加磁场,对样品施加磁场作用力,其中磁场的强度为1020mT,,让样品在常温下取向两小时,然后再在100℃下取向十分钟,同时受热固化。
本发明不仅能对氮化硼进行磁场改性,使之在复合材料中进行取向提高材料的介电常数,而且对于大多数材料都能进行磁改性,使之在磁场下取向,增强某一项性能。
【附图说明】
图1是高介电柔性膜的制备方法流程图
图2是多巴胺材料在粒子表面接枝四氧化三铁
图3和图4是本发明实施例和对比例提供的氮化硼磁性体/PDMS复合膜的介电常数数据图
【具体实施方式】
下面将结合本次发明实施例对本发明中的技术方案进行详尽、清晰的描述。但本发明的保护范围不仅限于此,本领域技术人员依据本发明中的实施例在没有创造性劳动前提下所获得的其他所有其他实施例都应为本发明的保护范围。
实施例1.
将30ml PH=9.90的缓冲溶液与10ml无水乙醇混合起来,然后将0.2g六方氮化硼加入到该混合溶液中,超声30min。然后加入80mg的盐酸多巴胺,常温反应9小时,得到BN@PDA;把0.2g三氯化铁加入到80ml乙二醇中,然后加入2.0g聚乙二醇和0.2g BN@PDA。超声5min,然后加入6.0g醋酸钠,在60℃下搅拌反应2h.然后转入反应釜中,在180℃反应9h,反应完后,用乙醇反复洗涤三次(离心转速7200转,离心时间30min),除去小分子。在60℃烘干干燥,得到BN-Fe3O4;称取9g PDMS与0.1g BN-Fe3O4在非介质匀质机中混合均匀,按照固化剂和PDMS为1:10的比例加入固化剂并再用匀质机再真空状态下搅拌脱泡,脱泡后的混合液即液体形式的BN-Fe3O4/PDMS的复合材料;利用玻璃制作5.5mm×5.5mm×1mm所需模具,将制备BN-Fe3O4/PDMS的复合材料的液体倒入模具内部后在上层表面压上玻璃,上下两面覆盖加热片.利用电磁铁装置,产生外加磁场,对样品施加磁场作用力,磁场的强度为1020mT,让样品在常温下取向两小时,然后再在100℃取向十分钟,同时受热固化。
实施例2.
所用材料种类和工艺流程同实施例1,不同的是加入PDMS 8.7g、BN-Fe3O4 0.4g
对比例1.
所用材料种类和用量同实施例1,不同的是利用玻璃制作5.5mm×5.5mm×1mm所需模具,将制备BN-Fe3O4/PDMS的复合材料的液体倒入模具内部后在上层表面压上玻璃,上下两面覆盖加热片.在100℃加热固化十分钟。
对比例2.
所用材料种类同实施例1,不同的是加入PDMS 8.7g、BN-Fe3O40.4g,利用玻璃制作5.5mm×5.5mm×1mm所需模具,将制备BN-Fe3O4/PDMS的复合材料的液体倒入模具内部后在上层表面压上玻璃,上下两面覆盖加热片.在100℃加热固化十分钟。
图3和图4表示在PDMS与Fe3O4不同比例介电常数随频率变化。
以上所述仅为本发明较佳的实施例,并不用以限制本发明,凡在本发明精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种改变物质磁场响应性的方法,其特征在于,对于大多数物质,通过多巴胺的包覆作用以及它与四氧化三铁的耦合作用,从而实现了物质与四氧化三铁结合,进而可以使物质在磁场中取向,提高复合材料的某种性能。
2.根据权利要求1所述改变物质磁场响应性的方法,通过多巴胺实现氮化硼与与四氧化三铁结合在一起。
3.根据权利要求1所述改变物质磁场响应性的方法,氮化硼表面接四氧化三铁,四氧化三铁使氮化硼具有了磁性。
4.根据权利要求1所述改变物质磁场响应性的方法,所采用物质是氮化硼。使之具有磁性的具体步骤为:
1)氮化硼磁性体制备:将30ml PH=9.90的缓冲溶液与10ml无水乙醇混合起来,然后将0.2g六方氮化硼加入到该混合溶液中,超声30min。然后加入80mg的盐酸多巴胺,常温反应9小时,得到BN@PDA。
2)把0.2g三氯化铁加入到80ml乙二醇中,然后加入2.0g聚乙二醇和0.2g BN@PDA。超声5min,然后加入6.0g醋酸钠,在60℃下搅拌反应2h.然后转入反应釜中,在180℃反应9h,反应完后,用乙醇反复洗涤三次(离心转速7200转,离心时间30min),除去小分子。在60℃烘干干燥,得到BN-Fe3O4
5.根据权利要求1所述提高的某种性能,所提高性能为复合材料的介电性能。复合材料的制备步骤为:
1)一种高介电柔性膜,其特征在于,所述膜是一种氮化硼磁性体/PDMS复合材料,并可以制出任意厚度的膜,且具有光滑的表面结构,所述氮化硼磁性体/PDMS复合材料包括PDMS基体以及氮化硼磁性体粉体,所述氮化硼磁性体粉体分散在所述PDMS基体中。
2)制备高介电柔性膜:将制备BN-Fe3O4/PDMS的复合材料的液体倒入模具内,上下两面覆盖加热片。利用电磁铁装置,产生外加磁场,让样品在常温下取向两小时,然后再在100℃取向十分钟,同时受热固化。
CN201910429799.9A 2019-05-22 2019-05-22 一种取向氮化硼复合膜的制备方法 Pending CN110563981A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910429799.9A CN110563981A (zh) 2019-05-22 2019-05-22 一种取向氮化硼复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910429799.9A CN110563981A (zh) 2019-05-22 2019-05-22 一种取向氮化硼复合膜的制备方法

Publications (1)

Publication Number Publication Date
CN110563981A true CN110563981A (zh) 2019-12-13

Family

ID=68773688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910429799.9A Pending CN110563981A (zh) 2019-05-22 2019-05-22 一种取向氮化硼复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN110563981A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380941A (zh) * 2021-06-07 2021-09-10 北京航空航天大学 一种可拉伸多孔结构的面外型热电器件
CN113511818A (zh) * 2021-06-23 2021-10-19 东南大学江北新区创新研究院 一种各向异性磁性纳米压电材料及其制备方法
CN113663893A (zh) * 2021-09-02 2021-11-19 马豆豆 一种装配式铝合金门窗型材的加工工艺
CN113913074A (zh) * 2021-11-10 2022-01-11 齐威 一种防水涂料及其应用方法
WO2024056109A1 (zh) * 2023-08-28 2024-03-21 常州大学 一种"砖-泥"层状结构耐腐蚀磷酸盐复合涂层及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003701A (zh) * 2006-12-31 2007-07-25 大连理工大学 填料颗粒梯度分散的功能性涂层的改性方法及应用
US20090263331A1 (en) * 2008-03-14 2009-10-22 Northwestern University Multifunction nanoconjugates for imaging applications and targeted treatment
CN104559183A (zh) * 2014-12-09 2015-04-29 江苏大学 磁性微纳米复合填料/硅橡胶导热复合材料的制备方法
CN105111723A (zh) * 2015-09-28 2015-12-02 哈尔滨工业大学 一种表面微结构有序的磁性氮化硼纳米片/聚氨酯复合材料的制备方法
CN105733189A (zh) * 2016-03-06 2016-07-06 北京化工大学 基于二维纳米填料磁致取向的高阻隔复合材料及制备方法
CN106832877A (zh) * 2016-12-26 2017-06-13 北京大学 一种垂直取向氮化硼/高聚物绝缘导热材料的制备方法
CN109181312A (zh) * 2018-09-11 2019-01-11 中国科学院金属研究所 一种磁场下垂直定向的氮化硼与有机硅复合导热薄膜材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003701A (zh) * 2006-12-31 2007-07-25 大连理工大学 填料颗粒梯度分散的功能性涂层的改性方法及应用
US20090263331A1 (en) * 2008-03-14 2009-10-22 Northwestern University Multifunction nanoconjugates for imaging applications and targeted treatment
CN104559183A (zh) * 2014-12-09 2015-04-29 江苏大学 磁性微纳米复合填料/硅橡胶导热复合材料的制备方法
CN105111723A (zh) * 2015-09-28 2015-12-02 哈尔滨工业大学 一种表面微结构有序的磁性氮化硼纳米片/聚氨酯复合材料的制备方法
CN105733189A (zh) * 2016-03-06 2016-07-06 北京化工大学 基于二维纳米填料磁致取向的高阻隔复合材料及制备方法
CN106832877A (zh) * 2016-12-26 2017-06-13 北京大学 一种垂直取向氮化硼/高聚物绝缘导热材料的制备方法
CN109181312A (zh) * 2018-09-11 2019-01-11 中国科学院金属研究所 一种磁场下垂直定向的氮化硼与有机硅复合导热薄膜材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
赵建中: "《机械制造基础》", 31 January 2017, 北京理工大学出版社 *
赵正平等: "《宽禁带半导体高频及微波功率器件与电路》", 31 December 2017, 国防工业出版社 *
闫军锋: "《电子材料与器件实验教程》", 31 May 2016, 西安电子科技大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380941A (zh) * 2021-06-07 2021-09-10 北京航空航天大学 一种可拉伸多孔结构的面外型热电器件
CN113511818A (zh) * 2021-06-23 2021-10-19 东南大学江北新区创新研究院 一种各向异性磁性纳米压电材料及其制备方法
CN113663893A (zh) * 2021-09-02 2021-11-19 马豆豆 一种装配式铝合金门窗型材的加工工艺
CN113913074A (zh) * 2021-11-10 2022-01-11 齐威 一种防水涂料及其应用方法
WO2024056109A1 (zh) * 2023-08-28 2024-03-21 常州大学 一种"砖-泥"层状结构耐腐蚀磷酸盐复合涂层及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN110563981A (zh) 一种取向氮化硼复合膜的制备方法
CN108775979A (zh) 一种高灵敏度柔性压力传感器及其制备方法
EP3211018B1 (en) Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
Yuan et al. High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid
Zeng et al. Polymer-assisted fabrication of silver nanowire cellular monoliths: toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials
US8354772B1 (en) Electrostrictive composite and method for making the same
Cao et al. Preparation and characterization of surface modified silicon carbide/polystyrene nanocomposites
Hutchinson et al. Thermal conductivity and cure kinetics of epoxy-boron nitride composites—a review
US20100216928A1 (en) Polymer particle composite having high fidelity order, size, and shape particles
JP6959488B2 (ja) 低熱膨張部材用組成物、低熱膨張部材、電子機器、低熱膨張部材の製造方法
Zhou et al. High-performance polyimide nanocomposites with core-shell AgNWs@ BN for electronic packagings
CN106928723A (zh) 钛酸铜钙/聚二甲基硅氧烷复合柔性泡沫及其制备方法和应用
Lee Sanchez et al. Highly thermally conductive epoxy composites with AlN/BN hybrid filler as underfill encapsulation material for electronic packaging
Lu et al. Stimuli-responsive graphene oxide-polymer nanocomposites
CN111471299B (zh) 一种导热绝缘的聚酰亚胺纳米复合膜及其制备方法
EP3425019A1 (en) Composition for heat-dissipating member, heat-dissipating member, electronic instrument, method for producing composition for heat-dissipating member, and method for producing heat-dissipating member
Tong et al. Influence of coupling agent on the microstructure and dielectric properties of free-standing ceramic-polymer composites
Zhang et al. Preparation and property enhancement of poly (Vinylidene Fluoride)(PVDF)/lead zirconate titanate (PZT) composite piezoelectric films
Zou et al. Enhancement of thermal conductivity and tensile strength of liquid silicone rubber by three-dimensional alumina network
Zhang et al. Performance enhancements in poly (vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process
Wang et al. Development and perspectives of thermal conductive polymer composites
CN114716704A (zh) 一种高导热石墨烯复合薄膜及其制备方法
Wang et al. Preparation technology of 3–3 composite piezoelectric material and its influence on performance
Xiong et al. Enhanced performance of porous silicone-based dielectric elastomeric composites by low filler content of Ag@ SiO2 Core-Shell nanoparticles
Cao et al. A comparative study on dielectric properties of PVDF/GO nanosheets encapsulated with different organic insulating shell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191213

WD01 Invention patent application deemed withdrawn after publication