CN110562935A - 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 - Google Patents

一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 Download PDF

Info

Publication number
CN110562935A
CN110562935A CN201910892127.1A CN201910892127A CN110562935A CN 110562935 A CN110562935 A CN 110562935A CN 201910892127 A CN201910892127 A CN 201910892127A CN 110562935 A CN110562935 A CN 110562935A
Authority
CN
China
Prior art keywords
znse
shaped
nano material
heavy metal
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910892127.1A
Other languages
English (en)
Other versions
CN110562935B (zh
Inventor
郭正
徐小亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201910892127.1A priority Critical patent/CN110562935B/zh
Publication of CN110562935A publication Critical patent/CN110562935A/zh
Application granted granted Critical
Publication of CN110562935B publication Critical patent/CN110562935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7759Dipstick; Test strip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用,是:首先将溶有硒粉的水合肼和氯化锌水溶液在反应釜中高温反应,获得ZnSe·0.5N2H4纳米带前驱体;然后将ZnSe·0.5N2H4纳米带前驱体和聚乙烯吡咯烷酮、去离子水加入反应釜中,在高温下完全释放肼,从而获得带状框形ZnSe纳米材料。本发明通过水热法获得了一种带状框形ZnSe纳米材料,该制备方法操作安全、过程简单、原材料价格低廉,基于所获得的带状框形ZnSe纳米材料构建的比色试纸,可简单、快速、高效的检测重金属离子(Cu2+、Ag+、Hg2+)。

Description

一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金 属离子中的应用
技术领域
本发明涉及一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用,属于纳米材料制备技术领域。
背景技术
硒化锌(ZnSe)是一种重要的宽带隙直接禁带Ⅱ-VI族半导体材料,其禁带宽度在室温下为2.67eV,具有特殊的光电特性,使其在光电探测器、太阳能电池以及光催化降解污染物等很多领域有着重要的潜在应用前景。
近年来,研究者采用不同的方法制备出了多种形貌结构的ZnSe纳米材料,主要包括真空热蒸发法、水热法、溶剂热法、化学气相沉积法、分子束外延法、溶胶-凝胶法、有机金属化学气相沉积法等。例如:中国专利CN201710217642.0报道了一种通过化学气相沉积法制备ZnSe纳米线的方法,该专利还提供了所制备的ZnSe纳米线作为光电极在太阳能光电催化分解水制氢方面的应用;中国专利CN200910113486.9报道了在金属Bi粉作为催化剂辅助下真空热蒸发法生长ZnSe单晶纳米线的方法;中国专利CN201010039137.X报道了一种在有机相中合成ZnSe荧光纳米棒的方法;中国专利CN201310224560.0报道了一种采用溶剂热法制备大尺寸ZnSe纳米片的方法。然而,这些制备方法仍然存在不足,比如制备成本高、制备过程复杂等。
同时,不同形貌的ZnSe纳米材料表现出不同的物理化学特性。因此,探索新的ZnSe纳米材料的制备方法以及新的ZnSe纳米材料的形貌,对拓展其应用具有重要意义。
发明内容
基于上述现有技术所存在的问题,本发明主要有以下目的:
目的一、提供一种带状框形ZnSe纳米材料及其制备方法,旨在通过原材料价格便宜、操作安全简单的方法获得新形貌的ZnSe纳米材料。
目的二、提供上述带状框形ZnSe纳米材料在比色检验重金属离子中的应用,旨在以带状框形ZnSe纳米材料构建比色试纸,来实现对重金属离子简单、快速、高效的检测。
本发明为实现上述目的,采用如下技术方案:
本发明首先提供了一种带状框形ZnSe纳米材料的制备方法,其特点在于:首先将溶有硒粉的水合肼和氯化锌水溶液在反应釜中高温反应,获得ZnSe·0.5N2H4纳米带前驱体;然后将ZnSe·0.5N2H4纳米带前驱体和聚乙烯吡咯烷酮、去离子水加入反应釜中,在高温下完全释放肼,从而获得带状框形ZnSe纳米材料。具体包括如下步骤:
步骤1、将0.3-0.4mmol硒粉用20mL水合肼溶解后,加入反应釜中;将0.1-0.3mmol氯化锌溶解在20mL去离子水中,然后逐滴加入到反应釜中,再室温磁力搅拌1h;将反应釜放入140-200℃烘箱中反应8-12h;反应结束后,冷却至室温,所得产品经离心清洗,获得ZnSe·0.5N2H4纳米带前驱体;
优选的:硒粉用量为0.4mmol、氯化锌用量为0.2mmol,硒粉与锌离子的摩尔比为Se:Zn2+=2:1,硒粉过量;
优选的:反应温度为180℃、反应时间为10h;
优选的:所述离心清洗是先以水合肼离心清洗3-5次除去过量硒粉,再以去离子水离心清洗至溶液为中性。
步骤2、将步骤1所得ZnSe·0.5N2H4纳米带前驱体与0.1-0.4g聚乙烯吡咯烷酮、40mL去离子水加入反应釜中,室温磁力搅拌1h,然后放入140-180℃烘箱中反应4-10h;反应结束后,冷却至室温,所得产品经离心清洗,即获得目标产物带状框形ZnSe纳米材料;
优选的:聚乙烯吡咯烷酮(PVP)的用量为0.2g,其具有很好的空间限域作用,可以使ZnSe·0.5N2H4前驱体纳米带在水热反应后形貌得以很好的保持;
优选的:反应温度为160℃、反应时间为6h;
优选的:所述离心清洗是先以去离子水离心清洗3-5次除去PVP分子等杂质,再以DMF清洗3-5次除水。
本发明进一步提供了所述制备方法所制得的带状框形ZnSe纳米材料及其在比色检验重金属离子中的应用,其特点在于:是以干燥的滤纸片为基底,将所述带状框形ZnSe纳米材料分散在有机溶剂DMF中,然后采用移液枪滴涂在滤纸片表面,干燥后即获得用于比色检验重金属离子的比色试纸。
优选的,所述滤纸片为直径6mm的圆形滤纸片,带状框形ZnSe纳米材料在DMF中的分散浓度为0.02mmol/mL,在滤纸片表面的滴涂体积为10μL-100μL(优选20μL)。
优选的,所述重金属离子为Cu2+、Ag+或Hg2+。具体的,使用时,将待测溶液滴加到所述比色试纸上,然后根据比色试纸颜色的变化,确定待测溶液中是否有相应重金属离子。同时,滴加不同浓度的同一种重金属离子(Cu2+、Ag+、Hg2+)溶液,通过观察颜色变化,可以发现,随着重金属离子浓度不断增大,比色试纸颜色不断加深。由此,可以看出所制备的比色试纸对Cu2+、Ag+、Hg2+具有很好的比色响应。
本发明的有益效果体现在:
1、本发明通过水热法获得了一种带状框形ZnSe纳米材料,该制备方法操作安全、过程简单、原材料价格低廉。
2、本发明基于所获得的带状框形ZnSe纳米材料构建了比色试纸,可简单、快速、高效的检测重金属离子(Cu2+、Ag+、Hg2+),且比色试纸的构建方法简单、成本较低、实用性强,适宜大规模生产,具有十分重要的实际生产和生活应用价值。
附图说明
图1为实施例所得ZnSe·0.5N2H4纳米带前驱体的SEM照片;
图2为实施例所得带状框形ZnSe纳米材料的SEM照片;
图3为实施例所得带状框形ZnSe纳米材料的TEM照片;
图4为实施例所得带状框形ZnSe纳米材料的XRD图;
图5为实施例所得ZnSe·0.5N2H4纳米带前驱体与带状框形ZnSe纳米材料的FT-IR对比图;
图6为实施例所得比色试纸对不同浓度Cu2+的响应结果;
图7为实施例所得比色试纸对不同浓度Ag+的响应结果;
图8为实施例所得比色试纸对不同浓度Hg2+的响应结果。
具体实施方式
为了更好地理解本发明的技术方案,下面通过实施例对本发明作进一步详细的说明:
实施例1、带状框形ZnSe纳米材料的制备
步骤1、将0.4mmol硒粉用20mL水合肼溶解后,加入50mL反应釜中;将0.2mmol氯化锌溶解在20mL去离子水中,然后逐滴加入到反应釜中,再室温磁力搅拌1h;将反应釜放入180℃烘箱中反应10h;反应结束后,冷却至室温,所得产品经离心清洗(先以水合肼离心清洗3次除去过量硒粉,再以去离子水离心清洗至溶液呈中性),获得ZnSe·0.5N2H4纳米带前驱体。
步骤2、将步骤1所得ZnSe·0.5N2H4纳米带前驱体与0.2g聚乙烯吡咯烷酮、40mL去离子水加入反应釜中,室温磁力搅拌1h,然后放入160℃烘箱中反应6h;反应结束后,冷却至室温,所得产品经离心清洗(所述离心清洗是先以去离子水离心清洗3次除去PVP分子等杂质,再以DMF清洗3次除水),即获得目标产物带状框形ZnSe纳米材料。
图1为本实施例所得ZnSe·0.5N2H4纳米带前驱体的SEM照片,从图中可以看出合成的ZnSe·0.5N2H4前驱体为表面光滑的规则带状结构。
图2和图3分别为本实施例所得带状框形ZnSe纳米材料的SEM照片和TEM照片,从图中可以看出制备的ZnSe纳米材料为纳米颗粒组成的带状框形结构。
图4为本实施例所得带状框形ZnSe纳米材料的XRD图,从图中可以看出所有衍射峰对应于ZnSe(JCPDS,80-0008),不含有其它衍射峰。
图5为本实施例所得ZnSe·0.5N2H4纳米带前驱体与带状框形ZnSe纳米材料的FT-IR对比图,从图中可以看出N-H伸缩振动峰、NH2振动峰以及N2H4与Zn2+振动峰均已消失,证明N2H4配体已从纳米带前驱体中释放出来。
实施例2、比色试纸的制备和应用
取干燥的滤纸片,裁剪成直径为6mm的圆形滤纸片若干个,作为基底。将实施例1制备的带状框形ZnSe纳米材料分散于有机溶剂DMF中,获得浓度为0.02mmol/mL的分散液。采用移液枪将20μL分散液滴涂于圆形滤纸基底上,待干燥后即获得比色试纸。
对重金属离子的检测:在所得比色试纸上分别滴加10μL不同浓度(0ppm、0.5ppm、1ppm、5ppm、10ppm、25ppm、50ppm、75ppm、100ppm)的重金属离子(Cu2+、Ag+、Hg2+)溶液,观察其颜色变化。Cu2+、Ag+、Hg2+的响应结果分别如图6、7、8所示。从图中可以看出,随着重金属离子(Cu2+、Ag+、Hg2+)浓度不断增大,圆形比色试纸颜色不断加深。由此可以证明,本实施例所制备的带状框形ZnSe纳米材料比色试纸对Cu2+、Ag+和Hg2+皆具有很好的比色响应。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种带状框形ZnSe纳米材料的制备方法,其特征在于:首先将溶有硒粉的水合肼和氯化锌水溶液在反应釜中高温反应,获得ZnSe·0.5N2H4纳米带前驱体;然后将ZnSe·0.5N2H4纳米带前驱体和聚乙烯吡咯烷酮、去离子水加入反应釜中,在高温下完全释放肼,从而获得带状框形ZnSe纳米材料。
2.根据权利要求1所述的制备方法,其特征在于,包括如下步骤:
步骤1、将0.3-0.4mmol硒粉用20mL水合肼溶解后,加入反应釜中;将0.1-0.3mmol氯化锌溶解在20mL去离子水中,然后逐滴加入到反应釜中,再室温磁力搅拌1h;将反应釜放入140-200℃烘箱中反应8-12h;反应结束后,冷却至室温,所得产品经离心清洗,获得ZnSe·0.5N2H4纳米带前驱体;
步骤2、将步骤1所得ZnSe·0.5N2H4纳米带前驱体与0.1-0.4g聚乙烯吡咯烷酮、40mL去离子水加入反应釜中,室温磁力搅拌1h,然后放入140-180℃烘箱中反应4-10h;反应结束后,冷却至室温,所得产品经离心清洗,即获得目标产物带状框形ZnSe纳米材料。
3.根据权利要求2所述的制备方法,其特征在于:步骤1中所述离心清洗是先以水合肼离心清洗3-5次除去过量硒粉,再以去离子水离心清洗至溶液为中性。
4.根据权利要求2所述的制备方法,其特征在于:步骤2中所述离心清洗是先以去离子水离心清洗3-5次,再以DMF清洗3-5次除水。
5.一种权利要求1-4中任意一项所述制备方法所制得的带状框形ZnSe纳米材料。
6.一种权利要求5所述带状框形ZnSe纳米材料在比色检验重金属离子中的应用,其特征在于:是以滤纸片为基底,将所述带状框形ZnSe纳米材料分散在有机溶剂DMF中,然后再滴涂在滤纸片表面,干燥后即获得用于比色检验重金属离子的比色试纸。
7.根据权利要求6所述的应用,其特征在于:所述重金属离子为Cu2+、Ag+或Hg2+
8.根据权利要求6所述的应用,其特征在于:使用时,将待测溶液滴加到所述比色试纸上,然后根据比色试纸颜色的变化,确定待测溶液中是否有相应重金属离子。
CN201910892127.1A 2019-09-20 2019-09-20 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 Active CN110562935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910892127.1A CN110562935B (zh) 2019-09-20 2019-09-20 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910892127.1A CN110562935B (zh) 2019-09-20 2019-09-20 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用

Publications (2)

Publication Number Publication Date
CN110562935A true CN110562935A (zh) 2019-12-13
CN110562935B CN110562935B (zh) 2022-11-08

Family

ID=68781461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910892127.1A Active CN110562935B (zh) 2019-09-20 2019-09-20 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用

Country Status (1)

Country Link
CN (1) CN110562935B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111573632A (zh) * 2020-05-27 2020-08-25 安徽大学 一种带状PbSe/ZnSe异质结纳米材料及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921834A (en) * 1957-01-31 1960-01-19 Merck & Co Inc Process for preparing metal selenides
CN101078113A (zh) * 2007-06-29 2007-11-28 陕西师范大学 ZnSe纳米带的KBH4-Zn-Se-NH2C2H4NH2溶剂热制备方法
CN101920942A (zh) * 2010-09-20 2010-12-22 东华大学 一种控制合成硒化锌多形貌纳米材料的方法
CN102586949A (zh) * 2012-02-24 2012-07-18 长春理工大学 一种硒化锌纳米带的制备方法
CN102621091A (zh) * 2012-04-01 2012-08-01 中国科学院宁波材料技术与工程研究所 一种快速检测溶液中铜离子的方法
CN107572489A (zh) * 2017-08-07 2018-01-12 中国科学技术大学 一种硒化锌超薄纳米带以及制备其的阴离子交换方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921834A (en) * 1957-01-31 1960-01-19 Merck & Co Inc Process for preparing metal selenides
CN101078113A (zh) * 2007-06-29 2007-11-28 陕西师范大学 ZnSe纳米带的KBH4-Zn-Se-NH2C2H4NH2溶剂热制备方法
CN101920942A (zh) * 2010-09-20 2010-12-22 东华大学 一种控制合成硒化锌多形貌纳米材料的方法
CN102586949A (zh) * 2012-02-24 2012-07-18 长春理工大学 一种硒化锌纳米带的制备方法
CN102621091A (zh) * 2012-04-01 2012-08-01 中国科学院宁波材料技术与工程研究所 一种快速检测溶液中铜离子的方法
CN107572489A (zh) * 2017-08-07 2018-01-12 中国科学技术大学 一种硒化锌超薄纳米带以及制备其的阴离子交换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO SU ET AL.: "Cation-Exchange Synthesis of Cu2Se Nanobelts and Thermal Conversion to Porous CuO Nanobelts with Highly Selective Sensing toward H2S", 《ACS APPL.NANO MATER.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111573632A (zh) * 2020-05-27 2020-08-25 安徽大学 一种带状PbSe/ZnSe异质结纳米材料及其制备方法、应用
CN111573632B (zh) * 2020-05-27 2023-05-12 安徽大学 一种带状PbSe/ZnSe异质结纳米材料及其制备方法、应用

Also Published As

Publication number Publication date
CN110562935B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
Zoolfakar et al. Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications
Boughelout et al. Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu 2 O thin films
Yang et al. 3D flower-and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors
Zhao et al. Fabricating CsPbX3/CN heterostructures with enhanced photocatalytic activity for penicillins 6-APA degradation
Zhang et al. Synthesis, characterization, and applications of ZnO nanowires
Varghese et al. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO
Yu et al. Oxygen defect-rich In-doped ZnO nanostructure for enhanced visible light photocatalytic activity
Long et al. A novel solvent-free strategy for the synthesis of bismuth oxyhalides
Nandi et al. ZnO-CuxO heterostructure photocatalyst for efficient dye degradation
Bai et al. A novel 3D ZnO/Cu 2 O nanowire photocathode material with highly efficient photoelectrocatalytic performance
US11473193B2 (en) Fabrication, characterization and photoelectrochemical properties of CeO2-TiO2 thin film electrodes
Ghosh et al. Highly efficient ultraviolet photodetection in nanocolumnar RF sputtered ZnO films: a comparison between sputtered, sol–gel and aqueous chemically grown nanostructures
Hong et al. Construction of a Pt-modified chestnut-shell-like ZnO photocatalyst for high-efficiency photochemical water splitting
Feng et al. Fabrication and characterization of tetrapod-like ZnO nanostructures prepared by catalyst-free thermal evaporation
Kurudirek et al. Low-temperature hydrothermally grown 100 μm vertically well-aligned ultralong and ultradense ZnO nanorod arrays with improved PL property
Rzaij et al. Room temperature gas sensor based on La 2 O 3 doped CuO thin films
Ahmed et al. Effect of electrodeposition duration on the morphological and structural modification of the flower-like nanostructured ZnO
Lu et al. Controllable electrodeposition of ZnO nanorod arrays on flexible stainless steel mesh substrate for photocatalytic degradation of Rhodamine B
Babu et al. Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters
CN110562935B (zh) 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用
CN110760874B (zh) 一种利用废弃磷酸铁锂电池制备氧化铁光阳极薄膜的方法
Teng et al. Remarkably enhanced photodegradation of organic pollutants by NH2-UiO-66/ZnO composite under visible-light irradiation
CN113951278A (zh) 过渡金属改性ZnO抗菌材料、制备方法及应用
Çolak et al. Synthesis and structural, electrical, optical properties of Lu3+-doped ZnO nanorods
Lu et al. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant