CN110562935B - 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 - Google Patents
一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 Download PDFInfo
- Publication number
- CN110562935B CN110562935B CN201910892127.1A CN201910892127A CN110562935B CN 110562935 B CN110562935 B CN 110562935B CN 201910892127 A CN201910892127 A CN 201910892127A CN 110562935 B CN110562935 B CN 110562935B
- Authority
- CN
- China
- Prior art keywords
- znse
- shaped
- nano material
- heavy metal
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 46
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 21
- 150000002500 ions Chemical class 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 238000001514 detection method Methods 0.000 title claims abstract description 9
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 title claims abstract 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 238000004737 colorimetric analysis Methods 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000002243 precursor Substances 0.000 claims abstract description 18
- 239000008367 deionised water Substances 0.000 claims abstract description 15
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 15
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims abstract description 14
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002127 nanobelt Substances 0.000 claims abstract description 12
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 10
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 10
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims abstract description 9
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 235000005074 zinc chloride Nutrition 0.000 claims abstract description 7
- 239000011592 zinc chloride Substances 0.000 claims abstract description 7
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002074 nanoribbon Substances 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- 238000004140 cleaning Methods 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 3
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 53
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002070 nanowire Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7756—Sensor type
- G01N2021/7759—Dipstick; Test strip
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
本发明公开了一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用,是:首先将溶有硒粉的水合肼和氯化锌水溶液在反应釜中高温反应,获得ZnSe·0.5N2H4纳米带前驱体;然后将ZnSe·0.5N2H4纳米带前驱体和聚乙烯吡咯烷酮、去离子水加入反应釜中,在高温下完全释放肼,从而获得带状框形ZnSe纳米材料。本发明通过水热法获得了一种带状框形ZnSe纳米材料,该制备方法操作安全、过程简单、原材料价格低廉,基于所获得的带状框形ZnSe纳米材料构建的比色试纸,可简单、快速、高效的检测重金属离子(Cu2+、Ag+、Hg2+)。
Description
技术领域
本发明涉及一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用,属于纳米材料制备技术领域。
背景技术
硒化锌(ZnSe)是一种重要的宽带隙直接禁带Ⅱ-VI族半导体材料,其禁带宽度在室温下为2.67eV,具有特殊的光电特性,使其在光电探测器、太阳能电池以及光催化降解污染物等很多领域有着重要的潜在应用前景。
近年来,研究者采用不同的方法制备出了多种形貌结构的ZnSe纳米材料,主要包括真空热蒸发法、水热法、溶剂热法、化学气相沉积法、分子束外延法、溶胶-凝胶法、有机金属化学气相沉积法等。例如:中国专利CN201710217642.0报道了一种通过化学气相沉积法制备ZnSe纳米线的方法,该专利还提供了所制备的ZnSe纳米线作为光电极在太阳能光电催化分解水制氢方面的应用;中国专利CN200910113486.9报道了在金属Bi粉作为催化剂辅助下真空热蒸发法生长ZnSe单晶纳米线的方法;中国专利CN201010039137.X报道了一种在有机相中合成ZnSe荧光纳米棒的方法;中国专利CN201310224560.0报道了一种采用溶剂热法制备大尺寸ZnSe纳米片的方法。然而,这些制备方法仍然存在不足,比如制备成本高、制备过程复杂等。
同时,不同形貌的ZnSe纳米材料表现出不同的物理化学特性。因此,探索新的ZnSe纳米材料的制备方法以及新的ZnSe纳米材料的形貌,对拓展其应用具有重要意义。
发明内容
基于上述现有技术所存在的问题,本发明主要有以下目的:
目的一、提供一种带状框形ZnSe纳米材料及其制备方法,旨在通过原材料价格便宜、操作安全简单的方法获得新形貌的ZnSe纳米材料。
目的二、提供上述带状框形ZnSe纳米材料在比色检验重金属离子中的应用,旨在以带状框形ZnSe纳米材料构建比色试纸,来实现对重金属离子简单、快速、高效的检测。
本发明为实现上述目的,采用如下技术方案:
本发明首先提供了一种带状框形ZnSe纳米材料的制备方法,其特点在于:首先将溶有硒粉的水合肼和氯化锌水溶液在反应釜中高温反应,获得ZnSe·0.5N2H4纳米带前驱体;然后将ZnSe·0.5N2H4纳米带前驱体和聚乙烯吡咯烷酮、去离子水加入反应釜中,在高温下完全释放肼,从而获得带状框形ZnSe纳米材料。具体包括如下步骤:
步骤1、将0.3-0.4mmol硒粉用20mL水合肼溶解后,加入反应釜中;将0.1-0.3mmol氯化锌溶解在20mL去离子水中,然后逐滴加入到反应釜中,再室温磁力搅拌1h;将反应釜放入140-200℃烘箱中反应8-12h;反应结束后,冷却至室温,所得产品经离心清洗,获得ZnSe·0.5N2H4纳米带前驱体;
优选的:硒粉用量为0.4mmol、氯化锌用量为0.2mmol,硒粉与锌离子的摩尔比为Se:Zn2+=2:1,硒粉过量;
优选的:反应温度为180℃、反应时间为10h;
优选的:所述离心清洗是先以水合肼离心清洗3-5次除去过量硒粉,再以去离子水离心清洗至溶液为中性。
步骤2、将步骤1所得ZnSe·0.5N2H4纳米带前驱体与0.1-0.4g聚乙烯吡咯烷酮、40mL去离子水加入反应釜中,室温磁力搅拌1h,然后放入140-180℃烘箱中反应4-10h;反应结束后,冷却至室温,所得产品经离心清洗,即获得目标产物带状框形ZnSe纳米材料;
优选的:聚乙烯吡咯烷酮(PVP)的用量为0.2g,其具有很好的空间限域作用,可以使ZnSe·0.5N2H4前驱体纳米带在水热反应后形貌得以很好的保持;
优选的:反应温度为160℃、反应时间为6h;
优选的:所述离心清洗是先以去离子水离心清洗3-5次除去PVP分子等杂质,再以DMF清洗3-5次除水。
本发明进一步提供了所述制备方法所制得的带状框形ZnSe纳米材料及其在比色检验重金属离子中的应用,其特点在于:是以干燥的滤纸片为基底,将所述带状框形ZnSe纳米材料分散在有机溶剂DMF中,然后采用移液枪滴涂在滤纸片表面,干燥后即获得用于比色检验重金属离子的比色试纸。
优选的,所述滤纸片为直径6mm的圆形滤纸片,带状框形ZnSe纳米材料在DMF中的分散浓度为0.02mmol/mL,在滤纸片表面的滴涂体积为10μL-100μL(优选20μL)。
优选的,所述重金属离子为Cu2+、Ag+或Hg2+。具体的,使用时,将待测溶液滴加到所述比色试纸上,然后根据比色试纸颜色的变化,确定待测溶液中是否有相应重金属离子。同时,滴加不同浓度的同一种重金属离子(Cu2+、Ag+、Hg2+)溶液,通过观察颜色变化,可以发现,随着重金属离子浓度不断增大,比色试纸颜色不断加深。由此,可以看出所制备的比色试纸对Cu2+、Ag+、Hg2+具有很好的比色响应。
本发明的有益效果体现在:
1、本发明通过水热法获得了一种带状框形ZnSe纳米材料,该制备方法操作安全、过程简单、原材料价格低廉。
2、本发明基于所获得的带状框形ZnSe纳米材料构建了比色试纸,可简单、快速、高效的检测重金属离子(Cu2+、Ag+、Hg2+),且比色试纸的构建方法简单、成本较低、实用性强,适宜大规模生产,具有十分重要的实际生产和生活应用价值。
附图说明
图1为实施例所得ZnSe·0.5N2H4纳米带前驱体的SEM照片;
图2为实施例所得带状框形ZnSe纳米材料的SEM照片;
图3为实施例所得带状框形ZnSe纳米材料的TEM照片;
图4为实施例所得带状框形ZnSe纳米材料的XRD图;
图5为实施例所得ZnSe·0.5N2H4纳米带前驱体与带状框形ZnSe纳米材料的FT-IR对比图;
图6为实施例所得比色试纸对不同浓度Cu2+的响应结果;
图7为实施例所得比色试纸对不同浓度Ag+的响应结果;
图8为实施例所得比色试纸对不同浓度Hg2+的响应结果。
具体实施方式
为了更好地理解本发明的技术方案,下面通过实施例对本发明作进一步详细的说明:
实施例1、带状框形ZnSe纳米材料的制备
步骤1、将0.4mmol硒粉用20mL水合肼溶解后,加入50mL反应釜中;将0.2mmol氯化锌溶解在20mL去离子水中,然后逐滴加入到反应釜中,再室温磁力搅拌1h;将反应釜放入180℃烘箱中反应10h;反应结束后,冷却至室温,所得产品经离心清洗(先以水合肼离心清洗3次除去过量硒粉,再以去离子水离心清洗至溶液呈中性),获得ZnSe·0.5N2H4纳米带前驱体。
步骤2、将步骤1所得ZnSe·0.5N2H4纳米带前驱体与0.2g聚乙烯吡咯烷酮、40mL去离子水加入反应釜中,室温磁力搅拌1h,然后放入160℃烘箱中反应6h;反应结束后,冷却至室温,所得产品经离心清洗(所述离心清洗是先以去离子水离心清洗3次除去PVP分子等杂质,再以DMF清洗3次除水),即获得目标产物带状框形ZnSe纳米材料。
图1为本实施例所得ZnSe·0.5N2H4纳米带前驱体的SEM照片,从图中可以看出合成的ZnSe·0.5N2H4前驱体为表面光滑的规则带状结构。
图2和图3分别为本实施例所得带状框形ZnSe纳米材料的SEM照片和TEM照片,从图中可以看出制备的ZnSe纳米材料为纳米颗粒组成的带状框形结构。
图4为本实施例所得带状框形ZnSe纳米材料的XRD图,从图中可以看出所有衍射峰对应于ZnSe(JCPDS,80-0008),不含有其它衍射峰。
图5为本实施例所得ZnSe·0.5N2H4纳米带前驱体与带状框形ZnSe纳米材料的FT-IR对比图,从图中可以看出N-H伸缩振动峰、NH2振动峰以及N2H4与Zn2+振动峰均已消失,证明N2H4配体已从纳米带前驱体中释放出来。
实施例2、比色试纸的制备和应用
取干燥的滤纸片,裁剪成直径为6mm的圆形滤纸片若干个,作为基底。将实施例1制备的带状框形ZnSe纳米材料分散于有机溶剂DMF中,获得浓度为0.02mmol/mL的分散液。采用移液枪将20μL分散液滴涂于圆形滤纸基底上,待干燥后即获得比色试纸。
对重金属离子的检测:在所得比色试纸上分别滴加10μL不同浓度(0ppm、0.5ppm、1ppm、5ppm、10ppm、25ppm、50ppm、75ppm、100ppm)的重金属离子(Cu2+、Ag+、Hg2+)溶液,观察其颜色变化。Cu2+、Ag+、Hg2+的响应结果分别如图6、7、8所示。从图中可以看出,随着重金属离子(Cu2+、Ag+、Hg2+)浓度不断增大,圆形比色试纸颜色不断加深。由此可以证明,本实施例所制备的带状框形ZnSe纳米材料比色试纸对Cu2+、Ag+和Hg2+皆具有很好的比色响应。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (7)
1.一种带状框形ZnSe纳米材料的制备方法,其特征在于:首先将溶有硒粉的水合肼和氯化锌水溶液在反应釜中高温反应,获得ZnSe·0.5N2H4纳米带前驱体;然后将ZnSe·0.5N2H4纳米带前驱体和聚乙烯吡咯烷酮、去离子水加入反应釜中,在高温下完全释放肼,从而获得带状框形ZnSe纳米材料;具体包括如下步骤:
步骤1、将0.3-0.4mmol硒粉用20mL水合肼溶解后,加入反应釜中;将0.1-0.3mmol氯化锌溶解在20mL去离子水中,然后逐滴加入到反应釜中,再室温磁力搅拌1h;将反应釜放入140-200℃烘箱中反应8-12h;反应结束后,冷却至室温,所得产品经离心清洗,获得ZnSe·0.5N2H4纳米带前驱体;
步骤2、将步骤1所得ZnSe·0.5N2H4纳米带前驱体与0.1-0.4g聚乙烯吡咯烷酮、40mL去离子水加入反应釜中,室温磁力搅拌1h,然后放入140-180℃烘箱中反应4-10h;反应结束后,冷却至室温,所得产品经离心清洗,即获得目标产物带状框形ZnSe纳米材料。
2.根据权利要求1所述的制备方法,其特征在于:步骤1中所述离心清洗是先以水合肼离心清洗3-5次除去过量硒粉,再以去离子水离心清洗至溶液为中性。
3.根据权利要求1所述的制备方法,其特征在于:步骤2中所述离心清洗是先以去离子水离心清洗3-5次,再以DMF清洗3-5次除水。
4.一种权利要求1-3中任意一项所述制备方法所制得的带状框形ZnSe纳米材料。
5.一种权利要求4所述带状框形ZnSe纳米材料在比色检验重金属离子中的应用,其特征在于:是以滤纸片为基底,将所述带状框形ZnSe纳米材料分散在有机溶剂DMF中,然后再滴涂在滤纸片表面,干燥后即获得用于比色检验重金属离子的比色试纸。
6.根据权利要求5所述的应用,其特征在于:所述重金属离子为Cu2+、Ag+或Hg2+。
7.根据权利要求5所述的应用,其特征在于:使用时,将待测溶液滴加到所述比色试纸上,然后根据比色试纸颜色的变化,确定待测溶液中是否有相应重金属离子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910892127.1A CN110562935B (zh) | 2019-09-20 | 2019-09-20 | 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910892127.1A CN110562935B (zh) | 2019-09-20 | 2019-09-20 | 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110562935A CN110562935A (zh) | 2019-12-13 |
CN110562935B true CN110562935B (zh) | 2022-11-08 |
Family
ID=68781461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910892127.1A Active CN110562935B (zh) | 2019-09-20 | 2019-09-20 | 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110562935B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111573632B (zh) * | 2020-05-27 | 2023-05-12 | 安徽大学 | 一种带状PbSe/ZnSe异质结纳米材料及其制备方法、应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921834A (en) * | 1957-01-31 | 1960-01-19 | Merck & Co Inc | Process for preparing metal selenides |
CN101078113A (zh) * | 2007-06-29 | 2007-11-28 | 陕西师范大学 | ZnSe纳米带的KBH4-Zn-Se-NH2C2H4NH2溶剂热制备方法 |
CN101920942A (zh) * | 2010-09-20 | 2010-12-22 | 东华大学 | 一种控制合成硒化锌多形貌纳米材料的方法 |
CN102586949A (zh) * | 2012-02-24 | 2012-07-18 | 长春理工大学 | 一种硒化锌纳米带的制备方法 |
CN102621091A (zh) * | 2012-04-01 | 2012-08-01 | 中国科学院宁波材料技术与工程研究所 | 一种快速检测溶液中铜离子的方法 |
CN107572489A (zh) * | 2017-08-07 | 2018-01-12 | 中国科学技术大学 | 一种硒化锌超薄纳米带以及制备其的阴离子交换方法 |
-
2019
- 2019-09-20 CN CN201910892127.1A patent/CN110562935B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921834A (en) * | 1957-01-31 | 1960-01-19 | Merck & Co Inc | Process for preparing metal selenides |
CN101078113A (zh) * | 2007-06-29 | 2007-11-28 | 陕西师范大学 | ZnSe纳米带的KBH4-Zn-Se-NH2C2H4NH2溶剂热制备方法 |
CN101920942A (zh) * | 2010-09-20 | 2010-12-22 | 东华大学 | 一种控制合成硒化锌多形貌纳米材料的方法 |
CN102586949A (zh) * | 2012-02-24 | 2012-07-18 | 长春理工大学 | 一种硒化锌纳米带的制备方法 |
CN102621091A (zh) * | 2012-04-01 | 2012-08-01 | 中国科学院宁波材料技术与工程研究所 | 一种快速检测溶液中铜离子的方法 |
CN107572489A (zh) * | 2017-08-07 | 2018-01-12 | 中国科学技术大学 | 一种硒化锌超薄纳米带以及制备其的阴离子交换方法 |
Non-Patent Citations (1)
Title |
---|
Cation-Exchange Synthesis of Cu2Se Nanobelts and Thermal Conversion to Porous CuO Nanobelts with Highly Selective Sensing toward H2S;Yao Su et al.;《ACS Appl.Nano Mater.》;20171212;第1卷;第245-253页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110562935A (zh) | 2019-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boughelout et al. | Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu 2 O thin films | |
Long et al. | A novel solvent-free strategy for the synthesis of bismuth oxyhalides | |
Yang et al. | Fast photoelectro-reduction of CrVI over MoS2@ TiO2 nanotubes on Ti wire | |
Nandi et al. | ZnO-CuxO heterostructure photocatalyst for efficient dye degradation | |
Varghese et al. | Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO | |
He et al. | Surface decoration of microdisk-like g-C3N4/diatomite with Ag/AgCl nanoparticles for application in Cr (VI) reduction | |
Bai et al. | A novel 3D ZnO/Cu 2 O nanowire photocathode material with highly efficient photoelectrocatalytic performance | |
Shan et al. | Enhanced photocatalytic activity with a heterojunction between BiVO4 and BiOI | |
Ghosh et al. | Highly efficient ultraviolet photodetection in nanocolumnar RF sputtered ZnO films: a comparison between sputtered, sol–gel and aqueous chemically grown nanostructures | |
Babu et al. | Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters | |
Feng et al. | Fabrication and characterization of tetrapod-like ZnO nanostructures prepared by catalyst-free thermal evaporation | |
Zheng et al. | Improved photocathodic protection performance of g-C3N4/rGO/ZnS for 304 stainless steel | |
Hussain et al. | The synthesis of a BiOCl x Br 1− x nanostructure photocatalyst with high surface area for the enhanced visible-light photocatalytic reduction of Cr (vi) | |
US11761101B2 (en) | Method for making a CaTiO composite thin film electrode for water splitting | |
CN110562935B (zh) | 一种带状框形ZnSe纳米材料及其制备方法和在比色检验重金属离子中的应用 | |
Cen et al. | Direct Z-scheme Ag2WO4/BiOCl composite photocatalyst for efficient photocatalytic degradations of dissolved organic impurities | |
Xu et al. | Molten-salt-mediated synthesis of bulk W doped BiOCl with highly enhanced visible-light photocatalytic performances | |
Ouyang et al. | Shape controlled synthesis and optical properties of Cu2O micro-spheres and octahedrons | |
CN110760874B (zh) | 一种利用废弃磷酸铁锂电池制备氧化铁光阳极薄膜的方法 | |
CN113951278A (zh) | 过渡金属改性ZnO抗菌材料、制备方法及应用 | |
Mousa et al. | Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods | |
Çolak et al. | Synthesis and structural, electrical, optical properties of Lu3+-doped ZnO nanorods | |
CN109317167B (zh) | 金属硫族配合物包覆的纳米粒子及其制备方法和应用 | |
Nguyen et al. | The use of g-C3N4/MOFs (Fe) as a photocatalyst for remediation of pharmaceutics in water | |
AlArfaj et al. | The influence of external magnetic field on the structural and optical properties of nanocrystalline ZnO thin films prepared by dip coating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |